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ABSTRACT
On the world wide web, toxic content detectors are a crucial line of

defense against potentially hateful and offensive messages. As such,

building highly effective classifiers that enable a safer internet is an

important research area. Moreover, the web is a highly multilingual,

cross-cultural community that develops its own lingo over time.

As such, it is crucial to develop models that are effective across a

diverse range of languages, usages, and styles. In this paper, we

present the fundamentals behind the next version of the Perspective

API from Google Jigsaw. At the heart of the approach is a single

multilingual token-free Charformer model that is applicable across

a range of languages, domains, and tasks. We demonstrate that by

forgoing static vocabularies, we gain flexibility across a variety of

settings. We additionally outline the techniques employed to make

such a byte-level model efficient and feasible for productionization.

Through extensive experiments on multilingual toxic comment

classification benchmarks derived from real API traffic and evalu-

ation on an array of code-switching, covert toxicity, emoji-based

hate, human-readable obfuscation, distribution shift, and bias eval-

uation settings, we show that our proposed approach outperforms

strong baselines. Finally, we present our findings from deploying

this system in production.

KEYWORDS
moderation, text classification, multilingual

1 INTRODUCTION
Developing robust and effective content moderation systems is a

crucial component for keeping the web safe from abusive users.

Offensive, toxic, and harassing content has the potential to signif-

icantly harm users along with wide-ranging negative effects on

broader society. To this end, building machine learned systems that

are able to detect toxic content is a well-established and highly

important research area, and an essential component of modern

∗
Equal contribution, ordered alphabetically.

platforms’ content moderation workflows, alongside robust human

moderator teams.

Most research in this area has been focused on building spe-

cialized models for specific locales, languages, domains, or label

distributions [2, 20, 24, 33]. Thus, it is common practice to build

monolingual models for specific languages and/or domains. Given

that the web is highly multilingual, multi-cultural, and typograph-

ically diverse, monolingual systems are likely to under-perform

in real applications, as they are unable to handle code-switching,

cross-cultural phenomena, or cross-lingual generalization.

Due to the rigidity of feature-based machine learning models,

subword tokenization, and byte-pair encoding [17] based deep learn-

ingmodels (e.g., BERT [9]), many of thesemodels are not universally

applicable across different languages and/or tasks and are consid-

ered more or less static once trained. This makes it difficult to apply

a single model across a diverse range of languages, domains, and

tasks. It also makes it challenging to incrementally train a model

on new downstream applications. Furthermore, rigid vocabularies

are also vulnerable to common adversaries of the social web - mis-

spellings, emojis and obfuscation, all of which are techniques that

are commonly used for microaggressions and covert attacks [19].

With these challenges in mind, this paper presents a new gener-

ation of toxic content classifiers for Jigsaw’s Perspective API. We

refer to this generation as UTC (Unified Toxic Content Classification),
centering around a newmodeling framework for highly performant

and robust toxic content detection. In summary, UTC is a single
compact pretrained Charformer-based Transformer [29] that is pre-

trained on multilingual documents along with comment text from

a wide variety of online discussion forums and other sources of

user generated content using a sequence to sequence denoising loss

[23].

UTC leverages recent novel advances of Learnable Tokenizers as

part of the model architecture [29] and is therefore vocabulary- and

token-free. While character-level features or modeling approaches

have been explored in the context of toxicity detection [18], our

paper proposes the first byte-level pretrained model that remains
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competitive with (or outperforms) subword models tailored to spe-

cific domains or languages. Notably, this vocabulary free property

of UTC enables it to be both language agnostic and more robust to

domain transfer.

Furthermore, in the design of UTC we address major practical

challenges of productionizing character-level Transformers in a

latency sensitive, public API setting. We describe the approach in

detail in Section 3 and show the impact of our changes in Table

8. The result is a model compact enough to be served in real-life

production settings while demonstrating competitive performance

versus the winning entries of the 2020 Jigsaw Multilingual Toxic
Comment Classification Kaggle contest, even though it is >10x more

memory (parameter) efficient. Extensive evaluations for model bias

[5] also show that UTC is reasonably unbiased across multiple

languages. In summary, the primary contributions of this work can

be summarized as follows:

• We present Unified Toxic Content Classification (UTC), a

modeling framework suitable for efficient character-level

multilingualmoderationworkflows. The proposedUTC frame-

work is comprised of Learnable Tokenizers [29], Reconfig-

urable Seq2Seq Transformer architectures, and a new comment-

based pre-training scheme.

• We conduct very extensive and rigorous experiments on

multiple tasks and benchmark datasets, from both academic

settings and sampled from our production traffic. We show

that UTC outperforms strong baselines such as amultilingual

BERT model pretrained on comments and state-of-the-art

mT5 models.

• For evaluating the robustness and flexibility of the proposed

approach, we include benchmarks that specifically test the

model’s ability to handle code-switching, covert toxicity,

emojis, obfuscated text, distribution shifts, and model bias.

We show that under all conditions, UTC outperforms or

matches strong baselines.

• We present the results of our experience deploying UTC into

production Perspective API.

2 RELATEDWORK
Although there has been a long history of using machine learning to

detect abusive content (e.g., email spam [6]), research using direct

text classification started in earnest with the introduction of the

modest sized hand labeled data in [8], [22] and [32]. These works

also coincide with the launch of the Workshop on Online Abuse

and Harms
1
which completed its fifth annual meeting.

There has also been a significant amount of criticism regarding

the application of machine learning to conversationmoderation, see

[36] for a recent survey of the issues and challenges. The nature of

online identity and social relationships, and the problems of gover-

nance are complex and involve many interacting entities with over-

lapping jurisdictions. And despite the popularity of some shared,

labeled test sets, there is little consensus within the community

regarding sampling, annotation standards, annotator recruitment

and training, classifier design, or scoring metrics.

One concern regarding the use of machine learning models for

moderation is that flaws in the training data, whether due to the

1
http://www.workshopononlineabuse.com/
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Figure 1: Overview of the UTC architecture.

process used to collect the data, biases held by the annotators, or

underlying societal, historical biases, whether intentional or un-

conscious, can manifest in models as unintended discriminatory

biases. This concern was raised in [7] and [25]. [12] provides a good

overview of these concerns. To address these concerns we employ

the techniques of data augmentation suggested in [10] and [5], and

include a cross-language bias analysis to measure the unintended

bias for similar terms across all languages. It is also worth noting

the progress towards a more comprehensive taxonomy of abusive

content has drawn interdisciplinary attention, and systemic an-

notation efforts [14] which also inform our work. There has also

been criticism regarding current commercial models’ performance

on tagging abusive, toxic, or hateful content. This includes many

examples of adversarial perturbations designed to “fool” moder-

ation models, such as proposed in [11]. While the present work

demonstrates improved performance against these types of attacks,

the task of improving models in these areas is ongoing.

The English language has dominated research in classifying of-

fensive content, although there have been numerous publications

focusing on other specific languages. There is still no agreement

regarding the efficacy of training multilingual models versus mono-

lingual models, but for applications with user generated content,

not needing to ask or guess what language is being used has clear

advantages. Two recent examples of similar work are [31], which

found that monolingual models do not universally perform better

on sentiment and hate speech classification, and [28] which uses

model fusion in an attempt to correct the imbalance in available

training resources.

3 UTC: UNIFIED TOXIC CONTENT
CLASSIFICATION

This section introduces UTC, the proposed modeling framework in

this paper.

3.1 Learnable Tokenizer
The input to our model is a sequence of UTF-8 bytes. After mapping

each byte id to an embedding lookup, the input to our model is a

tensor 𝑋 ∈ R𝐿𝑏𝑦𝑡𝑒𝑠×𝑑𝑚𝑜𝑑𝑒𝑙
where 𝐿𝑏𝑦𝑡𝑒𝑠 is the number of bytes and

http://www.workshopononlineabuse.com/
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𝑑𝑚𝑜𝑑𝑒𝑙 is the number of hidden dimensions. In order to automat-

ically learn subwords in a data-driven fashion, we adopt state-of-

the-art Charformer encoders [29].

3.1.1 Learning Latent Subwords Automatically. In this section we

review the gradient-based subword tokenization module (GBST)

from [29]. GBST dynamically down-samples a sequence of byte

embeddings into a sequence of latent subword embeddings in a pro-

cess that resembles subword tokenization, but can be implemented

differentiably. The key idea of GBST is to encourage local composi-

tion by performing position-wise block scoring. In other words, at

every position, we predict a scored list of blocks with each block

representing a different size context around the current position.

e.g. at a position 𝑖 , we may consider every block of size 1, 2, 3, and

4 intersecting with position 𝑖 . Each block is scored using a block

scoring network, parameterized by a simple linear transformation,

that maps each candidate subword block embedding into a scalar

∈ R that denotes its strength of being included in the final subword

composition at the current position. In detail, given a sequence of

byte embeddings:

(1) The model constructs block candidates of varying sizes. Let

the maximum possible block size be𝑀 and 𝑏 be the current

block size, we use a non-parameterized strided pooling func-

tion 𝐹 : R𝑏×𝑑 → R𝑑 that projects a subword block consisting

of a sequence of byte embeddings 𝑋𝑖:𝑖+𝑏 ∈ R𝑏×𝑑 to a single

subword block representation 𝑋𝑏,𝑖 ∈ R𝑑 for block size 𝑏 at

position 𝑖 . When applied across the sequence, we compute a

sequence of subword blocks 𝑋𝑏 :

𝑋𝑏 = [𝐹 (𝑋𝑖:𝑖+𝑏 ); 𝐹 (𝑋𝑖+𝑏:𝑖+2𝑏 ); . . .] (1)

In practice we set 𝑀 = 4 to enumerate blocks sized 1 to 4.

Following previous work, since we enumerate blocks here

with a stride of 𝑏 we apply a 1D convolution of size 𝑏 + 1

before this enumeration step.

(2) Next we use the block scoring network (a linear transfor-

mation) to score every block in each of 𝑋1, . . . , 𝑋𝑀 . We then

upsample every sequence 𝑋𝑏 and their scores back to origi-

nal sequence length 𝐿𝑏𝑦𝑡𝑒𝑠 via repetition. At this point, we

have a set of block embeddings 𝑋𝑏,𝑖 and their scores 𝑝𝑏,𝑖 for

every position 𝑖 and block size 𝑏.

(3) We take the softmax of the scores across block size for each

position: 𝑃𝑖 = softmax

(
[𝑝0,𝑖 , 𝑝1,𝑖 , · · · , 𝑝𝑀,𝑖 ]

)
.

(4) We construct the locally composed sequence representation

𝑋 by reducing over the block size dimension. In particular

we take the sum of every 𝑋𝑏,𝑖 at position 𝑖 weighed by their

block score: 𝑋𝑖 =
∑𝑀
𝑏
𝑃𝑏,𝑖𝑋𝑏,𝑖 .

(5) Finally 𝑋 is down-sampled by mean pooling.

We refer interested readers to [29] for fine-grained details.

3.2 Transformer Stack
The Transformer stack in our approach accepts latent subwords

from the Learnable Tokenizer as an input and the remainder of

the Transformer stack remains identical to a standard Transformer

model. Transformer architectures are characterized by stacks of

self-attention blocks followed by simple feed-forward layers [30].

3.3 Reconfigurable Seq2Seq Architecture
Our pretraining utilizes a Seq2Seq (Encoder-Decoder) architecture

that is optimized by teacher forcing. In practice, we find this de-

noising loss to be more effective than encoder-only (BERT-based)

pretraining. Intuitively, Seq2Seq based masked language modeling

also enables sequential and long-term dependencies to be taken

into account in the autoregressive generation process. Our Seq2Seq

architecture is reconfigurable, i.e., during certain tasks, we may re-

move the decoder for specialized regression or classification heads

while retaining a universal encoder for all tasks. With this formula-

tion, we can retain a unified encoder across all tasks from shared

representation learning. While the T5 model [23] enables regres-

sion problems to be framed in Seq2Seq architectures, we find that

adding regression heads is more natural and effective in practice.

Moreover, this supports the case where we have multiple labels per

input example. Note that the entire UTC Seq2Seq architecture can

also be finetuned on downstream classification tasks.

3.3.1 Seq2Seq Loss. During pretraining, our model optimizes the

following cross entropy loss:𝐿 = −∑𝐿
𝑡=1

∑𝑛
𝑖=1 log(𝜋𝑡𝑖 )+(1−𝑦

𝑡
𝑖
) log(1−

𝜋𝑡
𝑖
) where 𝜋𝑡

𝑖
is the prediction of class 𝑖 at time step 𝑡 and 𝑦𝑡

𝑖
is the

ground truth label of the class 𝑖 at time step 𝑡 .

3.3.2 Multi-Regression Heads and Loss Function. While the model’s

main focus is to predict a single value ∈ [0, 1] denoting a toxicity
probability, our method also generalizes to 𝑘-way regression to

support predicting toxicity subtypes. (For example, if the sample is

hateful or obscene). Therefore, for regression tasks, we equip our

model with a linear transform that maps the encoder output to a

𝑘𝑟 way regression head. This is expressed as: 𝑦𝑅 = 𝑊𝑟 (𝜓 (𝑌 ′
𝑜𝑢𝑡 ))

where 𝑦𝑅 ∈ R𝑘𝑟 and 𝑌 ′
𝑜𝑢𝑡 is the output of the last encoder layer.

𝜓 is a non-parametric or parametric pooling function that maps

R𝐿×𝑑𝑚𝑜𝑑𝑒𝑙 → R𝑑𝑚𝑜𝑑𝑒𝑙
(L is the sequence length) and𝑊𝑟 ∈ R𝑑×𝑘𝑟

are learnable parameters of the regression head. We adopt a first
pooling for𝜓 in similar spirit to BERT’s CLS token and include a

dummy task prefix token in front of each example following [23].

Before pooling, we project 𝑌 ′
𝑜𝑢𝑡 using a GeLU MLP layer to the

same hidden size, i.e., 𝑑𝑚𝑜𝑑𝑒𝑙 which constitutes the parameters of

the pooling layer. For regression head, our model optimizes the

sigmoid cross entropy loss.

3.4 Pretraining
Our model is pre-trained on an equal mixture of two data sources:

Perpsective Pretraining Corpus (PPC) and the mC4 corpus from

mT5 [35]. PPC is a proprietary corpus of ∼4.6B message and com-

ment texts from a variety of sources including data historically

processed by the Perspective API or shared by partners. Note that

API clients can enable/disable this data storage via an API flag

(doNotStore2). Text in this corpus typically comes from a vari-

ety of online forums. We mix the two corpora equally, sampling

equally between target languages within the mC4 mixture, while

using the natural language distribution in the PPC split. We pre-

train our method using the span-based denoising objective in a

Seq2Seq fashion using a mean span corruption length of 20 bytes

and a corruption rate of 15%. We pretrain for 1M steps and batch

2
https://developers.perspectiveapi.com/s/about-the-api-methods
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size of 128 sequences, with the maximum length for each sequence

set to be 512 bytes.

4 EXPERIMENTAL SETTINGS
This section provides an overview of our experimental setup.

4.1 Datasets
We conduct three categories of experiments: core multilingual toxic

comment classification, robustness evaluation, and evaluation of

adaptation to new types of toxicity. For core multilingual toxic

comment classification we evaluate on both existing public bench-

marks (Multilingual Toxic Comments Challenge) as well as a la-

beled real world dataset derived from live API traffic (Production-

Multilingual). For robustness evaluation, we evaluate model perfor-

mance when faced with code-switching (a subset of the multilingual

datasets), obfuscation (obfuscated CivilComments), and distribution

shift (zero-shot TweetEval [3] and CivilComments-WILDS [16]).

We also evaluate the model on an identity term bias task based on

[5]. For adapting to new types of toxicity, we evaluate finetuning

performance on Covert Toxicity [19], and Hatemoji [15]. We refer

the reader to Sections 5, 6, and 7 for detailed descriptions of these

datasets.

4.2 Models
This section discusses the details about the major models we use in

our experiments.

• Perspective API Jigsaw’s public API for scoring comments

for toxicity [13], prior to this work. It should be noted that

many of the languages evaluated in the paper are not cur-

rently supported by the Perspective API, and as such Per-

spective results are omitted in such experiments.

• Custom mBERT We compare with a strong multilingual

BERT [9] baseline that has been pretrained on PPC. The

model uses a custom SentencePiece vocabulary of size 200K,

created explicitly from the PPC corpus. We refer to this

strong production baseline as Custom mBERT and consider

it representative of a model highly tailored for the domain.

The baseline model consisted of 768 dimensions, 12 layers,

12 heads, consistent with BERT-base [9]. The pre-training

consists of MLM Loss and translation pairs with uniform

masking at 15%. Pretraining was conducted for 125K steps

with batch size of 32K.

• Multilingual T5 (mT5) - the state-of-the-art for multilin-

gual natural language processing. mT5 is a pretrained T5 [23]

model pre-trained on 100+ languages on the Multilingual C4

corpus.

• UTC and UTC† - our proposed models described in Sec-

tion 3. For the vanilla UTC model, we use 𝑑𝑚𝑜𝑑𝑒𝑙 = 512,

𝑑𝑓 𝑓 = 2048, 𝑑𝑘𝑣 = 64, 𝑁ℎ𝑒𝑎𝑑𝑠 = 8. The number of encoder

layers is set to 24 and the number of decoder layers is set

to 6. For the learned tokenizer, we set the sequence length

downsampling rate of 2, and set the convolution filter size to

5. The standard UTC is approximately 102M parameters

when deployed in downstream applications. This model

size was considered to ensure a fast serving latency. We

also consider a larger (but still servable) UTC† model that

is approximately 268𝑀 parameters where 𝑑𝑚𝑜𝑑𝑒𝑙 = 768,

𝑑𝑓 𝑓 = 3072, 𝑑𝑘𝑣 = 64, 𝑁ℎ𝑒𝑎𝑑𝑠 = 12 and number of encoder

layers is set to 28. We denote this model as UTC†.

Fine-grained details on each specific baseline can be found in each

individual experiment section. Please see Appendix A for additional

reproduction details.

5 EXPERIMENTS: MULTILINGUAL
In this section we report the core multilingual toxic comment clas-

sification results of the work. With the exception of Perspective

API, we finetune and evaluate all models outlined in Section 4.2, on

each dataset. using a batch size of 512 until convergence.

5.1 Production-Multilingual
5.1.1 Dataset. A proprietary internal multilingual toxic comment

classification training and evaluation set. This dataset is derived

from live traffic that is sent to the production Perspective API (with

doNotStore flag set to false), translated tomultiple languages and is

exclusively labeled offline by human annotators for toxicity. Given

the nature of this dataset, this task represents the performance of

our models in production, and is the most important metric by

which we compare models. The training sets cover the languages

of AR, CS, DE, EN, ES, FR, HI, HI-Latn, ID, IT, JA, KO, NL, PL, PT,

RU, SV, ZH along with some low prevalence examples in a few

other languages. The training data is 38 million records and is not

balanced across languages with a heavy skew towards EN. The

evaluation sets are limited to the languages covered in the experi-

mental results : AR, CS, EN, HI-Latn, ID, JA, KO, NL, PL, PT, RU,

ZH. This narrower set focuses in on languages where Perspective

did not already have a production quality model (at the time of

experimentation), plus English where significant Perspective usage

comes from. The evaluation sets are roughly balanced in volume

across languages and comprise 1.3 million records.

5.1.2 Results. Table 1 reports results on the Production-Multilingual

dataset. Overall, UTC outperformed all baselines, with a small UTC

model outperforming mT5𝑏𝑎𝑠𝑒 , a model with more than twice the

size w.r.t. number of parameters. While UTC does not perform as

strongly on English as Custom mBERT, the main advantage of

UTC is observed in many non-English languages.

5.2 Multilingual Toxic Comments Challenge
5.2.1 Dataset. In this section, we report experimental results on

the public dataset featured in the Jigsaw Multilingual Toxic Com-

ments Challenge (JMTCC) hosted by Kaggle. The competition was

held in 2020 and comprises of 6 languages besides English: Spanish,

French, Italian, Portuguese, Russian, and Turkish. While the evalu-

ation data was multilingual, only English data was provided in the

training set. Hence, it was common for participants to make use of

translation data to augment the training set. We train our models

on the translated data that was shared in the Kaggle discussion

forums.

5.2.2 Compared Baselines. Aside from the baselines in Section 4.2,

we also report results from the winners of the Jigsaw Multilingual

Toxic Comment Classification Kaggle competition, although it is

worth noting that our goal is to develop single standalone models
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Model Params Ar Cs En Hi-Latn Id Ja Ko Nl Pl Pt Ru Zh Avg

Perspective API - - - .974 - - - - - - - .907 - -

Custom mBERT 235M .762 .881 .982 .832 .812 .649 .855 .842 .853 .878 .803 .925 .840

mT5𝑠𝑚𝑎𝑙𝑙 148M .896 .913 .969 .962 .761 .881 .846 .726 .866 .856 .880 .976 .878

mT5𝑏𝑎𝑠𝑒 278M .900 .925 .973 .967 .791 .887 .874 .934 .881 .850 .888 .997 .906

UTC 102M .899 .925 .977 .954 .794 .867 .938 .940 .892 .864 .896 .975 .910

UTC† 268M .908 .934 .977 .968 .819 .896 .916 .947 .896 .888 .907 .974 .919
Table 1: Experimental results on the Production-Multilingual dataset. We report AUC-ROC scores.

Model # Params AUC-ROC

Kaggle # 1 ≈>5B∗ .9536
Perspective API - .8770*

Custom mBERT 235M .9104

mT5𝑠𝑚𝑎𝑙𝑙 148M .9156

mT5𝑏𝑎𝑠𝑒 278M .9239

UTC 102M .9194

UTC† 268M .9367
Table 2: Results on Jigsaw Multilingual Toxic Comments
Challenge (JMTCC). *Turkish is not supported by Perspec-
tive API, and is omitted from this result.

that can feasibly be deployed in production. Meanwhile, the top Jig-

sawMultilingual Toxic Comment Classification Kaggle submissions

often involved aggressive ensembling, score scaling techniques etc,

that are highly infeasible in practice. Nevertheless, we believe it is

beneficial to evaluate how well our standalone single model fares

compared to a strong highly engineered upper bound. Based on

our interpretation of the Kaggle champion’s entry, we estimate the

number of model parameters to be > 5𝐵 given that they ensemble

multiple XLM large models (at least 300M parameters each) along

with monolingual models.

5.2.3 Results. Table 2 reports results on the JMTCC dataset. Our

results show that our best UTC† achieves 0.9367AUC-ROC, outper-

forming all considered single model baselines, especially a strong

state-of-the-art mT5 baseline. Notably, this result is only slightly

worse than the top performing Kaggle #1 result which comprises

XLM-Roberta ensembles, pseudo labelling and other commonly

used techniques. We consider the result achieved by UTC† to be

pretty compelling, given that this is a single model that can actually

be used in production applications.

6 EXPERIMENTS: ROBUSTNESS
In this section we do no additional training and evaluate the fine-

tuned models from Section 5.1 to evaluate the robustness of our

proposed methods.

6.1 Code-Switching
The Code-Switching eval sets aim to identify theoretically more dif-

ficult multilingual user comments. Both bespoke evaluation datasets

below are constructed by filtering the parent superset with the same

criteria for multilingual comment identification: test examples are

restricted to those where 2 or more languages are present. Sam-

ples are included if and only if >= 25% of the example content is

identified to be in each of 2 or more languages using a language

detection model.
3
. We use two subsets for code-switching based

3
https://github.com/google/cld3

Model #Params JMTCC-CS Production-CS

Perspective API - .7516 .7163

Custom mBERT 235M .9243 .8106

mT5𝑠𝑚𝑎𝑙𝑙 148M .9289 .8661

mT5𝑏𝑎𝑠𝑒 278M .9393 .8730

UTC 102M .9191 .8755

UTC† 268M .9446 .9023
Table 3: Experiments on Code-Switching.

on Production-Multilingual and JMTCC datasets. Details on the

breakdown of these code-switching datasets can be found in the

supplemental material.

6.1.1 Compared Baselines. The same baseline models evaluated

on the Production-Multilingual dataset were employed, including

Custom mBERT, the comment domain multilingual BERT model,

𝑚𝑇5𝑏𝑎𝑠𝑒 and𝑚𝑇5𝑠𝑚𝑎𝑙𝑙 . Similarly, we also included an evaluation

using the public Perspective API [13]. It should be noted that not

all of the languages included in the code-switching datasets are

listed as supported by Perspective and as such Perspective may

be disadvantaged in this experiment. To specify a language for

Perspective API, we use a language detection model to identify the

primary language for each code-switch example. If the language is

not supported by Perspective API, then we default to English.

6.1.2 Results. Table 3 reports our experimental results on code-

switching evaluation sets. On both JMTCC-CS and Production-CS,

UTC† outperforms the best, outperforming the mT5𝑏𝑎𝑠𝑒 baseline.

In general we find that an off-the-shelf mT5 model also substan-

tially outperforms the Custom mBERT model. Finally, we note

that the Perspective API performs poorly since prior to this work,

models were separately trained on individual languages and as such

they are not well equipped to handle multilingual code-switching.

One limitation of this experiment is the dominance of English and

Latin based languages in the code-switching evaluation sets. We

suspect that the byte level vocabulary in our Charformer model, is

advantageous for understanding with character based languages

especially in code-switching tasks. The preliminary results give

evidence to this conclusion.

6.2 Human-Readable Obfuscation
One common technique used to bypass toxicity classification mod-

els is to intentionally misspell words in a fashion that is understood

by human readers, yet obfuscated to machine learning models [11].

Even though our proposed models are not explicitly trained on

these types of adversarial examples, in this section we run zero-shot

experiments on synthetically obfuscated data to evaluate model

robustness in this area.
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Figure 2: Zero-shot AUC-ROC on English-only CivilCom-
ments with 0-50% obfuscation rate.

6.2.1 Dataset. We construct a synthetically obfuscated variant of

the Civil Comments [5] test set. As the dataset is in English only,

we manually construct a dictionary of valid substitutions for every

letter in the English alphabet. Then for every alphabetical charac-

ter in each example, we replace the character by a substitute with

some probability, which we call the character obfuscation rate. If a

character is chosen, then a substitute for the character is chosen

uniformly at random from the list of valid substitutes for the char-

acter. Substitutes may be any other character or string that may

still be readable as original character, e.g. "a" may be substituted

with "4", "@", or "/\". Valid substitutions for vowels also include "*"

or an empty string, which effectively removes information from the

sequence. See Figure 3 for the comprehensive dictionary of valid

substitutions, and Figure 4 for examples of text at various character

obfuscation rates. Finally, please note that the construction of this

dataset is not meant to comprehensively capture a realistic distribu-

tion of adversarial examples against toxicity classification models.

Instead, we aim to create a controlled and sufficiently challenging

dataset to serve as a point of evaluation between models.

6.2.2 Compared Baselines. We evaluate the zero-shot performance

of Perspective API (prior to this work), CustommBERT, mT5-small,

and UTC (102M param.) on obfuscated Civil Comments, sweeping

the character obfuscation rate from 0 to 50% in increments of 10%.

Custom mBERT, mT5, and UTC are the same fine-tuned models

from Table 1. No additional training was done for these experiments.

6.2.3 Results. Figure 2 plots the performance of all models across

character obfuscation rates. In this experiment we observe that

while all models have similar zero-shot performance when there

is no obfuscation applied to the English only dataset, UTC out-

performs every baseline at every other obfuscation rate greater

than 0. Albeit, all models do decay in performance as obfuscation

rate increases – however, this is expected as the models rarely see

this type of obfuscation during training, and are not fine-tuned on

any additional obfuscated data. This result echos a similar finding

by previous byte-level models [34]. One natural question to ask

might be: if fine-tuned, are the models able to learn to adapt to this

type of obfuscation? As an additional result, we found that when

fine-tuned on a 30% obfuscated version of Civil Comments, UTC

was able to fully recover performance to 86.0 AUC-ROC, while

mT5-small recovers to only 84.5 AUC-ROC (-2.1pt from the unob-

fuscated zero-shot result.) This result illustrates the value of the

UTC inductive bias on this particular task.

Model # Params Macro. F1

RoBERTa-Retrained (Finetuned avg. of 3) [3] 125M 52.3

RoBERTa-Retrained (Finetuned best) [3] 125M 55.5

BERTweet (Finetuned best) [21] 125M 56.4

Perspective API (Zero-shot) - 52.0

Custom mBERT (Zero-shot) 235M 51.8

mT5𝑠𝑚𝑎𝑙𝑙 (Zero-shot) 148M 53.9

mT5𝑏𝑎𝑠𝑒 (Zero-shot) 278M 57.7

UTC (Zero-shot) 102M 53.3

UTC† (Zero-shot) 268M 55.1

Table 4: Performance on TweetEval hate classification.

6.3 Distribution Shifts
Toxic content appears on many different surfaces in different forms,

targeting many different types of people. In this section we evaluate

the performance of our model on two different setups. In the first

setup with TweetEval, we evaluate performance on a task with a

different labeling process and domain focus. In the second setup,

we evaluate the performance of the model on subpopulation shift

using CivilComments-WILDS.

6.3.1 TweetEval Hate Classification.

Dataset. We evaluate our models on the TweetEval hate content

classification test split [3], which is taken from the SemEval2019

Hateval challenge [4]. The task is to predict whether a given tweet

contains hateful language targeted against any of two commu-

nities: women and immigrants. This task differs from our UTC

pre-training and fine-tuning as it is purely Tweet focused and has

been labeled to a different standard (i.e. hateful language.) As this

is zero-shot evaluation, we do not do any additional fine-tuning for

this experiment.

Compared Baselines. We evaluate our same baselines and models

as Section 6.2: Perspective API, Custom mBERT, mT5, and UTC.

For mT5 and UTC we evaluate both small and base sized versions.

Additionally, we compare our zero-shot results against the current

state-of-the-art for the task: RoBERTa Retrained and BERTweet.

Both are English-only RoBERTa-based models which have been

extensively pre-trained on a large corpus of English tweets, as well

as finetuned on the corresponding TweetEval hate classification

training set.

6.3.2 Results. Table 4 reports performance on TweetEval hate

classification. All zero-shot baselines which were finetuned on

Production-Multilingual data showed strong performance in this

experiment, with multilingual mT5 and UTC in particular perform-

ing on par with an English-only RoBERTa model that had seen

additional pretraining on a large Twitter corpus and finetuned on

TweetEval hate classification training data. Higher results previ-

ously reported by [3] and [21] are only observed in "best run"

performance where the model saw favorable variance. This exper-

iment demonstrates the effectiveness of our methods in training

domain shift robust toxicity classification models.

6.3.3 CivilComments-WILDS.

Dataset. Introduced in [16], this dataset augments the Civil Com-

ments dataset with various demographic identities referenced in
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Model #Params Avg Acc Worst Acc Gap

DistilBERT ERM [16] 66M 92.2 56.0 36.2

DistilBERT DRO [16] 66M 89.9 70.0 19.9

mT5𝑠𝑚𝑎𝑙𝑙 148M 94.0 81.8 12.2

UTC 102M 94.2 82.6 11.6

Table 5: Accuracy on CivilComments-WILDS dataset.

each example. The goal of this dataset is to evaluate for subpopu-

lation shift: a setting where the model sees all domains (i.e. demo-

graphic identities) during evaluation as it does during training, but

in different proportions. In particular, for CivilComments-WILDS

a model is trained on all demographic identities available in Civil-

Comments, but is evaluated on a single identity at a time – an

extreme subpopulation shift. This is repeated individually for each

subpopulation, with the aim of maximizing performance on the

worst performing subpopulation. Following the original work, we

perform our analysis on 8 demographic identities male, female,

LGBTQ, Christian, Muslim, other religions, Black, and White. We

report accuracy on the complete test split and the worst accuracy

from the 8 subpopulations and the gap between the two to show

that our model performs better on these subpopulation shifts. [16],

showed the existence of a significant gap between the average in-

distribution accuracy and the worst subpopulation accuracy. We

additionally report this gap for our own evaluated models.

Compared Baselines. We evaluate small-sized mT5 andUTCmod-

els in this setting from Table 5.1. We compare to the highest per-

forming DistilBERT results from [16] with respect to both average

overall accuracy and worst-group accuracy (DistilBERT using em-

pirical risk minimization, ERM, and group distributionally robust

optimization, Group DRO, respectively.) As our models were multi-

lingually fine-tuned, while DistilBERT fine-tuned on only English

Civil Comments, for a fair comparison in this subpopulation shift

setting our mT5 and UTC models are additionally fine-tuned on

Civil Comments before evaluation. We do not use any robust opti-

mization techniques when fine-tuning our models.

Results. Both mT5-small and UTC significantly outperform the

baseline results from prior work on all metrics. Our models per-

form better overall and have almost half to a third smaller of a gap

between average and worst group performance than DistilBERT

with robust optimization techniques. Although the exact source of

this gain is unclear, we posit that the extended amount of multilin-

gual pre-training, pre-finetuning and greater model size may play

a significant role here.

6.4 Identity Term Bias
Borkan et al. [5] outlined nuanced bias metrics, to be used in addi-

tion to overall model metrics such as AUC-ROC and [10], introduced

synthetic, templated datasets for identifying unintended bias in tox-

icity models. Here we use these tools to evaluate our models for

identity term bias.

6.4.1 Dataset. We use a new multilingual version of the synthetic

template bias evaluation data set, publicly released in 2021
4
. The ex-

amples in this dataset are generated from predefined templates with

4
https://medium.com/jigsaw/identifying-machine-learning-bias-with-updated-

data-sets-7c36d6063a2c and https://github.com/conversationai/unintended-ml-bias-

analysis/tree/2021-refresh

slots where different words (e.g. identity terms, adjectives, verbs,

etc.) can be substituted for related terms in order to test for perfor-

mance with regards to various subgroups (identities). To obtain a

multilingual dataset for each of the 12 target languages we rely on a

team of expert native speakers to construct these templates. The fi-

nal generated dataset consists of ∼ 2𝑀 examples and has a balanced

class distribution. Following [5] we report Subgroup AUC, Back-

ground Positive Subgroup Negative (BPSN) AUC, and Background

Negative Subgroup Positive (BNSP) AUC for all subgroup-language

combinations. Please see [5] for precise definitions of these metrics.

6.4.2 Results. We evaluate model bias for UTC with mT5-small

serving as a baseline comparison. Both models remain the same

as from Table 1. We visualize the results in Figure 5 and 6 for all

language splits. Note that to generate these visualizations we aggre-

gate results with their corresponding English identity term (results

with no corresponding English term are not shown here). Overall,

the metrics remain strong at >.7 across languages, with UTC per-

forming stronger on more subgroup-language combinations than

mT5. As both models are finetuned on the same dataset, we see

that the UTC inductive bias may play a role here. However, some

subgroup-language combinations still require additional work. For

example, there are some terms in Korean and Japanese that demon-

strate unwanted bias, such as the BPSN AUC metric for the term

homosexual where 동성애자 , and 同性愛者 have values ≤.5.
This suggests that the non-toxic templates containing the identity

term are yielding false positives, or rather the term is correlated

with toxicity. As such, further explicit debiasing efforts are still

needed.

7 EXPERIMENTS: ADAPTING
In this section we demonstrate that the fine-tuned checkpoints from

Section 5.1 are highly adaptable to new types of toxicity by further

fine-tuning our models on new challenging tasks.

7.1 Covert Toxicity
We conduct experiments on Covert Toxicity [19], a task of dis-

tinguishing if a piece of text contains nuanced toxicity such as

microaggressions. We compare with Toxic-BERT and Covert-BERT

baselines reported in [19]. We also finetune a monolingual (English

only) T5 and mT5 base model as strong baselines.

7.1.1 Results. Table 6 reports results on the CovertToxicity task.

We show thatUTC andUTC† achieves very competitive results out-

performing both Toxic-BERT and Covert-BERT baselines. On this

task, the performance of UTC† is competitive to mT5𝑏𝑎𝑠𝑒 . Interest-

ingly, the multilingual models (mT5 and UTC model) outperform

the specialized monolingual English T5 model.

7.2 Emoji-based Hate
7.2.1 Dataset. The English-only Hatemoji dataset comprises of

two splits: HatemojiCheck and HatemojiTrain. HatemojiCheck

is a manually constructed labeled test suite of 3,930 short-form

statements and whether they use emoji-based hateful language.

7.2.2 Compared Baselines. [15] showed that fine-tuning on Hate-

mojiTrain greatly improves performance on HatemojiCheck. Fol-

lowing this, we evaluate our two highest performing models from
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Model AUC-ROC

Toxic-BERT .520

Covert-BERT .590

Monolingual T5𝑏𝑎𝑠𝑒 .599

mT5𝑏𝑎𝑠𝑒 .607
UTC .604

UTC† .607
Table 6: Results on CovertToxicity.

Model # Params Acc. F1

Kirk et al. [15] 140M 87.9 91.0

mT5𝑠𝑚𝑎𝑙𝑙 148M 86.0 89.6

mT5𝑏𝑎𝑠𝑒 278M 86.8 90.5

UTC 102M 90.0 92.8
UTC† 268M 90.8 93.3

Table 7: Performance on English-only HatemojiCheck.

Section 5.1, mT5 and UTC, by further fine-tuning them onHatemo-

jiTrain then evaluating onHatemojiCheck. Note that these check-

points have already been finetuned on Production-Multilingual. We

use the validation split of HatemojiTrain to pick the best check-

point for this additional fine-tuning. We additionally compare these

results to the best results reported in [15], which is an English-only

DeBERTa model optimized for the task.

7.2.3 Results. Table 7 reports results on HatemojiCheck. Even

though UTC is multilingual, when finetuned UTC outperforms the

best performing model from [15] by a significant margin. We posit

that this gain may be attributed to the learned tokenizer, which may

effectively update during finetuning to adapt to parsing emojis. On

the other hand mT5𝑆𝑚𝑎𝑙𝑙 , under-performs the Kirk et al. baseline.

8 DEPLOYMENT RESULTS
On December 9th, 2021 Jigsaw launched support for 10 new lan-

guages
5
in the Perspective API [1], powered by UTC† (Table 1),

making the model available publicly
6
(Note that languages

7
previ-

ously available within Perspective API were not impacted by this

launch). UTC dramatically increased Perspective’s capabilities, as

it is the first model to reach our production standards for these 10

languages. All previous production candidates (CNNs and BERT-

based architectures) had low overall performance, low performance

on bias evaluations, or were too slow to serve for real-time usage.

The model was deployed smoothly with no operational issues,

and as of writing this paper, the model averages ∼15 QPS and

∼200ms median latency (for the 10 newly launched languages only).

In our load testing, we have observed that the smaller UTC (102M)

model can achieve 45ms median latency at 1K QPS on a single

TPUv2 chip with batching. We anticipate our production latency

improving further as load increases as our serving infrastructure

does not have to wait to accumulate requests for batching. In the fu-

ture, we hope to migrate to using the smaller and faster UTC (102M)

model, as well as explore further performance improvements. We

5
Languages launched with UTC: Arabic, Chinese (Simplified), Czech, Dutch, Indone-

sian, Japanese, Korean, Polish, Hindi, and Hinglish (a mix of English and Hindi translit-

erated using Latin characters)

6
https://developers.perspectiveapi.com/s/about-the-api-attributes-and-languages

7
Languages not yet using UTC: English, French, German, Italian, Portuguese, Russian,

and Spanish

Model # Params Finetune Steps/s

Byte-level T5 Base 200M 18.3

+ Charformer 134M 26.5

+ Regression Head (UTC) 102M 32.9

+ Increased Scale (UTC†) 268M 15.0

Table 8: Architecture ablation for Production-Multilingual
finetuning speed on 64 TPUv3 chips (batch size 128, 512 byte
input length.) These values correlate with serving latency.

also plan to transition the rest of the languages Perspective serves

to UTC over time, as well as expand to additional new languages.

Overall, we consider our results impressive for a byte-level Trans-
former model of this size. We attribute the majority of this perfor-

mance to the sequence length downsampling done by Charformer,

as well as our removal of the decoder during finetuning, effectively

reducing both our sequence length and depth dimensions by half re-

spectively. We include an ablation study for the speed of our model

with and without these modifications in Table 8. Performance may

also be attributed to forgoing tokenization, a process that is hard

to parallelize, in favor of Charformer GBST, which can run on spe-

cialized hardware (TPU). In addition to quality and performance,

there are engineering advantages to our approach. We have found

that having one model to support multiple languages significantly

simplifies the maintenance of our service as now there are fewer

models to maintain. Additionally, our experience forgoing tokeniza-

tion echoes that of previous literature – we find that preparing

models for production is simplified as we no longer need to co-

ordinate model checkpoints with matching vocabularies. Given

these results, we are looking forward to expand the usage of this

approach in the future.

9 CONCLUSION
This paper presents Jigsaw’s new generation of toxic comment

classification models, which is currently deployed in production for

10 new languages in the Perspective API. We outline our approach

in applying state-of-the-art token-free Charformer to the problem of

toxic comment classification and the efficiency techniques we take

to enable serving such a byte-level model in production. Through

rigorous experiments on real-world and academic benchmarks we

demonstrate the effectiveness our approach.
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A REPRODUCTION DETAILS
A.0.1 Implementation. Our UTC model is implemented in Mesh

TensorFlow
8
[26], a wrapper over TensorFlow API that enables

distributed model parallelism, along with the T5 library
9
. For Char-

former [29], we use the official implementation
10

released by the

authors. The overarching model architecture follows the T5.1.1

setup using T5-styled relative attention biases instead of position

embeddings.

A.0.2 Optimization and Training Details. This section describes

the general setup for our pretraining and finetuning experiments.

Dataset specific details are deferred to respective sections. For both

pretraining and finetuning, we use the Adafactor optimizer [27].

During pretraining, we use a learning rate equal to the inverse

square root of the current training step following [23]. Finetuning

is performed using a fixed constant learning rate of 10
−3
. We apply

a dropout of 0.1 during finetuning. Pretraining is conducted with 64

TPU-v3 chips and finetuning is typically conducted with 16 TPU-v3

chips. Pretraining generally takes about 3-4 days to complete.

A.0.3 Reproducibility. Our model is currently available via the pro-

duction Perspective API
11

for Arabic, Chinese (Simplified), Czech,

Dutch, Hindi, Hinglish (a mix of Hindi and English), Indonesian,

Japanese, Korean, Polish, and Russian for the "TOXICITY" attribute.

Access to the model for English is also released under the "TOXIC-

ITY_EXPERIMENTAL" attribute. Even though the interface for the

API requires specification of a language, all requests are routed to

a single UTC† model.

A.0.4 Dataset Details. Here we include figures to further provide

some details about selected datasets used.

Language Prevalence Proportion

en 1658 99%

pt 474 28%

es 356 21%

it 353 21%

fr 307 18%

ru 147 9%

ar, bg, co, de, el, hi, ka, ja, tr, zh 33 < 2%

total 1664 100

Table 9: JMTCCCode-switching Eval: Language breakdowns
of filtered code-switching examples. Note: as an example
contains multiple languages, the total does not correspond
to the sum of the columns here.

8
https://github.com/tensorflow/mesh

9
https://github.com/google-research/text-to-text-transfer-transformer

10
https://github.com/google-research/google-research/tree/master/charformer

11
https://developers.perspectiveapi.com/s/docs

Language Prevalence Proportion

en 31101 97%

pt 12499 39%

hi-Latn 8520 26%

id 6589 20%

ru 636 2%

ar 601 2%

es 417 1%

nl 396 1%

de 353 1%

pl 300 1%

fr, ja, it, zh, hi, da, ur, cs, cv, fy, ko, + 2971 11%

total 32196 100

Table 10: Production-Multilingual Code-switching Eval:
Language breakdowns of code-switching examples. Note: as
an example contains multiple languages, the total does not
correspond to the sum of the columns here.

Figure 3: Full list of substitutions used for obfuscation ex-
periments in Section 6.2.

Figure 4: Examples of obfuscation of a sentence sampled
from Civil Comments, for character obfuscation rate from
0 (top) to 50% (bottom).

https://github.com/tensorflow/mesh
https://github.com/google-research/text-to-text-transfer-transformer
https://github.com/google-research/google-research/tree/master/charformer
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Figure 5: mT5 Unintended Bias Metrics, AUC, BPSN, BNSP per Language on template identity eval set for a subset of localized
identity terms

Figure 6: UTC Unintended Bias Metrics, AUC, BPSN, BNSP per Language on template identity eval set for a subset of localized
identity terms
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