
Estimating Position Bias without Intrusive Interventions
Aman Agarwal

Cornell University

Ithaca, NY

aa2398@cornell.edu

Ivan Zaitsev

Cornell University

Ithaca, NY

iz44@cornell.edu

Xuanhui Wang, Cheng Li, Marc Najork

Google Inc.

Mountain View, CA

{xuanhui,chgli,najork}@google.com

Thorsten Joachims

Cornell University

Ithaca, NY

tj@cs.cornell.edu

ABSTRACT
Presentation bias is one of the key challenges when learning from

implicit feedback in search engines, as it confounds the relevance

signal. While it was recently shown how counterfactual learning-

to-rank (LTR) approaches [18] can provably overcome presentation

bias when observation propensities are known, it remains to show

how to effectively estimate these propensities. In this paper, we pro-

pose the first method for producing consistent propensity estimates

without manual relevance judgments, disruptive interventions, or

restrictive relevance modeling assumptions. First, we show how to

harvest a specific type of intervention data from historic feedback

logs of multiple different ranking functions, and show that this data

is sufficient for consistent propensity estimation in the position-

based model. Second, we propose a new extremum estimator that

makes effective use of this data. In an empirical evaluation, we find

that the new estimator provides superior propensity estimates in

two real-world systems – Arxiv Full-text Search and Google Drive

Search. Beyond these two points, we find that the method is robust

to a wide range of settings in simulation studies.
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1 INTRODUCTION
In most information retrieval (IR) applications (e.g., personal search,

scholarly search, product search), implicit user feedback (e.g. clicks,

dwell time, purchases) is routinely logged and constitutes an abun-

dant source of training data for learning-to-rank (LTR). However,
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implicit feedback suffers from presentation biases, which can make

its naive use as training data highly misleading [16]. In particular,

the position at which a result is displayed introduces a strong bias,

since higher-ranked results are more likely to be discovered by the

user than lower-ranked ones.

It was recently shown that counterfactual inference methods

provide a provably unbiased and consistent approach to LTR despite

biased data [18]. The key prerequisite for counterfactual LTR is

knowledge of the propensity of obtaining a particular feedback

signal, which enables unbiased Empirical Risk Minimization (ERM)

via Inverse Propensity Score (IPS) weighting. This makes getting

accurate propensity estimates a crucial prerequisite for effective

unbiased LTR.

In this paper, we propose the first approach for producing con-

sistent propensity estimates without manual relevance judgments,

disruptive interventions, or restrictive relevance-modeling assump-

tions. We focus on propensity estimation under the Position-Based

Propensity Model (PBM), where all existing propensity estimation

methods have substantial drawbacks. In particular, the conventional

estimator for the PBM takes a generative approach [7] and requires

individual queries to repeat many times. This is unrealistic for

most ranking applications. To avoid this requirement of repeating

queries, Wang et al. [29] included a relevance model that is jointly

estimated via an Expectation-Maximization (EM) procedure [9]. Un-

fortunately, defining an accurate relevance model is just as difficult

as the learning-to-rank problem itself, and a misspecified relevance

model can lead to biased propensity estimates. An alternative to

generative click modeling on observational data are estimators that

rely on specific randomized interventions – for example, randomly

swapping the result at rank 1 to any rank k [18]. While this provides

provably consistent propensity estimates for the PBM, it degrades

retrieval performance and user experience [29] and is thus costly.

In addition, we find in the following that swap-interventions are

statistically rather inefficient. The approach we propose in this

paper overcomes the disadvantages of the existing methods, as it

does not require repeated queries, a relevance model, or additional

interventions.

The key idea behind our estimation technique is to exploit data

from a natural intervention that is readily available in virtually any

operational system – namely that we have implicit feedback data

from more than one ranking function. We call this Intervention

Harvesting. Since click behavior depends jointly on examination

and relevance, we show how to exploit this intervention to con-

trol for any difference in overall relevance of results at different
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positions under the PBM. This makes our approach fundamentally

interventional and it is thus consistent analogous to using explicit

swap interventions under mild assumptions. However, by lever-

aging existing data that is readily available in most systems, it

does not require additional online interventions and the resulting

decrease in user experience. To make efficient use of the interven-

tional data we harvest, we propose a specific extremum estimator

– called AllPairs – that combines all available data for improved

statistical efficiency without the need for a relevance model that

could introduce bias. We find that this estimator works well even

if the rankers we harvest interventions from are quite similar in

their result placements and overall performance, and that it is able

to recover the relative propensities globally even if most of the

changes in rank are small.

2 RELATEDWORK
Implicit user feedback (e.g. clicks and dwell time) has been widely

used to improve search quality. In order to fully utilize the implicit

feedback signals for LTR algorithms, various types of bias have to be

handled [18], e.g., position bias [15], presentation bias [30], and trust

bias [15, 22]. To address this challenge, a large amount of research

has been devoted to extractingmore accurate signals from click data.

For example, some heuristic methods have been proposed to address

the position bias by utilizing the pairwise preferences between

clicked and skipped documents [14–16]. Though these methods

have been found to provide more accurate relevance assessments,

their data is still biased. For example, click vs. skip preference tend

to reverse the presented order when used for learning [14] due to

their sampling bias.

Recently, Joachims et al. [18] presented a counterfactual infer-

ence framework, which provides a provably unbiased and consistent

approach to LTR even with biased feedback data. It requires knowl-

edge of the propensity of obtaining a particular feedback signal,

based on which an Inverse Propensity Scoring (IPS) approach can

be applied. IPS was developed in causal inference [24] and is a

widely accepted technique for handling sampling bias. It has been

employed in unbiased evaluation and learning [1, 10, 20, 21, 25, 26].

The common assumption in most of these studies is that the propen-

sities are under the system’s control and are thus known. In the

unbiased LTR setting, however, propensities arise from user behav-

ior and thus need to be estimated.

The problem of propensity estimation for LTR was already ad-

dressed in other works. Wang et al. [28] and Joachims et al. [18]

proposed to estimate propensity via randomization experiments.

Carterette and Chandar [4] extend the counterfactual inference

framework [18] by considering the case of evaluating new rankers

that can retrieve previously unseen documents. Their methods

still rely on interventions, though they make the interventions

minimally invasive. To avoid intrusive interventions that degrade

the user search experience, Wang et al. [29] proposed a regression-

based EM algorithm to estimate position bias without interventions.

Similarly, Ai et al. [3] presented a framework to jointly learn an

unbiased ranker and an unbiased propensity model from biased

click data. Both works couple relevance estimation with propensity

estimation, which introduces the drawback of potential bias when

the relevance model is misspecified. Our work differs from these by

controlling for relevance explicitly and without a relevance model,

while still avoiding intrusive interventions.

Another line of research employs click models [7] to infer rele-

vance judgments from click logs. Training is typically performed via

generative maximum likelihood under specific modeling assump-

tions about user behavior. There are two classic clicks models: the

position-based model (PBM) [23] and the Cascade model [8]. Based

on these two models, more advanced models have been developed,

including UBM [11], DBN [6], and CCM [12]. Our propensity model

is based on the PBM. However, we do not use it as a generative

model to infer relevance, but instead use interventional techniques

to infer propensities even without repeat queries.

3 HARVESTING INTERVENTIONS
We approach the propensity estimation task by harvesting implicit

interventions from already logged data. In particular, we make

use of the fact that we typically have data from multiple historic

ranking functions, and we will identify the conditions under which

these provide unconfounded intervention data. We focus on the

Position-Based Propensity Model (PBM), which we review before

defining interventional sets and analyzing their properties.

3.1 Position-Based Propensity Model
The position-based model recognizes that higher-ranked results

are more likely to be considered (i.e. discovered and viewed) by

the user than results further down the ranking. Suppose that for a

particular query q, result d is displayed at position k . Let C be the

random variable corresponding to a user clicking on d , and let E be

the random variable denoting whether the user examines d . In our

notation, q represents all information about the users, the query

context, and which documents the user considers relevant or not.

This mean we can denote the relevance of an individual document

as a non-random function rel(q,d) of q, where rel(q,d) = 1 and

rel(q,d) = 0 indicates relevant and non-relevant respectively. Then

according to the Position-Based Propensity Model (PBM) [7],

Pr(C = 1|q,d,k) = Pr(E = 1|k) rel(q,d)

= pk rel(q,d).

In this model, the examination probability pk := Pr(E = 1|k) de-
pends only on the position, and it is identical to the observation

propensity [18]. For learning, it is sufficient to estimate relative

propensities pk/p1 for each k [18], since multiplicative scaling does

not change the training objective of counterfactual learning meth-

ods (e.g. [2, 3, 17, 18, 26, 27]). Estimating these relative propensities

is the goal of this paper.

Note that one can train multiple PBM models to account for

changes in the propensity curve due to context. In this way, the

expressiveness of the PBM model can be substantially extended.

For example, one can train separate PBM models for navigational

vs. informational queries simply by partitioning the data. While

training multiple such models is prohibitively expensive when

intrusive interventions are required, the intervention harvesting

approach we describe below makes training such contextual PBMs

feasible since it does not require costly data, is both statistically

and computationally efficient, and does not have any parameters

that require manual tuning.



3.2 Controlling for Relevance through Swap
Interventions

The key problem in both propensity estimation and unbiased learn-

ing to rank is that we only observe clicks C, but we never get to

observe E (whether a user examined a result) and rel(q,d) (whether
the user found d relevant for q) individually. This makes it diffi-

cult to attribute the lack of a click to a lack of examination or a

lack of relevance. A key idea for overcoming this dilemma without

explicit relevance judgments or cumbersome instrumentation (e.g.

eye tracking) was proposed in [18], namely to control for relevance

through randomized interventions.

The intervention proposed in [18] is to randomly swap the result

in position 1 with the result in position k . We call these Swap(1,k)-
interventions. Such swaps provide a completely randomized ex-

periment [13], meaning that the assignment of the document to a

position does not depend on relevance or any covariates (e.g. ab-

stract length, document language). Under these swap interventions,

we now get to observe how many clicks position 1 results get when

they stay in position 1 vs. when they get swapped into position

k . Since the expected relevance in either condition (i.e. swap vs.

not swapped) is the same, any change in clickthrough rate must be

proportional to a drop in examination.

More formally, we model user queries as sampled i.i.d. q ∼ Pr(Q).
Whenever a query is sampled, the ranker f (q) sorts the candidate
results d for the query and we apply the randomized swap inter-

vention between positions 1 and some fixed k before the ranking is

displayed to the user. As a precursor to the later exposition, sup-

pose that the random swap occurs with a fixed probability p (not

necessarily 0.5), yielding the logged datasets D1,k
1
= (qi

1
,di

1
,Ci

1
)n1

(result stayed in position 1) and D1,k
k = (q

j
k ,d

j
k ,C

j
k )
n2

(result was

swapped into position k) of sizes n1 and n2 respectively. Here C
i
1

denotes whether the document di
1
placed at position 1 was clicked

or not, and similarly for C
j
k . Denote with ĉ1,k

1
= 1

n1

∑
Ci

1
the rate

of clicks that documents get when they remain in position 1 and

let ĉ1,k
k = 1

n2

∑
C
j
k be the rate of clicks when they get swapped to

position k . Then, under the PBM, the relative propensity is equal

to the ratio of expected click rates:

pk
p1

=

pkED1,k
k

[
∑

rel(q j
k , d

j
k )/n2]

p1ED1,k
1

[
∑

rel(qi
1
, d i

1
)/n1]

=

ED1,k
k

[
∑
pk rel(q j

k , d
j
k )/n2]

ED1,k
1

[
∑
p1 rel(qi

1
, d i

1
)/n1]

=

ED1,k
k

[
∑

Pr(C j
k = 1|q j

k , d
j
k , k )/n2]

ED1,k
1

[
∑

Pr(C i
1
= 1|qi

1
, d i

1
, 1)/n1]

=

ED1,k
k

[
ĉ1,k
k

]
ED1,k

1

[
ĉ1,k

1

]
The first equality holds since swaps are completely at random, such

that the expected average relevance under each condition is equal

and their ratio is one (we need not consider n1 and n2 as random

variables). It is thus reasonable to estimate the relative propensity

as

p̂k
p̂1

=
ĉ1,k
k

ĉ1,k
1

,

which is a statistically consistent estimate as the sample sizen grows
[18]. Analogously, relative propensities can be estimated between

any pairs of positions k and k ′ with Swap(k,k ′) interventions [29].

3.3 Interventional Sets from Multiple Rankers
A key shortcoming of the swap experiment is its impact on user

experience, since retrieval performance can be degraded quite sub-

stantially. This is especially true for swaps between position 1 and

k for large k , even though this particular swap experiment makes it

easy to estimate propensities relative to position 1 directly. To over-

come this impact on user experience, we now show how to harvest

interventions from already existing data under mild assumptions,

so that no additional swap experiments are needed. As part of this,

we may never see a direct swap between position 1 and k , and we

tackle the problem of how to aggregate many local swaps into an

overall consistent estimate in Section 4.

Our key idea in harvesting swap interventions lies in the use of

data from multiple historic rankers. Logs from multiple rankers are

typically available in operational systems, since multiple rankers

may be fielded at the same time in A/B tests, or when the production

ranker is updated frequently. Consider the case where we have data

from m historic rankers F = { f1, ..., fm }. Furthermore, a crucial

condition is that the query distribution must not depend on the

choice of ranker fi (where the query q includes the user’s relevance

vector rel in our notation),

∀fi : Pr(Q | fi ) = Pr(Q) ⇒ ∀q ∈ Q : Pr(fi |q) = Pr(fi ) (1)

Note that the condition on the left implies that Pr(fi |q) = Pr(fi ) on
the right by Bayes rule, which is related to exploration scavenging

[19]. Intuitively, this condition avoids that different rankers fi get
different types of queries. For rankers that are compared in an

A/B test, this condition is typically fulfilled by construction since

the assignment of queries to rankers is randomized. For data from

a sequence of production rankers, one needs to be mindful that

any temporal covariate shift in the query and user distribution is

acceptably small.

We denote the click log of each ranker fi withDi = (q
j
i ,y

j
i , c

j
i )
ni
,

where ni is the number of queries that fi processed. Here j ∈ [ni ],

q
j
i is a query, y

j
i = fi (q

j
i ) is the presented ranking, and c

j
i is a

vector that indicates for each document click or no click. Since

most retrieval systems only rerank a candidate set of documents in

their final stage, we denote Ω(q) as the candidate set of results for
query q. We furthermore denote the rank of candidate result d in

ranking y
j
i as rk(d |y

j
i ), and we use c

j
i (d) ∈ [0, 1] to denote whether

result d was clicked or not.

We begin by defining interventional sets Sk,k ′ of query-document

pairs, where one ranking function f ∈ F puts document d at po-

sition k and another ranker f ′ ∈ F puts the same document d at

position k ′ for the same query q. LetM be some fixed number of top

positions for which propensity estimates are desired (e.g.M = 10).

Then, for each two ranks k , k ′ ∈ [M], we define the interventional



set as

Sk,k ′ := {(q,d) : q ∈ Q,d ∈ Ω(q),

∃f ,f ′ rk(d | f(q))=k ∧ rk(d | f ′(q))=k ′}

Intuitively, the pairs in these sets are informative because they

receive different treatments or interventions based on the choice

of different rankers. But note that we are not requiring any query

to occur multiple times. An interventional set merely reflects that

two potential outcomes (i.e. document d either in position k or

in position k ′ for query q) were possible. In fact, we only ever

observe one factual outcome, while the other outcome remains

counterfactual and unobserved.

The key insight is that for any pair of ranks (k,k ′), the interven-
tional set contains the query-document pairs (q,d) for which the

rank of d was randomly assigned to either k or k ′ via the choice of
ranking function fi . Specifically, there are three possible outcomes

depending on the choice of ranking function fi ∈ F : (a) fi puts d at

rank k , (b) fi puts d at rank k ′, or (c) fi puts d at some other rank. In

the latter case, the instance is not included in the interventional set

Sk,k ′ , but the former two cases can be seen as the two conditions of

a swap experiment between positions k and k ′. In this way, we can

think about these as virtual swap interventions between ranks k
and k ′ where the randomization comes from the randomized choice

of ranking function according to (1).

While this swap experiment is completely randomized under

condition (1) (i.e. the choice of fi does not depend on q), the assign-
ment is generally not uniform (i.e. d could have a higher probability

to be presented in position k than in position k ′). The weights

w(q,d,k) :=

m∑
i=1

ni1[rk(d | fi (q)) = k].

are then used to account for this non-uniformity. Specifically, the

weightw(q,d,k) reflects how often documentd is ranked at position
k given that we have employed each ranking function fi exactly ni
times. Therefore, the probability of assigning d to k as opposed to

k ′ for query q can be estimated as

P(rank = k |rank = k or rank = k ′,q,d) =
w(q,d,k)

w(q,d,k) +w(q,d,k ′)

We will show in the following how interventional sets can be used

to control for unobserved relevance information when estimating

propensities.

3.4 Controlling for Unobserved Relevance
through Interventional Sets

As we had already seen in Section 3.2, we need to disentangle

two unobserved quantities – relevance and examination – when

analyzing observed clicks in the PBM. This can be achieved by

controlling for relevance through randomization, which was done

explicitly in Section 3.2 via Swap(1,k)-interventions. The following
shows that interventional sets Sk,k ′ provide analogous control for
any pair of ranks (k,k ′) under condition (1).

For each interventional set Sk,k ′ , with k , k
′ ∈ [M], we can now

define the quantities ĉk,k
′

k (and ĉk,k
′

k ′ ) which can be thought of as

the rate of clicks in position k (and in position k ′):

ĉk,k
′

k :=

m∑
i=1

ni∑
j=1

∑
d ∈Ω(q ji )

1
[(q ji ,d )∈Sk,k′ ]

1
[rk(d |y ji )=k ]

c
j
i (d)

w(q
j
i ,d,k)

.

ĉk,k
′

k ′ :=

m∑
i=1

ni∑
j=1

∑
d ∈Ω(q ji )

1
[(q ji ,d )∈Sk,k′ ]

1
[rk(d |y ji )=k

′]

c
j
i (d)

w(q
j
i ,d,k

′)
.

The definition normalizes the observed clicks by dividing with

w(q
j
i ,d,k), which accounts for non-uniform assignment probabili-

ties. Note thatw(q
j
i ,d,k) is non-zero whenever the first indicator

is true, such that we never divide a non-zero quantity by zero

(and we define 0/0 := 0). Intuitively, ĉk,k
′

k and ĉk,k
′

k ′ capture the

weighted click-through rate at position k and k ′ restricted to (k , k ′)-
interventional (query, document) pairs, where the weightsw(q,d,k)
account for the imbalance in applying the intervention of putting

document d at position k vs k ′ for query q.

The following shows that ĉk,k
′

k and ĉk,k
′

k ′ are proportional to the

true clickthrough rate at positions k and k ′ in expectation, condi-

tioned on the number of relevant documents in the interventional

set Sk,k ′ .

Proposition 1. For the PBM model, i.i.d. queries q ∼ Pr(Q), and
under the condition in (1), the expectations of ĉk,k

′

k and ĉk,k
′

k ′ are

Eq,c[ĉ
k,k ′
k ] = pkrk,k ′

Eq,c[ĉ
k,k ′
k ′ ] = pk ′rk,k ′

where rk,k ′ = Eq
[∑

d ∈Ω(q) 1[(q,d )∈Sk,k′ ] rel(q,d)
]
.

Proof. We only detail the proof for ĉk,k
′

k , since the proof for

ĉk,k
′

k ′ is analogous.

Eq,c[ĉ
k,k ′
k ]

=

m∑
i=1

ni∑
j=1

∑
q∈Q

Pr(q)
∑

d ∈Ω(q)

1[(q,d )∈Sk,k′ ]1[rk(d |fi (q))=k ]
Ec[c(d)]

w(q,d,k)

=

m∑
i=1

ni∑
j=1

∑
q∈Q

Pr(q)
∑

d ∈Ω(q)

1[(q,d )∈Sk,k′ ]1[rk(d |fi (q))=k ]
pk rel(q,d)

w(q,d,k)

= pk
∑
q∈Q

Pr(q)
∑

d ∈Ω(q)

1[(q,d )∈Sk,k′ ] rel(q,d)

∑m
i=1

∑ni
j=1

1[rk(d |fi (q))=k ]

w(q,d,k)

= pkEq [
∑

d ∈Ω(q)

1[(q,d )∈Sk,k′ ] rel(q,d)

∑m
i=1

ni1[rk(d |fi (q))=k ]

w(q,d,k)
]

= pkEq [
∑

d ∈Ω(q)

1[(q,d )∈Sk,k′ ] rel(q,d)]

The first equality follows from the i.i.d. assumption of condition

(1) and that y
j
i = fi (q

j
i ) by definition, the second from the PBM

definition, and the third by taking the inner terms common. □

The quantity rk,k ′ is related to the average relevance of the

documents in the interventional set Sk,k ′ (also see Section 4.2).



While rk,k ′ is unobserved, it is shared between both ĉk,k
′

k and ĉk,k
′

k ′ .

We can thus get the relative propensity between positions k and k ′

as

pk
p′k
=

pkrk,k ′

pk ′rk,k ′
=
Eq,c[ĉ

k,k ′
k ]

Eq,c[ĉ
k,k ′
k ′ ]

.

We are now in a position to define specific estimators for the relative

propensities based on the interventional sets.

4 PROPENSITY ESTIMATORS FOR
INTERVENTIONAL SETS

This section defines relative propensity estimators that use interven-

tional sets. The first set of estimators, which we call local estimators,

are straightforward adaptations of estimators that had been pro-

posed for data from explicit interventions [18, 29]. However, these

local estimators ignore much of the available information when har-

vesting interventions, and we thus develop a new global estimator

that exploits information from all interventional sets Sk,k ′ .

4.1 Local Estimators
Since the click counts ĉk,k

′

k and ĉk,k
′

k ′ can be treated just like data

from an explicit intervention, the same estimators apply. In partic-

ular, we observe the interventional sets S
1,k and can thus use the

same estimator that we previously used for the explicit Swap(1,k)
experiment [18]. We call this the PivotOne estimator

p̂k
p̂1

=
ĉ1,k
k

ĉ1,k
1

We can similarly adapt the estimator used in [29], which uses a

chain of swaps between adjacent positions in the ranking. We call

this the AdjacentChain estimator

p̂k
p̂1

=
ĉ1,2

2

ĉ1,2
1

·
ĉ2,3

3

ĉ2,3
2

· ... ·
ĉk−1,k
k

ĉk−1,k
k−1

It is easy to see that both estimators are statistically consis-

tent under mild conditions, most importantly that each relevant

interventional set has non-zero support such that ĉk,k
′

k and ĉk,k
′

k ′
concentrate to their expectations.

4.2 Global AllPairs Estimator
A key shortcoming of the local estimators is that they only use a

small part of the available information, and that they ignore the data

from most interventional sets Sk,k ′ . To overcome this shortcom-

ing, we developed a new extremum estimator called AllPairs that
resembles a maximum likelihood objective over all interventional

sets. In order to formulate the training objective of the AllPairs

estimator, we first need to define a quantity that is analogous to

ĉk,k
′

k and ĉk,k
′

k ′ , but counting the non-click events:

¬̂ck,k
′

k :=

m∑
i=1

ni∑
j=1

∑
d ∈Ω(q ji )

1
[(q ji ,d )∈Sk,k′ ]

1
[rk(d |y ji )=k]

1 − c
j
i (d)

w(q
j
i ,d,k)

¬̂ck,k
′

k ′ :=

m∑
i=1

ni∑
j=1

∑
d ∈Ω(q ji )

1
[(q ji ,d )∈Sk,k′ ]

1
[rk(d |y ji )=k

′]

1 − c
j
i (d)

w(q
j
i ,d,k

′)
.

Analogous to ĉk,k
′

k and ĉk,k
′

k ′ , both quantities have the desired ex-

pectation.

Proposition 2. For the PBM model, i.i.d. queries q ∼ Pr(Q), and
under the condition in (1), the expectations of ¬̂ck,k

′

k and ¬̂ck,k
′

k ′ are

Eq,c[¬̂c
k,k ′
k ] = Nk,k ′ − pkrk,k ′

Eq,c[¬̂c
k,k ′
k ′ ] = Nk,k ′ − pkrk,k ′

where rk,k ′ = Eq
[∑

d ∈Ω(q) 1[(q,d )∈Sk,k′ ] rel(q,d)
]
and Nk,k ′ =

Eq [
∑
d ∈Ω(q) 1[(q,d )∈Sk,k′ ]].

Proof. The proof is analogous to Proposition 1 and thus omitted.

□

The way we constructed the interventional sets, the expected

relevances rk,k ′ are not necessarily normalized to be within the

interval [0, 1]. It is therefore more convenient to instead consider

the normalized version of rk,k ′

r̄k,k ′ ≡
rk,k ′

Nk,k ′
∈ [0, 1],

using the definitions from Propositions 1 and 2. Under this nor-

malization, we have that E[ĉk,k
′

k ] = pk r̄k,k ′Nk,k ′ and E[¬̂c
k,k ′
k ] =

(1 − pk r̄k,k ′)Nk,k ′ and similarly for ĉ ′k,k
′

k and ¬̂ck,k
′

k . We model

this normalized r̄k,k ′ in the AllPairs estimator.

We can now formulate the training objective of the AllPairs

estimator. The following objective needs to be maximized with

respect to p̂k ∈ [0, 1] and r̂k,k ′ = r̂k ′,k ∈ [0, 1] (since r̄k,k ′ = r̄k ′,k
by definition)

(p̂, r̂ ) = argmax

p,r

∑
k,k ′∈[M ]

ĉk,k
′

k log(p̂k r̂k,k ′) + ¬̂c
k,k ′
k log(1 − p̂k r̂k,k ′).

This optimization problem can be interpreted as Weighted Cross-

Entropy Maximization for estimating the distribution pk r̄k,k ′ using

weighted samples ĉk,k
′

k and ¬̂ck,k
′

k . The weighting by Nk,k ′ ensures

that the contribution of each aggregated click-through sample is

proportional to the size of its interventional set.

From the solution of this optimization problem, (p̂, r̂ ), we only
need p̂ while the matrix r̂ can be discarded. To get normalized

propensities relative to rank 1, we compute p̂k/p̂1. Note that the

optimization problem is quite small, as it uses onlyO(M2) variables

and 2 ∗M ∗ (M − 1) terms in the objective.

Unlike the local estimators, the AllPairs approach integrates all

data from every interventional set.Wewill evaluate empirically how

much statistical efficiency is gained by taking this global approach

compared to the local estimators.



5 EMPIRICAL EVALUATION
We take a two-pronged approach to evaluating our intervention-

harvesting technique and the estimators. First, we fielded them

on two real-world systems – the Arxiv Full-Text Search Engine

and the Google Drive Search – to gain insight into their practical

effectiveness. Second, we augment these real-world experiments

with simulation studies using synthetically generated click data,

where we can explore the behavior of our method over the whole

spectrum of settings (e.g. varying ranker similarity, presentation-

bias severity, and click noise).

5.1 Real-World Evaluation: Arxiv Full-Text
Search

We conducted a controlled experiment on the Arxiv Full-Text Search

Engine
1
, where we compare the results from the AllPairs estimator

using Intervention Harvesting with the results from a gold-standard

intervention experiment as described below. We used three ranking

functions { f1, f2, f3} for defining the interventional sets, which

were generated by using different learning methods and datasets.

Gold Standard. Since we do not know the true propensities for

the Arxiv Full-Text Search Engine, we use the Swap(1,k) interven-
tions and estimator described in Section 3.2 as our gold standard.

With probability 0.5, an incoming query is assigned to generating

data towards a swap experiment. For each assigned query, a rank-

ing function fi is chosen uniformly at random, and its rank 1 is

swapped uniformly with rank k ∈ {1, .., 21} before it is presented

to the user. The ĉ1,k
1

and ĉ1,k
k are computed over all three fi .

Intervention Harvesting. For the other half of the incoming

queries, we uniformly pick a ranking function fi and present its re-

sults without further intervention. From the data in these conditions,

we then compute the interventional sets Sk,k ′ fork , k
′ ∈ {1, .., 21}

and their resulting ĉk,k
′

k , ĉk,k
′

k ′ , ¬ĉk,k
′

k and ¬ĉk,k
′

k ′ . These are then

used in the AllPairs estimator from Section 4.2.

5.1.1 Results. Data for all six conditions was collected simultane-

ously between May 14, 2018 and August 1, 2018 to avoid confound-

ing due to shift in the query distribution for maximum validity

of the experiment. About 53,000 queries and 25,600 clicks were

collected, about half for the Swap Experiment and half for the

Interventional Set method.

The estimated propensity curves for the gold-standard swap

experiment and for the AllPairs estimator are shown in Figure 1.

The shaded region for each curve corresponds to a 95% confidence

interval calculated from 1000 bootstrap samples. As we can see,

the curves follow a similar trend for each position and AllPairs

mostly lies within the confidence interval of the gold-standard

curve. However, the confidence interval for the AllPairs method is

substantially tighter than for the swap experiment, indicating that

AllPairs is not only less intrusive (no swap interventions) but also

statistically more efficient given the same number of queries.

The following provide further insight into this gain in efficiency.

While we conducted interleaving experiments [5] to confirm that

the three ranking functions { f1, f2, f3} provide similar ranking

accuracy, we found that the three rankers tend to assign documents

1
http://search.arxiv.org:8081/

Table 1: Size of the interventional sets Sk,k ′ for Arxiv (show-
ing only top 10 positions).

rank k rank

1 2 3 4 5 6 7 8 9 k ′

13625 8340 6723 5231 3966 3051 2656 2274 2015 2

- 9039 7692 5994 5053 3588 2675 2861 2244 3

- - 8555 6994 5573 4117 3368 3321 2361 4

- - - 6783 5345 5040 3849 3427 3614 5

- - - - 6290 4809 4058 4126 3489 6

- - - - - 5466 4746 3935 3294 7

- - - - - - 5425 4092 3692 8

- - - - - - - 4258 3930 9

- - - - - - - - 3719 10
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Figure 1: Estimated propensity curves for Arxiv. Shaded re-
gions correspond to a 95% confidence interval.

to different ranks. In fact, only 7.39% of the documents were ranked

at the same rank by all three rankers, such that about 93% of the

documents contributed to an interventional set and thus became

meaningful training data for AllPairs. Table 1 shows the size of the

interventional sets Sk,k ′ for the top 10 positions. While local swaps

are most common, the rankers frequently rank the same document

at substantially different ranks.

5.2 Real-World Evaluation: Google Drive
Search

We conducted a second real-world experiment on the search for

Google Drive. The service uses an overlay to show results as users

type. The overlay disappears when a click on the overlay happens.

Thus, each query has at most a single click. The overlay displays at

most 5 results for each query and all the displayed results are logged

with their position information. Again, we compare the results

from the AllPairs estimator against a gold-standard intervention

experiment.

Gold Standard. We follow [29] and use Swap(k,k + 1) interven-

tions along with the AdjacentChain estimator as our gold standard.

Intervention Harvesting. In an A/B test, users were randomly

assigned either to the production ranker f1 or a new ranker f2.
Based on these two rankers the interventional sets Sk,k ′ with k ,
k ′ ∈ {1, .., 5} were computed and provided to the AllPairs estimator.

http://search.arxiv.org:8081/


1 2 3 4 5

Position

0.0

0.2

0.4

0.6

0.8

1.0

R
e
la

ti
v
e
 P

ro
p
e
n
s
it

y

AllPairs

GoldStandard

EM

CTR

Figure 2: Estimated propensity curves for Google Drive.

Table 2: Size of the interventional sets Sk,k ′ for Google Drive.

rank k rank

1 2 3 4 k ′

19,516 2,203 579 244 2

- 48,576 10,630 3,780 3

- - 73,170 21,037 4

- - - 92,343 5

Results. During twoweeks inApril 2018, a total of 877,689 queries
were collected. Note that data for the gold-standard swap experi-

ment was collected at a different time and for a different ranking

function, but is is reasonable to assume that the propensity curve

has not changed. The estimated propensity curves for the AllPairs

estimator and the gold-standard swap experiment are shown in

Figure 2. The AllPairs estimates closely resemble the gold standard

as desired. For comparison, we also computed propensity estimates

via the regression EM from [29] on the same data set as AllPairs.

Those estimates are substantially off from the gold standard. Even

further off is the naive method of using the empirical clickthrough

rate (CTR) as an estimate for pk without any experimental control

for relevance. Overall, we find that Intervention Harvesting with

AllPairs provides superior results that are close to the gold standard.

In some ways, the Arxiv experiment and the Google Drive ex-

periment covered two substantially different use cases. For Arxiv,

the rankings were substantially different, while for Google Drive

the two ranking functions were typically quite close. In fact, the

two rankers for Google Drive provided identical top-5 rankings for

75.26% of the queries, which thus did not contribute any useful data

to the interventional sets. And even among the queries that lead

to different rankings, 74.5% of the results were at the same rank in

both ranking functions. This means much less interventional-set

data was generated per query, and Table 2 further shows that most

of the swaps were quite local. It is therefore reassuring that AllPairs

nevertheless provides accurate estimates, and that it works well for

both Arxiv and Google Drive despite these differences.

5.3 Robustness Analysis: Yahoo LTR Challenge
While the two real-world experiments provide validation for the

applicability of the method, these are just two data-points in a

large spectrum of possible settings. We therefore now evaluate
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Figure 3: Estimated propensity curve for synthetic click data
derived from the Yahoo LTR dataset (η = 1, ϵ− = 0.1, ni =
99720, frac = 0.02, overlap = 0.8).

the robustness of the method on synthetic click data, where we

know the true propensity curve by construction and can control

the properties of the data with respect to all relevant parameters

(e.g. noise, ranker similarity, data-set size).

Experiment Setup. We generated synthetic click data according

to the following methodology that closely matches that in [18]. In

particular, we use the Yahoo LTR Challenge data, which comes

with manual relevance judgments. Using these relevance judg-

ments, clicks were generated by simulating the Position-Based

Model with propensities that decay with the presented rank via

pr =
(

1

r
)η
. The parameter η controls the severity of bias, with

higher values causing greater position bias. We also introduced

noise into the clicks by allowing some irrelevant documents to be

clicked. Specifically, an irrelevant document ranked at position r
by the production ranker is clicked with probability pr times ϵ−
whereas a relevant document is clicked with probability pr . For
simplicity (and without loss of generality), we used click logs from

two rankers in each experiment setting. Rankers were obtained by

training Ranking SVMs on random samples of queries with their

manual relevance judgments. The “similarity” of the two rankers

was controlled by varying the degree of overlap in their respective

training sets. We evaluate the estimation accuracy via the Mean

Squared Error (MSE) of the estimated inverse relative propensity

weights,MSE =
∑M
i=1

(p̂1/p̂i−p1/pi )2

M , since these inverse propensity

weights better reflect how inaccurate propensity estimates impact

the IPS estimator [18]. We estimate propensities up to rankM = 10.

Error bars indicate the standard deviation over 6 independent runs

(except in Figure 3 as described below). If not mentioned otherwise,

the number of simulated queries per ranker is ni = 99720 (obtained

by 5 sweeps of the 19944 queries in the Yahoo LTR training set),

and we use η = 1 and ϵ− = 0.1.

5.3.1 Does AllPairs recover the true propensity curve? Figure 3

shows the estimated propensities of AllPairs in comparison to the

true propensity curve of (η = 1) that is known by construction. All

parameters of the simulation experiment are kept at the defaults

as stated above. As expected, AllPairs perfectly recovers the true

propensities. The error bars show the 99% confidence intervals that
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(d) Estimation error with increasing amount of
noise ϵ− in the training data. (η = 1, ni = 99720,
frac = 0.5, overlap = 0.5)
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(e) Estimation error with increasing severity of
bias η in the training data. (ϵ− = 0.1, ni = 99720,
frac = 0.5, overlap = 0.5)
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(f) Estimation error with increasingly unbalanced
amounts of log data from f1 vs. f2 where every 1

sweep has 19944 queries. (η = 1, ϵ− = 0.1, n1+n2 =
119664, frac = 0.02, overlap = 0.5)

Figure 4: Robustness experiments on the synthetic click data derived from the Yahoo LTR dataset.

are computed via the standard deviation estimated from re-running

the simulation experiment 20 times.

5.3.2 Howmuch data is needed? While the previous section showed

that Intervention Harvesting with the AllPairs estimator converges

to the true propensities, we now analyze the speed of convergence.

Figure 4 (a) shows that AllPairs provides good estimates even for

modest amounts of data. As a baseline for comparison, we also

show the MSE of the AdjacentChain estimator, which is substan-

tially worse and requires at least one order of magnitude more data

to achieve the same MSE as AllPairs. We also explored the use of

the PivotOne estimator, but do not report its results since they are

typically worse than those of AdjacentChain.

5.3.3 How different should the ranking functions be? If the ranking

functions fi are all identical, then Intervention Harvesting cannot

produce any data. So, how different do the rankers fi need to be? To
vary ranker similarity, we trained pairs of rankers with increasing

overlap (from 1% to 99%) in their training sets. In Figure 4 (b), we

see that the estimation accuracy remains quite robust even as the

rankers become increasingly similar due to the overlap in the data

they are trained on. The top of the plot shows the similarity in

terms of the fraction of documents at the same rank in both rankers

averaged across all the queries. As expected, the error goes up when

the rankers are very similar since then they tend to put documents

at the same position, leading to fewer interventional pairs. Inter-

estingly, the error is also relatively higher when the rankers are

too dissimilar. This is because when the candidate sets are larger

than 10, the dissimilarity in the rankers causes many interventions

to be discarded since they often go beyond rank 10. Note that Ad-

jacentChain benefits from ranker similarity, since it focuses the

interventional set data on Sk,k+1
. However, AdjacentChain at best

matches the performance of AllPairs, but never outperforms it.

5.3.4 How important is the quality of the rankers? Another way

of controlling ranker similarity is to increase the total number of

training examples for both. Figure 4 (c) shows the result of this

experiment. Again, AllPairs shows robust performance over the

whole spectrum of settings and substantially improves over Adja-

centChain.

5.3.5 How does click noise impact estimation accuracy? Clicks in

any real-world setting will be noisy, and we thus want to explore

the robustness of AllPairs with respect to noise. Note that noise

(which can be seen simply as an alternative vector of relevances

rel(q,d) in our model) should have no influence on the propensity

estimates via Information Harvesting, as long as the noise is not

confounded by rank (which is guaranteed in the PBM). Figure 4

(d) verifies that Information Harvesting estimates are indeed stable

over different levels of ϵ− noise.

5.3.6 How does bias severity impact estimation accuracy? Figure 4

(e) explores the behavior of the estimators when we vary the steep-

ness of the propensity curve via η. The AllPairs method performs

better than AdjacentChain, but the MSE of both methods increases

sharply when the propensity curve gets steep. The explanation for



this is twofold. First, the increase is partly an artifact of the MSE er-

ror measure on the inverse propensities. Steep curves lead to small

propensities, which in turns generates large inverse propensities

that provide opportunity for large MSE. Second, for steep propen-

sity curves the bottom ranks receive only few clicks such that there

is not enough data for estimating their propensities reliably.

5.3.7 How robust is the method to imbalanced datasets? Finally, we

explore the situation where we may have more log data from one

ranker than from the other. Figure 4 (f) shows MSE when we vary

the amount of log data for f1 while keeping the total amount of

data constant at 119, 664 queries (i.e. 6 sweeps). The plot shows that

AllPairs is robust to such imbalances.

6 CONCLUSION
We presented the idea of Intervention Harvesting, allowing the

use of multiple historic loggers for generating interventional data

under mild assumptions. We showed how this idea can be used

to control for relevance, providing the first method for propensity

estimation in the PBM that does not require intrusive interventions,

a relevance model, or repeat queries. In particular, we propose the

AllPairs estimator for combining all intervention data, which we

find to provide superior propensity estimation accuracy compared

to existing local estimators over a wide spectrum of settings. Beyond

these contributions, the paper opens an interesting space of research

questions for how other intervention data can be harvested and

what other estimation problems can be addressed in this way.
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