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Abstract
This paper discusses a combination of techniques for improving
speech recognition accuracy in the presence of reverberation
and spatially-separated interfering sound sources. Interaural
Time Delay (ITD), observed as a consequence of the difference
in arrival times of a sound to the two ears, is an important feature
used by the human auditory system to reliably localize and sep-
arate sound sources. In addition, the “precedence effect” helps
the auditory system differentiate between the direct sound and
its subsequent reflections in reverberant environments. This pa-
per uses a cross-correlation-based measure across the two chan-
nels of a binaural signal to isolate the target source by rejecting
portions of the signal corresponding to larger ITDs. To over-
come the effects of reverberation, the steady-state components
of speech are suppressed, effectively boosting the onsets, so as
to retain the direct sound and suppress the reflections. Exper-
imental results show a significant improvement in recognition
accuracy using both these techniques. Cross-correlation-based
processing and steady-state suppression are carried out sepa-
rately, and the order in which these techniques are applied pro-
duces differences in the resulting recognition accuracy.
Index Terms: speech recognition, binaural speech, onset en-
hancement, Interaural Time Difference, reverberation

1. Introduction
The human auditory system is extremely robust. Listeners can
correctly understand speech even in very difficult acoustic en-
vironments. This includes the presence of multiple speakers,
background noise and reverberation. On the other hand, Auto-
matic Speech Recognition (ASR) systems are much more sen-
sitive to the presence of any type of noise or reverberation. In
spite of the many advances seen recently using machine learn-
ing techniques (e.g. [1, 2]), recognition in the presence of noise
and reverberation is still challenging. This is especially perti-
nent given the rapid rise in voice based machine interaction in
recent times.

It is useful to understand the reason behind the robustness
of human perception and to apply auditory processing based
techniques to improve recognition in noisy and reverberant en-
vironments. There have been several successful techniques born
out of this approach (e.g. [3, 4, 5, 6, 7] among other sources).

Human auditory perception in the presence of reverbera-
tion is widely attributed to processing based on the “precedence
effect” as mentioned in [8, 9, 10]. The precedence effect de-
scribes the phenomenon where directional cues due to the first-
arriving wavefront (corresponding to the direct sound), is given
greater perceptual weighting than those cues that arise as a con-
sequence of subsequent reflected sounds. The precedence effect
is thought to have an underlying inhibitory mechanism that sup-
presses echoes at the binaural level [11], but it could also be a
consequence of interactions at the peripheral (monaural) level
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Figure 1: Overall block diagram of processing using steady-
state suppression and interaural cross-correlation based
weighting.

(e.g. [12]). Considering the monaural approach, a reasonable
way to overcome the effects of reverberation would be to boost
these initial wavefronts. This can also be achieved by suppress-
ing the steady-state components of a signal.

The Suppression of Slowly-varying components and the
Falling edge of the power envelope (SSF) algorithm [4, 13]
was motivated by this principle and has been very successful
in improving ASR in reverberant environments. There have
been several other techniques developed based on precedence-
based processing that have also shown promising results (e.g.
[14, 15]).

The human auditory system is also extremely effective in
sound source separation, even in very complex acoustical envi-
ronments. A number of factors affect the spatial aspects of how
a sound is perceived. An interaural time difference (ITD) is
produced because it takes longer for a sound to arrive at the ear
that is farther away from the source. Additionally, an interaural
intensity difference (IID) occurs because of a “shadowing” ef-
fect of the head causing the sound to be more intense at the ear
closer to the source. Spatial separation based on ITD analysis
has been very effective in source separation (e.g. [7]).

This study presents a combination of the concepts of
precedence-effect-based processing and ITD analysis to im-
prove recognition accuracy in environments containing rever-
beration and interfering talkers. In this paper we introduce and
evaluate the performance of a new method of ITD analysis that
utilizes the envelope ITDs.

2. Processing based on binaural analysis
The techniques discussed in this paper roughly follow process-
ing in the human auditory system. For this reason, they include
components of monaural processing pertaining to the periph-
eral auditory system as well as binaural processing that is per-
formed higher up in the brainstem. The overall block diagram
of the processing described in Section 2.1 and 2.2 is shown in
Figure 1. Steady-state suppression, described in Section 2.1, is
performed monaurally, and subsequently a weight that is based
on interaural cross-correlation is applied to the signal, as de-
scribed in Section 2.2. Both of these techniques can be applied
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Figure 2: Two-microphone setup with an on-axis target source
and off-axis interfering source used in this study.

independently of each other.
The processing described in this paper pertains to a two-

microphone setup as shown in Figure 2. The two microphones
are placed in a reverberant room with a target talker directly in
front of them. The target signal thus arrives at both microphones
at the same time leading to an ITD of zero. An interfering talker
is also present located at an angle of φ with respect to the two
microphones.

2.1. Steady-State Suppression

The SSF algorithm [4, 13] was used in this study to achieve
steady-state suppression. The SSF algorithm is motivated by the
precedence effect and by the modulation-frequency characteris-
tics of the human auditory system. A block diagram describing
SSF processing is shown in Figure 3. SSF processing was per-
formed separately on each channel of the binaural signal.

After performing pre-emphasis on the input signal, a Short
Time Fourier Transform (STFT) of the signal is computed us-
ing a 40-channel gammatone filterbank. The center frequen-
cies of the gammatone filterbank are linearly spaced in Equiv-
alent Rectangular Bandwidth (ERB) [16] between 200 Hz and
8 kHz. The STFT was computed with frames of length 50-ms
with a 10-ms temporal spacing between frames. These longer-
duration window sizes have been shown to be useful for noise
compensation [17, 4]. The power P [m, l] corresponding to the
mth frame and the lth gammatone channel is given by,

P [m, l] =

N−1∑
k=0

|X[m, k]Hl[k]|2, 0 ≤ l ≤ L− 1, (1)

where Hl[k] is the frequency response of the lth gammatone
channel evaluated at the kth frequency index and X[m, k] is
the signal spectrum at the mth frame and the kth frequency
index. N is FFT size which was 1024.

The power P [m, l] is then lowpass filtered to obtain
M [m, l].

M [m, l] = λM [m− 1, l] + (1− λ)P [m, l], (2)

Here λ is a forgetting factor that was adjusted for the bandwidth
of the filter and experimentally set to 0.4. Since SSF is designed
to suppress the slowly-varying portions of the power envelopes,
the SSF processed power P̃ [m, l] is given by,

P̃ [m, l] = max(P [m, l]−M [m, l], c0M [m, l]), (3)

where c0 is a constant introduced to reduce spectral distor-
tion. Since P̃ [m, l] is given by subtracting the slowly varying
power envelope from the original power signal, it is essentially a
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Figure 3: Block diagram describing the SSF algorithm.

highpass-filtered version of P [m, l], thus achieving steady-state
suppression. The value for c0 was experimentally set to 0.01.

For every frame in every gammatone filter band, a channel-
weighting coefficient w[m, l] is obtained by taking the ratio of
the highpass filtered portion of P [m, l] to the original quantity
given by

w[m, l] =
P̃ [m, l]

P [m, l]
, 0 ≤ l ≤ L− 1 (4)

Each channel-weighting coefficient corresponding to the lth

gammatone channel is associated with the response Hl[k] and
so the spectral weighting coefficient µ[m, k] is given by

µ[m, k] =

∑L−1
l=0 w[m, l]|Hl[k]|∑L−1

l=0 |Hl[k]|
, 0 ≤ l ≤ L−1, 0 ≤ k ≤ N/2

(5)
The final processed spectrum is then given as

X̃[m, k] = µ[m, k]X[m, k], 0 ≤ k ≤ N/2 (6)

Using Hermitian symmetry, the rest of the frequency compo-
nents are obtained and the processed speech signal x̃[n] is re-
synthesized using the overlap-add method.

2.2. Interaural Cross-correlation-based Weighting

Using SSF processing described in the previous section, steady-
state suppression is achieved, effectively leading to enhance-
ment of the acoustic onsets. Interaural Cross-correlation-based
Weighting (ICW) is then used to separate the target signal on
the basis of ITD analysis.
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Figure 4: Block diagram describing the ICW algorithm.

A crude model of the auditory-nerve response to sounds
starts with bandpass filtering of the input signal (modeling
the response of the cochlea), followed by half-wave rectifi-
cation and then by a lowpass filter. The auditory nerve re-
sponse roughly follows the fine structure of the signal at low
frequencies and the envelope of the signal at high frequencies
[3, 18, 19]. ITD analysis is based on the cross-correlation of
auditory-nerve responses, and the human auditory system is es-
pecially sensitive to envelope ITD cues at high frequencies. The
ICW algorithm uses this concept to reject components of the in-
put signal that appear to produce greater ITDs of the envelope.

Figure 4 shows a block diagram of the ICW algorithm. As
mentioned above, it is assumed that there is no delay in the ar-
rival of the target signal between the right and left channel de-
noted by xR[n] and xL[n] respectively. The signals xR[n] and
xL[n] are first bandpass filtered by a bank of 40 gammatone
filters using a modified implementation of Malcolm Slaney’s
Auditory Toolbox [20]. The center frequencies of the filters are
linearly spaced according to their equivalent rectangular band-
width (ERB) [16] between 100 Hz and 8 kHz. Zero-phase fil-
tering is performed using forward-backward filtering such that
the effective impulse response is given by,

hl(n) = hg,l(n) ∗ hg,l(−n) (7)

where hg,l(n) is the impulse response of the original gamma-
tone filter for the lth channel. Since equation (7) leads to an
effective reduction in bandwidth, the bandwidths of the original
gammatone filters are modified to roughly compensate for this.

After bandpass filtering, instantaneous Hilbert envelopes
eL,l[n] and eR,l[n] of the signals are extracted. Here, l refers to
the gammatone filter channel. The normalized cross-correlation

of the envelope signals eL,l[n] and eL,l[n] is given by,

ρl[m] =

∑
Nw

eL,l[n;m]eR,l[n;m]√∑
Nw

eL,l[n;m]2
√∑

Nw
eR,l[n;m]2

(8)

where ρl[m] refers to the normalized cross-correlation of
the mth frame and lth gammatone channel, eL,l[n;m] and
eR,l[n;m] are the envelope signals corresponding to the mth

frame and lth gammatone channel for the left and right chan-
nels respectively. The window size Nw was set to 75 ms and
the time between frames for ICW was 10 ms.

Based on ρl[m], the weight computation was given by,

wl[m] = ρl[m]a (9)

The nonlinearity a is introduced to cause a sharp decay of wl as
a function of ρl and it was experimentally set to 3. The weights
computed are applied as given below:

yl[n;m] = wl[m]x̄[n;m] (10)

where yl[n;m] is the short-time signal corresponding to the
mth frame and lth gammatone channel and x̄[n;m] is the aver-
age of short-time signals xR,l[n;m] and xL,l[n;m] correspond-
ing to the mth frame and lth gammatone channel. To resynthe-
size speech, all l channels are then combined.

3. Experimental Results
In order to test the SSF+ICW algorithm, ASR experiments were
conducted using the DARPA Resource Management (RM1)
database [21] and the CMU SPHINX-III speech recognition
system. The training set consisted of 1600 utterances and the
test set consisted of 600 utterances. Features used were 13th or-
der mel-frequency cepstral coefficients. Acoustic models were
trained using clean speech. SSF processing was performed on
the training data in cases where SSF was part of the algorithm
being tested.

To simulate speech corrupted by reverberation and interfer-
ing talkers, a room of dimensions 5m×4m×3mwas assumed.
The distance between the two microphones is 4 cm. The tar-
get speaker is located 2 m away from the microphones along
the perpendicular bisector of the line connecting the two mi-
crophones. An interfering speaker is located at an angle of 45
degrees to one side and 2 m away from the microphones. This
whole setup is 1.1 m above the floor. To prevent any artifacts
that may arise from only testing the algorithm at a specific loca-
tion in the room, the whole configuration described above was
moved around in the room to 25 randomly-selected locations
such that neither the speakers nor the microphones were placed
less than 0.5 m from any of the walls. The target and interfering
speaker signals were mixed at different levels after simulating
reverberation using the RIR package [22, 23].

Figure 5 shows the results obtained using baseline Delay
and Sum processing, the SSF algorithm alone, the ICW algo-
rithm alone and the combination of the SSF and ICW algo-
rithms. Figures 5a-5d show the Word Error Rate (WER) as a
function of Signal-to-Interference Ratio (SIR) for four different
values of reverberation time. The performance of the SSF+ICW
algorithm is compared to that of SSF alone and ICW alone. The
results of the Delay and Sum algorithm serve as baseline. As
seen in Figures 5a-5d, the ICW algorithm applied by itself does
not provide any improvement in performance compared to base-
line Delay-and-Sum processing. Nevertheless, the addition of
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Figure 5: Word Error Rate as a function of Signal to Interfer-
ence Ratio for an interfering signal located 45 degrees off axis
at various reverberation times: (a) 0.5 s (b) 1 s (c) 1.5 s (d) 2 s.

ICW to SSF does lead to a reduction in WER compared to per-
formance obtained using SSF alone as seen in Figures 5a-5d .
While the WER remains the same for 0 dB SIR, for all the other
conditions the addition of ICW to SSF decreases the WER by
upto 12% relative. There is a consistent improvement in WER
for 10 dB and 20 dB SIR and in the absence of an interfering
talker. The inclusion of envelope ITD cues and their coherence
across binaural signals therefore, help with reducing both inter-
fering noise and reverberation.

4. Conclusion
In this paper, a new method of utilizing ITD cues extracted
from the signal envelopes is discussed. By looking at the
cross-correlation between the high frequency signal envelopes
of the two channels of a binaural signal, an ITD based weight
is computed that rejects portions of the signal corresponding
to longer ITDs. Combining this information with precedence-
based processing that emphasizes acoustic onsets leads to im-
proved recognition in the presence of reverberation and inter-
fering talkers.
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