
Parameter Tuning in Personal Search Systems
Suming J. Chen, Xuanhui Wang, Zhen Qin, Donald Metzler

Google
Mountain View, California, USA

{suming,xuanhui,zhenqin,metzler}@google.com

ABSTRACT
The effectiveness of information retrieval systems is heavily de-
pendent on how various parameters are tuned. One option to find
these parameters is to run multiple online experiments using a
parameter sweep approach in order to optimize the search system.
There are multiple downsides of this approach, including the fact
that it may lead to a poor experience for users. Another option
is to do offline evaluation, which can act as a safeguard against
potential quality issues. Offline evaluation requires a validation
set of data that can be benchmarked against different parameter
settings. However, for search over personal corpora, e.g. email and
file search, it is impractical and often impossible to get a complete
representative validation set due to the inability to save raw queries
and document information. In this work, we show how to do offline
parameter tuning with only a partial validation set. In addition,
we demonstrate how to do parameter tuning in situations when
we have complete knowledge of the internal implementation of
the search system (white-box tuning), as well as situations where
we have only partial knowledge (grey-box tuning). The resulting
method provides a way of performing offline parameter tuning in
a privacy-preserving manner. We demonstrate the effectiveness of
the proposed approach by reporting the results from search ranking
experiments performed on two large-scale personal search systems.

CCS CONCEPTS
• Information systems → Evaluation of retrieval results.

KEYWORDS
parameter tuning, evaluation, black-box tuning, personal search
ACM Reference Format:
Suming J. Chen, Xuanhui Wang, Zhen Qin, Donald Metzler. 2020. Parameter
Tuning in Personal Search Systems. In The Thirteenth ACM International
Conference on Web Search and Data Mining (WSDM ’20), February 3–7, 2020,
Houston, TX, USA. ACM, New York, NY, USA, 9 pages. https://doi.org/10.
1145/3336191.3371820

1 INTRODUCTION
Modern search engines usually have multiple processing stages in
their systems. A typical flow has a retrieval stage followed with a
ranking stage, where the retrieval stage selects N documents and
passes them to the ranking stage. The ranking stage often employs

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
WSDM ’20, February 3–7, 2020, Houston, TX, USA
© 2020 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-6822-3/20/02. . . $15.00
https://doi.org/10.1145/3336191.3371820

a machine learning model based on query, document, and user
features. In this work, we present a parameter tuning approach
which can be used for either stage. This approach is especially
impactful for the retrieval stage – while a large amount of work
focuses on optimizing the parameters of the ranking stage, relatively
little work [3, 8] covers parameter tuning at the retrieval stage.

Whereas retrieval work in the literature primarily studies ap-
proaches such as BM25 [26], search engines in industry have an
entirely different set of challenges. Commercial web search en-
gines have been developed for decades by many engineers. The
various search system components quickly become complicated
and typically have numerous parameters to be tuned. As [7, 13]
note that even small variations in parameters of information re-
trieval systems lead to large variations in retrieval effectiveness, it
motivates thoroughly tuning parameters. Another motivation for
this work comes from infrastructure reuse in commercial settings,
which leads to the same retrieval system being used for multiple
applications and not tuned optimally for each one.

Given that an industrial search system can be very complex, a
natural and common approach for parameter tuning is to treat the
entire system as a black box and run A/B experiments with either
some sort of parameter sweep (e.g. grid search, coordinate ascent)
[22] or black-box optimization [17] over various parameters in a
guess-and-check manner. The drawback to this is that 1) the user
experience can be degraded due to exposure to poor quality results,
2) separate online experiments are required for each test set of
parameters, and 3) the tuning process can take months.

Offline tuning using a validation set is another option [21]. For
instance, as the retrieval component of a search system usually
works with query strings and document contents directly, offline
tuning in this setting involves collecting raw queries and historical
click data and simulating how retrieval effectiveness changes when
utilizing different parameters. However, in the personal search set-
ting [2, 5, 12, 28], where both queries and documents are private,
building a representative validation set is a challenge, as it involves
either relying upon donated data (which can be limited and biased)
or utilizing a validation set that only contains partial information
(where any sensitive raw data is not logged). In this paper, we in-
troduce a methodology for utilizing a partial validation set to do
parameter tuning for the personal search setting.

Compounding the problem of performing parameter tuning with
only a partial validation set is the complexity and uncertainty of
the underlying retrieval system. As mentioned above, retrieval
and ranking components in commercial systems can become quite
complicated, especially over the years as new features continue to
be added. Because of this, the inner workings of certain components
of the search system can be treated as unknown or hidden, and
can effectively be thought of as a grey-box system [24] (as opposed
to a white-box system where the internals are completely known

Technical Presentation WSDM ’20, February 3–7, 2020, Houston, TX, USA

97

https://doi.org/10.1145/3336191.3371820
https://doi.org/10.1145/3336191.3371820
https://doi.org/10.1145/3336191.3371820

and a black-box system where nothing is known). With a partial
validation set and uncertainty about the system, it becomes difficult
to simulate offline how the results would have been ordered if
different parameters had been chosen. The more uncertainty there
is about the system, the fewer approaches there are for performing
parameter tuning.

In this paper, we demonstrate how a search system can be for-
mulated as either a white-box, grey-box, or a black-box system.
We then propose methods for doing offline white-box and grey-
box parameter tuning for personal search systems with a privacy-
preserving validation set. For grey-box parameter tuning, we show
how to exploit the structure of grey-box systems to allow for 1)
inferring hidden components of the system, 2) finding suitable pa-
rameters to tune, and 3) providing approximate offline estimates of
good parameter values that translate into online results. We demon-
strate empirically that our method leads to significant increases in
search quality metrics for two production systems serving millions
of queries a day, requiring far fewer live experiments to be run than
alternative methods.

The structure of this paper is as follows. We first discuss related
work in parameter tuning and offline evaluation in Section 2. We
then show how a search system can be formulated as either a white-
box, grey-box, or black-box system in Section 3. In Section 4 we
cover methods to do offline grey-box and white-box parameter
tuning. We then discuss our empirical evaluation and results in
Section 5, where we show that our efforts to tune parameters led to
significant increases of search quality. In addition, we demonstrate
empirically that our proposed method indeed shrinks the space of
possible parameters that need to be tuned. We then conclude the
paper with a recap and discussion of future work.

2 RELATEDWORK
[7, 13] discuss the importance of parameter tuning, and [27] gives
more insight into the difficulty of parameter management. Since
new features are often added to search systems to improve the
performance of retrieval functions, these features often increase
the number of parameters which makes it more challenging to find
optimal parameter values.

The majority of work regarding parameter tuning is for black-
box systems, where no knowledge of the internal implementation
is known. For these approaches, given an unknown function f ,
we are allowed to evaluate f (x) for any value x ∈ X in an ef-
fort to maximize (or minimize) f (x). Typical approaches include
Bayesian optimization [11, 17] as well as hybrid methods using
random search alongside multi-armed bandit techniques [19]. In
particular, [17] discusses how Bayesian optimization can be used for
optimizing retrieval systems. These approaches generally assume
some prior belief over f and draw samples to get a posterior that
better approximates f . Other Bayesian optimization work consists
of that of [15], which remarks on the importance of determining
the impactfulness of different hyperparameters in order to reduce
the exploration needed and speed up the optimization process.
Bayesian optimization techniques differ from our work as our work
assumes some (though incomplete) knowledge about the function
f is known.

There has been significant recent work in how parameter tuning
can be done better by leveraging knowledge of the internal imple-
mentation [4, 16, 20]. If we have full knowledge of the internals of a
search system, we would have awhite-box system. If we have partial
knowledge, then we would consider it a grey-box system [24].

For white-box parameter tuning, [16] investigate tuning the
parameters of existing programs. They assume full knowledge
of program stages is available and provide a library where the
user can have flexible access to internal program states in order to
specify how tuning can be done (e.g. what range of values should
be explored and how many samples to generate). Their approach
leverages independence between computation stages to reduce the
search space of parameters. They demonstrate that their approach
beats general black box tuning. In the field of automated algorithm
design, [1] show that using a white box approach and exploiting
internal knowledge of algorithm evaluation functions allows for
faster optimization.

For grey-box systems, [20] uses system-level monitoring infor-
mation in conjunction with standard hill climbing algorithms to sig-
nificantly improve MapReduce application performance. [4] demon-
strate benefits of using automated parameter tuning in optimiz-
ing big-data streaming applications. In their work, they transform
their multi-objective optimization function into a single-objective
optimization problem and show that their rule-based approach
of incorporating prior knowledge for parameter selection allows
them to converge significantly faster than standard hill-climbing
algorithms used for typical black box problems. In our work, we
demonstrate how to leverage partial knowledge of the system to
improve parameter tuning efforts.

Offline evaluation is critical for production search systems to san-
ity check any new experiments and prevent system behavior that
may be detrimental to the users’ experience. [14] use previously
collected click data in order to perform interleaved comparison
methods between various rankers and find that it can be less ex-
pensive than running live interleaving experiments. [18] provides
a method of doing offline evaluation of different contextual ban-
dit based article recommendations, where a primary motivation is
to not hurt user experience by exposing potentially poor-quality
algorithms.

3 PROBLEM FORMULATION
As stated in the introduction, one option of doing offline evaluation
of search systems is to use a validation set. Here, different queries
and documents (including which documents were clicked) are col-
lected. The validation set can be passed into the search system with
different parameters in offline evaluations to learn which parame-
ters work best. However, for personal search systems, it is typically
not allowable to log the raw queries and personal document con-
tents due to privacy considerations. To the best of our knowledge,
offline parameter tuning in the personal search setting has not been
explored in detail previously.

Even though we may not be able to log the raw query and docu-
ment contents, we may still be able to log some privacy-aware non-
sensitive signals. For instance, in search systems, there is typically
some scoring system component that takes a query and document
and then outputs a score after undergoing numerous stages of query

Technical Presentation WSDM ’20, February 3–7, 2020, Houston, TX, USA

98

and document parsing, spell checking, synonym expansion, and
more [7]. There are intermediate computed scores (which we refer
to as subscores) that are non-sensitive and can be logged (e.g. term
frequency (tf), inverse document frequency (idf), document length
normalization).1 These subscores are the output of some operation
within the scoring function and get piped further downstream to
other functions that further transform and combine the scores. In
the following section, we show how to construct a validation set,
hereafter referred to as Q , that is not comprised of the traditional
raw queries and raw documents, but instead consists of subscores.
Subsequently, we demonstrate that Q can be used to tune both
white-box search systems and grey-box search systems.

3.1 White-box Formulation
Given that scoring happens in different stages and numerous func-
tions are called, we can formulate the general computation as a
directed acyclic graph (DAG). To better define our formulation,
we use the same terminology as is typically used in dealing with
graphical models [9, 23]:
• pa(x) ≜ parents of x
• ch(x) ≜ children of x
• f am(x) ≜ x ∪ pa(x)

In our white-box formulation, the query and document are the
roots of the DAG and the leaf is the outputted score. The vari-
ous intermediate derived subscores s1, . . . , sm , scoring functions
f1, . . . , fn , and parameters p1, . . . ,po (controlling function com-
putation) can be thought of as the internal nodes of the graph.
Each edge of this DAG represents the flow of computation. Our
formulation has the following properties:

(1) pa(fi) ∈ {s1, . . . , sm ,p1, . . . ,po }∀i
(2) pa(si) ∈ { f1, . . . , fn }∀i
(3) pa(pi) ∈ �

Basically these properties enforce that the scoring function nodes
are always separated from each other by exactly one layer of sub-
score nodes.

An example formulation can be seen in Figure 1. Here, we can
see that even though the raw query sq and document sd are privacy-
preserving and not available in our offline validation set (and as
such, colored black), that subscores s1, s2, s3, s4 (which may refer to
signals related to tf/idf score) and final score sf can be logged in the
validation set Q as they are not privacy-preserving fields (colored
white). We can thus say that type(sq , sd) = hidden to contrast with
other visible nodes such as {s1, s2, s3, s4}, where type(s1, s2, s3, s4) =
visible . Also, note that, as the internal system implementation is
known, ∀fi ∈ { f1, . . . , fn }, type(fi) = visible .

A query q in the validation set Q then consists of all the visible
subscores for query-document pairs. In this case, for the grey-box
system in Figure 1, the per-query information includes 1) per-doc
information of what the subscores {s1, . . . , sm , sf } were for each
result document d and 2) which document was clicked. Table 1
shows an example of the validation information for an arbitrary
query q ∈ Q . Notice that any information regarding sq and sd is
entirely absent from Q , since they are privacy-preserving.
1In this paper, for simplicity we treat subscores as single float numbers, but in practice
subscores can represent a wider range of types, e.g. string representation for an
“expanded query” subscore.

The key insight here is that even if we only have a partial val-
idation set Q that is missing sq and sd , we can still tune certain
parameters given full knowledge of how the computation process
is affected. For a white-box system, we can always tune any func-
tion fi where pa(fi) < {sq , sd }—in the depicted example, f3, f4, f5
can be tuned offline since the exact inputs (pa(f)) and outputs are
available in our validation set. We can then adjust p4,p5,p6 to see
if we can get a better ordering of the documents of each query
session (i.e. if the average click position over the validation set can
be decreased). With this white-box formulation, offline parameter
tuning for personal search systems is straightforward if we “prune”
off the parameters related to functions taking {sq , sd } as input and
focus on tuning the remaining parameters.

Example 1. We use a toy example to demonstrate how this tuning
can work. Suppose we have the following definitions for compo-
nents in Figure 1:
• f3(s1, s2 |p4) = s1 + p4 · s2
• f4(s2 |p5) = s

p5
2

• f5(s3, s4 |p6) =
s3

s4 ·p6
For an arbitrary example query q ∈ Q , suppose that we have the
following offline scores captured in Table 1. The documents are
ordered by their final score sf , which is computed according to
the above function definitions.2 As a common goal in information
retrieval systems is to place relevant results at a higher rank [7],
in this example having d3 ranked at position 3 is not ideal. Even
without knowing what sq and sd are offline, we can run a parameter
sweep over p4,p5,p6 in order to find a better ordering. One such
ordering is achieved by setting p4 = 0.2,p5 = 0,p6 = 1, resulting in
final scores s ′f , leading to the ranking seen in Table 2.3

In a more realistic setting, we would want to fit our parameters
according to the entire validation set Q , and given tunable param-
eters p would be looking to find the parameters to maximize the
aggregate metrics:

argmax
p∈p

1
|Q |

∑
q∈Q

M(q, s ′f (p)) (1)

In the above equation, s ′f (p) denotes what the per-document
scores would have been had parameters p been used, whereas M
represents any generic search metric such as click-through rate or
mean-reciprocal rank. Note that instead of using the entire valida-
tion set Q to find parameters, we can use standard cross-validation
parameter tuning techniques as used in [6, 16].

3.2 Black-box and Grey-box Formulation
The white-box example in Figure 1 contained an entirely trans-
parent system implementation where all nodes in the graph are
visible and only sq and sd arehidden. We can have hidden functions
(type(fi) = hidden) as well. If all functions are hidden we have a
black-box system, as shown in Figure 2. This may be a system that
is just a compiled binary (with source code missing), or a system

2Note that per the privacy restrictions we have discussed, sq and sd are not logged in
the table.
3Note that these toy example only includes differentiable functions, so gradient-based
optimization approaches can be used. However, in general the functions may not be
differentiable.

Technical Presentation WSDM ’20, February 3–7, 2020, Houston, TX, USA

99

Figure 1: A DAG formulation of a scoring system where the internal implementation is entirely known (white-box). We see
here how the parent nodes of a function pa(fi) are the inputs and the child node ch(fi) is the output of the function.

Table 1: Example document scores and subscores for an ar-
bitrary query q that is passed through the scoring system
defined in Figure 1 with p4 = p5 = p6 = 1. The clicked docu-
ment is highlighted in grey. A validation setQ would contain
numerous instances of different query-document pairs.

doc s1 s2 s3 s4 sf
d1 5 10 15 10 1.5
d2 5 20 25 20 1.25
d3 6 30 36 30 1.2
d4 1 20 21 20 1.05

Table 2: Example document scores and subscores for the ex-
ample given in Table 1 with p4 = 0.2,p5 = 0,p6 = 1. The
clicked document is highlighted in grey.

doc s1 s2 s3 s4 s ′f
d3 6 30 12 1 12
d2 5 20 9 1 9
d1 5 10 7 1 7
d4 1 20 5 1 5

that has gotten so complex and has so much technical debt that it
is easier just to treat as a black-box. In this case, even though the
parameter values and output scores for the system are known, the
validation set Q is near-trivial as it only contains sf as no internal
subscores si are logged, and as such no offline evaluation at all can
be done.4

However, often times we may have some knowledge of the in-
ternals of a system [4, 20]. An example of this is a search sys-
tem where the general graph of computation is known, as in [16],
but different scoring functions fi and subscores si are unknown
(type(fi) = type(si) = hidden). For instance, we may have no idea
how the query parsing library works. Or, we may have exact knowl-
edge of how a BM25 score is produced but do not actually have the

4In this case, a common solution to doing performance tuning is to either do black-box
tuning or build a reranking system on top and leave the complex system untouched.

Figure 2: Black-box example.

logging capability to retrieve that subscore. In this case, we can still
formulate a grey-box model as a DAG, as seen in Figure 3, which
serves as a running example. Some more practical examples:
• {sq , sd } → f2 → s2 represents sensitive inputs (e.g. raw
query and document contents) passed to a function that
computes a BM25 score that is logged and available in a
validation set.
• sd → f3 → s3 can represent a sensitive input (e.g. the
document contents) passed to a document quality function
that produces a quality score that is logged and available in
a validation set.
• sq → f1 → s1 can represent a sensitive input (e.g. raw query)
passed to a synonym expansion library and outputting the
expanded raw query (with added synonyms). In this case,
the internal logic of library is unknown and the outputted
expanded raw query is also hidden.
• {s2, s3} → f6 → s6 represents two visible inputs (e.g. query
score and a document score) into a well known function. The
output s6 can represent some query/doc match numerical
score that is not visible, but can be inferred since the inputs
and function are visible. This is the key insight that allows
Algorithm 2 in the next section to work.

Technical Presentation WSDM ’20, February 3–7, 2020, Houston, TX, USA

100

Figure 3: Grey-box example. Subscores bounded by green boxes, e.g. s5 , s6 , s7 , can be inferred after running Algorithm 2.

For the grey-box system shown in Figure 3, the partial valida-
tion set Q contains the query-document pairs of the visible scores,
{s2, s3, s4, s8, sf }. In the next section, we show that by formulating
the computational process as a DAG, we can represent a rich set
of data dependencies that enables us to make inferences about the
scoring process [25] that allow us to 1) infer the values of some
hidden subscores, 2) find promising parameters to tune, and 3) find
optimal parameter values given the partial validation set Q .

4 METHODOLOGY
In this section, we start off by describing how the technique intro-
duced in the last section for white-box tuning can be applied more
generally in a grey-box setting. We then describe a technique which
allows for inferring the values of the hidden nodes of the graph, and
close the section with a general methodology that demonstrates
how both techniques can work in conjunction.

4.1 Generalizing White-box Tuning
In the last section, we showed (via Example 1) how a white-box
search system can be partially optimized by only tuning fi where
pa(fi) < {sq , sd }. We see in Figure 3 that this approach cannot work
due to the hidden nodes in a grey-box system that prevent us from
computing how different parameter values affect sf .

However, our previous insight of pruning off certain sections
of the graph and only tuning a subset of the parameters can still
be applied here. Though we cannot tune sf , there may be other
subscores that can be tuned. If there is some visible subscore si
that has high correlation with the final score sf then we can use
si as a proxy for the final score. When trying out a new set of
parameters, instead of ordering documents in Table 2 by s ′f (which
is not computable given the hidden nodes), we can instead order
documents by:

sf · s
′
o (p)

so
(2)

Algorithm 1 FindParameters(G,x) — uses a BFS to find parame-
ters to tune the subcomponent x . visible is a function that takes
in a set of nodes and returns True only if the set of nodes is not
empty and all nodes are visible .
1: p ← {} ▷ The return parameters
2: Q ← {} ▷ Initialize a queue
3: Q .push(x)
4: while Q is not empty do
5: v ← Q .pop()
6: if visible(f am(pa(v))) then
7: for u in pa(pa(v)) do
8: if u ∈ {s1, · · · , sm } then
9: Q .push(u)
10: else if u ∈ {p1, · · · ,po } then
11: p ← p ∪ u

12: return p

where so = argmaxsi |corr (si , sf)|, the subscore with highest
correlation to sf (over the validation setQ), and s ′o (p) denotes what
the score of so would have been had parameters p been used. Note
that the correlation we use is Pearson correlation coefficient:

corr (X ,Y) =
cov(X ,Y)

σXσy

where cov(X ,Y) is the covariance between X and Y and σX and σY
are the standard deviations of X and Y , respectively.

The assumption we make here is that since so has high corre-
lation with sf , we can approximate what the final score would be
given p by looking at the value of s ′o (p). Note that there are other
approaches we considered to approximate the final score (e.g. we
could also consider the two subscores with highest correlation and
tune all associated parameters based on them) but we went with
the simplest approach as it was highly effective in practice.

Technical Presentation WSDM ’20, February 3–7, 2020, Houston, TX, USA

101

We now introduce an approach for finding parameters for so .
Algorithm 1 uses a breadth first search (BFS) approach, exploiting
the graph structure and leveraging independence between compu-
tational stages to find any tunable parameters that can affect the
computation for so . For our running example in Figure 3, we can
run Algorithm 1 on one of s2, s3, s4, s8 (depending on correlation).
Unfortunately, we find that since this algorithm depends on visible
subscores and functions, it does not return any tunable parame-
ters. This motivates our next contribution, which is a method for
inferring hidden values to expand the set of parameters to tune.

4.2 Inferring Hidden Subscores
While it is true that hidden values are typically privacy-preserving
or typically not logged due to complexity reasons, we can still do an
on-the-fly computation to infer what a value would have been given
some parameter changes. For example, in Figure 3 we have s6 =
f6(s2, s3,p7). Even though s6 is hidden, since both its parent function
f6 and the parent function’s inputs are visible, we can infer the value
of s6. For our purposes, type(s6) = visible , as we can substitute
f6(s2, s3,p7) in place of s6 into the input of f8. Note that this can
work from the other end as well: given that s8 = f8(s5, s6,p9,p10),
given the substitution of s6 and that type(s8) = visible , we can
then construct an inverse f −18 to recover what the value of s5 is:
s5 = s8 · f −18 (s6,p9,p10).

5

Algorithm 2 InferSubscores(G) — repeatedly traversing
through the graph G of subscores to leverage visible subscores
and functions in order to infer hidden subscore values. visible is
defined the same as Algorithm 1.

1: G ′ = topological ordering of vertices in G
2: repeat ← true ▷Whether or not to repeat procedure
3: while repeat == true do
4: repeat ← f alse ▷ Repeat only if variable inferred
5: for x in G ′ do
6: if x < {s1, · · · , sm } then
7: continue
8: if visible(x) then
9: continue
10: if visible(f am(pa(x))) then
11: type(x) ← visible
12: repeat ← true

13: for c in ch(x) do
14: if visible(f am(c) \ x ∪ ch(c)) then
15: type(x) ← visible
16: repeat ← true

Given the importance of having visible nodes for Algorithm 1,
we introduce a simple inference algorithm, Algorithm 2, that can be
run to demystify asmuch of the grey-box as possible. This algorithm
essentially makes multiple passes through the DAG, utilizing the
Markov blanket of a node x to infer whether or not type(x) can be
made visible . When the algorithm is able to infer a hidden value,

5This assumes the existence of a one-to-one inverse function (∃f −18), which we gener-
ally found to hold true for the visible functions in our domain.

the algorithm will loop again in case the newly inferred visible
variable can be used to infer some other previously hidden value.

For our running example in Figure 3, we find that upon running
Algorithm 2, the following occurs:

(1) type(s6) ← visible
(2) type(s5) ← visible
(3) type(s7) ← visible

In our example, 3 nodes s5 , s6 , s7 are able to be transformed
to visible and are bounded by green boxes in Figure 3. When sub-
sequently running Algorithm 2, we are now able to find that 4
parameters p7,p8,p9,p10 can now be used for tuning the values of
s6, s7, s8, as the full computation can be simulated offline.

4.3 Optimizing parameters in a grey-box
setting

Given a DAG G and offline evaluation set of queries/documents Q ,
our approach for grey-box parameter tuning is then:

(1) InferSubscores(G)
(2) o = argmaxi |corr (si , sf)|
(3) p = FindParameters(G, so)
(4) Return parameters that optimize the aggregate metrics:

argmax
p∈p

1
|Q |

∑
q∈Q

M(q,
sf · s

′
o (p)

so
) (3)

where s ′o (p) denotes what the score of so would have been had
parameters p been used. For white-box parameter tuning, we would
start at step 3 for so = sf , and the above equation would simply
reduce down to Equation 1. In the next section, we show how our
approach works for real-world personal search systems, and how
p can be robust in the sense that tuning additional parameters
p′ ∈ {p1, . . . ,po } \ p can be redundant to improving quality.

5 EVALUATION
We applied our approach to two personal search systems: GMail
and Google Drive. Both GMail and Drive are large and complex
systems operating over sensitive data. As such, our empirical eval-
uation only includes logged offline data that contains high-level
metadata. For the partial validation set Q , we utilized around 1 mil-
lion Gmail queries and 250 thousand Drive queries pulled from a 1
week period. Each query in the validation set resulted in a click. In
this validation set, each query is associated with up to 6 emails and
5 documents, respectively. Given the proprietary nature of these
search systems, we are unable to reveal the actual DAG structure.
Instead, we demonstrate empirically that:

(1) Our approach is superior to a standard parameter sweep as
well as state-of-the-art black-box optimization techniques,
allowing us to find optimal parameters faster and without
degrading the user search experience.

(2) Our approach is robust and any gains that we find for pa-
rameter tuning offline translate to the online setting in a
correlated manner.

(3) Utilizing our approach of finding parameters can exploit the
graphical structure of the grey-box in order to reduce the
space of parameters that need to be explored.

Technical Presentation WSDM ’20, February 3–7, 2020, Houston, TX, USA

102

5.1 Metrics
We use the following search metrics to evaluate the impact of our
proposed method:
• ACP: Average click position, where a decrease is desirable.
• CTR: Click-through rate, i.e. the fraction of queries where a
result was clicked.
• MRR: Mean reciprocal rank.

1
Q

|Q |∑
i=1

1
ranki

(4)

The reciprocal rank is the multiplicative inverse of the rank
of the clicked result: 1 for the first item, 0.5 for the second
item, etc, and is 0 if there is no click. MRR is the mean of
reciprocal ranks of all responses.

5.2 Experiment Results
5.2.1 Improvement over existing parameter tuning techniques. We
demonstrate that leveraging internal knowledge of the system can
allow for efficiently tuning the parameters. Sincewe only had partial
knowledge of both GMail and Drive search systems, we used the
approach described in Section 4.3 to find parameters to tune. We
found parameters that improved search metrics offline and then ran
live experiments. The search quality metrics for these experiments
are shown in Table 3. We see that our approach led to tuning
parameters that led to statistically significant metric increases for
both GMail and Drive. Note that we saw a bigger increase for Drive
than for GMail. This bigger increase corresponds well to offline
numbers as well, which showed that Drive in general had more
headroom for improvement in parameter tuning than GMail.

Our approach allows us to directly run live experiments with
high confidence that any parameters found offline can be used in
the online setting as well, thereby reducing the number of live
experiments that need to be run and greatly eliminating the possi-
bility of running experiments that hurt user experience. In contrast,
any existing methodology that relies on black-box tuning requires
multiple online experiments that may degrade quality. For instance,
from past live experiments to improve quality, we observed that
around 4% of parameter sweep trials resulted in a significant im-
provement in metrics. A large percentage of these trials resulted
in worse quality results, hurting the user experience. With our ap-
proach, we were able to discriminate easily between various sets of
parameters offline with Algorithm 1 and found that optimal set of
parameters we discovered offline led to significant improvements
in live experiments for both GMail and Drive.

We also note that the usefulness of our proposed methodology is
contingent on having subscores that are of high correlation (> 0.75)
to the final score. We found that using lower correlation subscores
as a proxy led to finding sub-optimal parameters – these param-
eters could improve the offline metrics, but did not translate into
improving online performance.6

In addition, we also demonstrate that our approach of grey-box
tuning is superior to a state-of-the-art black-box tuning approach.
We used Vizier [11], a black-box optimization toolkit designed
specifically for parameter tuning. Vizier works by inputting in a

6An example of this is trial7 in Table 5.

Table 3: Results of using our grey-box parameter tuning ap-
proach. Statistical significant numbers are bolded.

Scenario ACP CTR MRR % queries
decrease gain gain affected

Gmail 0.51 -0.22 0.0 17.74
Drive 1.27 2.60 3.62 11.24

Table 4: Results of using a black-box optimization toolkit.
Statistically significant numbers are bolded.

trial ACP CTR MRR % queries
id decrease gain gain affected

trial1 -1.01 -4.64 -5.06 10.75
trial2 -0.47 0.25 0.31 11.22
trial3 -0.94 -3.59 -4.33 10.58
trial4 -1.07 -4.24 -4.82 12.31

feasible region of parameters. Vizier will then suggest parameter
values to run a trial with. After a trial (e.g. live experiment) has
been started, the feedback (e.g. live metrics) is used by Vizier with
Gaussian Process Bandits [10] to suggest new parameters.

We ran a Vizier study to see if we could improve upon the stan-
dard parameter sweep, but found that it still was much more in-
efficient compared to running simulations offline because 1) we
had to wait a long period of time to collect feedback and 2) there
were multiple experiments that led to significant negative results.
Results can be see in Table 4. Note that we only ran a few trials since
we stopped early due to lack of positive results. Though black box
optimization can take many trials before converging, these results
show the disadvantage of running live experiments and further
motivates offline parameter tuning to reduce the number of live
experiments that harmed quality.

5.2.2 Offline results are robust to the online setting. We report
metrics for using our proposed parameter tuning approach, demon-
strating that parameters leading to improvements offline in general
lead to online improvements. To give us additional data points, in-
stead of just taking the top correlated subscore (as is the proposed
step in Equation 3) and tuning the associated parameters for just
that one subscore, we ran Algorithm 1 for various other subscores
to get multiple sets of parameters to tune.

With these different sets of parameters, we then used a standard
parameter sweep in order to find the best performing offline param-
eter instantiation. The various instantiations of parameters were
then used to start multiple experimental trials. Tables 5 and 6 re-
spectively show the results of various Drive and Gmail experiments,
where each trial in the table corresponds to a different set of pa-
rameters that were used.7 We see that there is a clear link between
any offline produced score and the online metrics. For both search
systems, we also ran ablation experiments to check that parameters
that led to poor offline gains also led to poor online gains as well,
demonstrating that our approach can be used to safeguard against
running poorly performing live experiments.

7Note that we did not experiment with combining different sets of parameters to see
if experimental gains stack, which is out of the scope of this paper.

Technical Presentation WSDM ’20, February 3–7, 2020, Houston, TX, USA

103

Table 5: Results of live Drive experiments contrasted with
offline metrics. Each trial represents a set of different pa-
rameters that were used in a live experiment. Statistically
significant numbers are bolded. We found that there were
multiple sets of parameters that led to significant increases
in metrics for live experimental trials. The table also shows
the percentage of query traffic that was affected by the pa-
rameter changes to give a better sense of the total impact.

trial % offline corr % queries ACP CTR MRR % queries
id gain score covered decrease gain gain affected

trial1 0.64 0.93 98 1.27 2.60 3.62 11.24
trial2 0.53 0.93 90 -1.06 2.85 2.18 15.98
trial3 0.39 0.88 97 0.91 1.41 2.41 12.34
trial4 0.37 0.88 90 -0.41 0.85 0.56 25.73
trial5 0.32 0.65 99 -0.81 0.61 0.97 18.75
trial6 0.3 0.77 98 0.73 1.58 1.84 8.43
trial7 0.25 0.65 90 0.56 0.28 0.45 15.48
trial8 0.22 0.77 86 3.2 -3.15 -0.42 13.48
trial9 0.18 0.78 98 -0.01 1.09 1.06 25.48
trial10 0.18 0.88 90 0.88 0.41 1.21 16.43
trial11 0.17 0.93 91 -0.92 0.43 0.13 16.57
trial12 0.18 0.78 98 0.89 0.05 -0.14 12.14
trial13 -0.48 0.93 98 -2.47 -1.26 -1.26 17.48
trial14 -1.25 0.93 98 1.83 -4.96 -4.00 20.69

Table 6: Results of live Gmail experimental trials contrasted
with offline metrics. Each trial represents a set of different
parameters that were used in a live experiment. Statistically
significant numbers are bolded.We found that therewas less
headroom both offline and online in improving GMail.

trial % offline corr % queries ACP CTR MRR % queries
id gain score covered decrease gain gain affected

trial1 0.26 0.92 98 0.51 -0.22 0.00 17.74
trial2 0.21 0.88 97 0.42 0.10 -0.53 17.22
trial3 0.17 0.65 99 0.10 -0.58 -0.68 21.86
trial4 0.12 0.77 97 0.32 -0.21 0.15 15.47
trial5 0.10 0.77 86 0.25 -0.38 -0.04 35.27
trial6 -1.12 0.92 98 -0.66 -5.18 -4.99 10.7
trial7 -1.58 0.92 98 -1.95 -4.20 -2.69 22.4

These experimental results suggest the offline gain is important,
the degree of correlation of the score we are tuning (compared to
the actual score) is quite important as well, as any of the statis-
tically significant results obtained had relatively high correlation
scores. Figure 4 visualizes the results of Tables 5 and 6 by plotting a
weighted offline metric, the % offline gain scaled by the correlation,
against the mean of the three online metrics normalized by the % of
queries affected by the experiment. For GMail we found that there
was less headroom for parameter tuning, whereas for Drive there
was more headroom, as we were able to find multiple instantiations
of parameters that led to both significant offline and online gain.

Lastly, for the offline evaluation sets we were using we were not
always able to get a full reproduction of every query to document.
As such, Tables 5 and 6 also show for each of these offline parameter
tuning experiments how much of the offline evaluation set we were
actually able to use. This appears to be slightly important, but not
as important as the offline gain and correlation score.

5.2.3 Reducing the space of parameters that need to be explored.
[7] notes the increasing difficulty of tuning search systems as the

Figure 4: Relationship between weighted offline metric ver-
sus weighted online metric.

Figure 5: Performance of base set of parameters versus pa-
rameter sets double the size. Error bars for the randomly se-
lected larger parameter sets are shown. We see that in this
domain tuning the base set is sufficient and there is dimin-
ishing return in tuning additional parameters.

number of parameters increases. Even if we are doing offline eval-
uation, a parameter sweep over all possible configurations does
not scale well. This combinatorial difficulty is the reason that [15]
notes that it is necessary to determine important parameters and
exploit the information to speed up the optimization problem.

We show that our approach to determine which the parameters
should be tuned is fairly robust against tuning additional param-
eters. Our experiment methodology involves using Algorithm 1
to select parameters to tune, which results in k parameters being
selected.8 We treat these as the set of baseline parameters (B) to
tune. We then repeatedly sample from other parameters in order
to find k additional parameters to tune (A). Results are shown in
Figure 5. There we can see that the baseline parameters B algorithm
performs nearly as well as if a set including additional parameters
A are tuned. Clearly, the majority of the performance gain in both
settings can be tied to the original k parameters of B. These results
are similar to that of the discovery of [15], who demonstrated that

8The value of k is deliberately omitted to protect proprietary information.

Technical Presentation WSDM ’20, February 3–7, 2020, Houston, TX, USA

104

even in very high dimensional cases, performance variation is only
dependent on a few parameters.

We see that there is more headroom for improvement in Drive
versus GMail even if additional parameters are used, which confirms
our earlier suspicions that GMail is already much more optimized
than Drive is. We do see that tuning additional parameters (beyond
the base k) in GMail is more beneficial than tuning more than k
additional parameters in Drive, which motivates future work to
explore tuning the parameters for more than just one subscore.

6 CONCLUSION AND FUTUREWORK
In this paper we introduce a novel approach for how parameter
tuning can be done offline for personal search systems. We demon-
strate that it is effective in tuning real-world production systems,
requiring significantly fewer live experiments to be run and leading
to significant gains in live metrics for Google Drive and Gmail.
We expect that our presented formulation and methodology can
be extended to not work for just search systems, but any form of
complex system where 1) there is significant uncertainty in the
inner-workings of the system and 2) user privacy needs to be taken
into account, meaning that anonymized (and therefore diminished)
validation sets. As future work, we plan to study how much we can
improve on parameter tuning if we tune multiple components of
the system at once and combine different sets of learned parameters
to see how experimental gains would stack.

ACKNOWLEDGMENTS
We thank Michael Bendersky, Roberto Bayardo, and Arthur Choi
for comments on improving the clarity and framing of this paper.

REFERENCES
[1] Steven Adriaensen and Ann Nowé. 2016. Towards a White Box Approach to

Automated Algorithm Design. In Proceedings of the Twenty-Fifth International
Joint Conference on Artificial Intelligence (IJCAI’16). AAAI Press, 554–560. http:
//dl.acm.org/citation.cfm?id=3060621.3060699

[2] Qingyao Ai, Susan T Dumais, Nick Craswell, and Dan Liebling. 2017. Character-
izing email search using large-scale behavioral logs and surveys. In Proceedings of
the 26th International Conference on World Wide Web. International World Wide
Web Conferences Steering Committee, 1511–1520.

[3] Nima Asadi and Jimmy Lin. 2013. Effectiveness/efficiency tradeoffs for candidate
generation in multi-stage retrieval architectures. In Proceedings of the 36th in-
ternational ACM SIGIR conference on Research and development in information
retrieval. ACM, 997–1000.

[4] Muhammad Bilal and Marco Canini. 2017. Towards Automatic Parameter Tuning
of Stream Processing Systems. In Proceedings of the 2017 Symposium on Cloud
Computing (SoCC ’17). ACM, New York, NY, USA, 189–200. https://doi.org/10.
1145/3127479.3127492

[5] David Carmel, Guy Halawi, Liane Lewin-Eytan, Yoelle Maarek, and Ariel Raviv.
2015. Rank by time or by relevance?: Revisiting email search. In Proceedings of the
24th ACM International on Conference on Information and Knowledge Management.
ACM, 283–292.

[6] Olivier Chapelle, Vladimir Vapnik, Olivier Bousquet, and Sayan Mukherjee. 2002.
Choosing multiple parameters for support vector machines. Machine learning
46, 1-3 (2002), 131–159.

[7] W Bruce Croft, Donald Metzler, and Trevor Strohman. 2010. Search engines:
Information retrieval in practice. Vol. 520. Addison-Wesley Reading.

[8] Van Dang, Michael Bendersky, and W Bruce Croft. 2013. Two-stage learning to
rank for information retrieval. In European Conference on Information Retrieval.
Springer, 423–434.

[9] Adnan Darwiche. 2009. Modeling and reasoning with Bayesian networks. Cam-
bridge University Press.

[10] Thomas Desautels, Andreas Krause, and Joel W Burdick. 2014. Parallelizing
exploration-exploitation tradeoffs in Gaussian process bandit optimization. The
Journal of Machine Learning Research 15, 1 (2014), 3873–3923.

[11] Daniel Golovin, Benjamin Solnik, SubhodeepMoitra, Greg Kochanski, John Karro,
and D. Sculley. 2017. Google Vizier: A Service for Black-Box Optimization. In
Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining (KDD ’17). ACM, New York, NY, USA, 1487–1495.
https://doi.org/10.1145/3097983.3098043

[12] Jai Gupta, Zhen Qin, Michael Bendersky, and Donald Metzler. 2019. Personalized
Online Spell Correction for Personal Search. In The World Wide Web Conference
(WWW ’19). ACM, New York, NY, USA, 2785–2791. https://doi.org/10.1145/
3308558.3313706

[13] Ben HE and Iadh Ounis. 2003. A Study of Parameter Tuning for Term Frequency
Normalization. In Proceedings of the Twelfth International Conference on Informa-
tion and Knowledge Management (CIKM ’03). ACM, New York, NY, USA, 10–16.
https://doi.org/10.1145/956863.956867

[14] Katja Hofmann, Shimon Whiteson, and Maarten de Rijke. 2012. Estimating
interleaved comparison outcomes from historical click data. In Proceedings of the
21st ACM international conference on Information and knowledge management.
ACM, 1779–1783.

[15] Holger Hoos, UBC Ca, and Kevin Leyton-Brown. 2014. An efficient approach for
assessing hyperparameter importance. In International Conference on Machine
Learning. 754–762.

[16] Wen-Chuan Lee, Yingqi Liu, Peng Liu, Shiqing Ma, Hongjun Choi, Xiangyu
Zhang, and Rajiv Gupta. 2019. White-box Program Tuning. In Proceedings of the
2019 IEEE/ACM International Symposium on Code Generation and Optimization
(CGO 2019). IEEE Press, Piscataway, NJ, USA, 122–135. http://dl.acm.org/citation.
cfm?id=3314872.3314889

[17] Dan Li and Evangelos Kanoulas. 2018. Bayesian Optimization for Optimizing
Retrieval Systems. In Proceedings of the Eleventh ACM International Conference
on Web Search and Data Mining (WSDM ’18). ACM, New York, NY, USA, 360–368.
https://doi.org/10.1145/3159652.3159665

[18] Lihong Li, Wei Chu, John Langford, and Xuanhui Wang. 2011. Unbiased offline
evaluation of contextual-bandit-based news article recommendation algorithms.
In Proceedings of the fourth ACM international conference on Web search and data
mining. ACM, 297–306.

[19] Lisha Li, Kevin Jamieson, Giulia DeSalvo, Afshin Rostamizadeh, and Ameet
Talwalkar. 2016. Hyperband: A novel bandit-based approach to hyperparameter
optimization. arXiv preprint arXiv:1603.06560 (2016).

[20] Min Li, Liangzhao Zeng, Shicong Meng, Jian Tan, Li Zhang, Ali R. Butt, and
Nicholas Fuller. 2014. MRONLINE: MapReduce Online Performance Tuning. In
Proceedings of the 23rd International Symposium on High-performance Parallel
and Distributed Computing (HPDC ’14). ACM, New York, NY, USA, 165–176.
https://doi.org/10.1145/2600212.2600229

[21] Tie-Yan Liu et al. 2009. Learning to rank for information retrieval. Foundations
and Trends® in Information Retrieval 3, 3 (2009), 225–331.

[22] Donald Metzler and W Bruce Croft. 2007. Linear feature-based models for
information retrieval. Information Retrieval 10, 3 (2007), 257–274.

[23] Kevin P Murphy. 2012. Machine learning: a probabilistic perspective. MIT press.
[24] Ron Patton. 2005. Software Testing (2Nd Edition). Sams, Indianapolis, IN, USA.
[25] Judea Pearl and Thomas Verma. 1987. The Logic of Representing Dependencies

by Directed Graphs. In Proceedings of the Sixth National Conference on Artificial
Intelligence - Volume 1 (AAAI’87). AAAI Press, 374–379. http://dl.acm.org/citation.
cfm?id=1863696.1863763

[26] Stephen Robertson, Hugo Zaragoza, et al. 2009. The probabilistic relevance
framework: BM25 and beyond. Foundations and Trends® in Information Retrieval
3, 4 (2009), 333–389.

[27] Michael Taylor, Hugo Zaragoza, Nick Craswell, Stephen Robertson, and Chris
Burges. 2006. Optimisation methods for ranking functions with multiple param-
eters. In Proceedings of the 15th ACM international conference on Information and
knowledge management. ACM, 585–593.

[28] Hamed Zamani, Michael Bendersky, Xuanhui Wang, and Mingyang Zhang. 2017.
Situational context for ranking in personal search. In Proceedings of the 26th
International Conference on World Wide Web. International World Wide Web
Conferences Steering Committee, 1531–1540.

Technical Presentation WSDM ’20, February 3–7, 2020, Houston, TX, USA

105

http://dl.acm.org/citation.cfm?id=3060621.3060699
http://dl.acm.org/citation.cfm?id=3060621.3060699
https://doi.org/10.1145/3127479.3127492
https://doi.org/10.1145/3127479.3127492
https://doi.org/10.1145/3097983.3098043
https://doi.org/10.1145/3308558.3313706
https://doi.org/10.1145/3308558.3313706
https://doi.org/10.1145/956863.956867
http://dl.acm.org/citation.cfm?id=3314872.3314889
http://dl.acm.org/citation.cfm?id=3314872.3314889
https://doi.org/10.1145/3159652.3159665
https://doi.org/10.1145/2600212.2600229
http://dl.acm.org/citation.cfm?id=1863696.1863763
http://dl.acm.org/citation.cfm?id=1863696.1863763

	Abstract
	1 Introduction
	2 Related Work
	3 Problem Formulation
	3.1 White-box Formulation
	3.2 Black-box and Grey-box Formulation

	4 Methodology
	4.1 Generalizing White-box Tuning
	4.2 Inferring Hidden Subscores
	4.3 Optimizing parameters in a grey-box setting

	5 Evaluation
	5.1 Metrics
	5.2 Experiment Results

	6 Conclusion and Future Work
	Acknowledgments
	References

