
SparseEmbed: Learning Sparse Lexical Representations with
Contextual Embeddings for Retrieval

Weize Kong
weize@google.com
Google Research

Jeffrey M. Dudek
jdudek@google.com
Google Research

Cheng Li
chgli@google.com
Google Research

Mingyang Zhang
mingyang@google.com

Google Research

Michael Bendersky
bemike@google.com
Google Research

ABSTRACT
In dense retrieval, prior work has largely improved retrieval effec-
tiveness using multi-vector dense representations, exemplified by
ColBERT. In sparse retrieval, more recent work, such as SPLADE,
demonstrated that one can also learn sparse lexical representations
to achieve comparable effectiveness while enjoying better inter-
pretability. In this work, we combine the strengths of both the
sparse and dense representations for first-stage retrieval. Specifi-
cally, we propose SparseEmbed – a novel retrieval model that learns
sparse lexical representations with contextual embeddings. Com-
pared with SPLADE, our model leverages the contextual embed-
dings to improve model expressiveness. Compared with ColBERT,
our sparse representations are trained end-to-end to optimize both
efficiency and effectiveness.

CCS CONCEPTS
• Information systems → Document representation; Query
representation; Retrieval models and ranking.

KEYWORDS
Sparse Retrieval; Dense Retrieval; Contextual Embeddings
ACM Reference Format:
Weize Kong, Jeffrey M. Dudek, Cheng Li, Mingyang Zhang, and Michael
Bendersky. 2023. SparseEmbed: Learning Sparse Lexical Representations
with Contextual Embeddings for Retrieval. In Proceedings of the 46th Inter-
national ACM SIGIR Conference on Research and Development in Information
Retrieval (SIGIR ’23), July 23–27, 2023, Taipei, Taiwan. ACM, New York, NY,
USA, 5 pages. https://doi.org/10.1145/3539618.3592065

1 INTRODUCTION
Retrieval, in contrast to ranking, concerns retrieving a relatively
small set of documents from a large corpus. Dense retrieval [25]
represents queries and documents using dense vectors (also called
embeddings) and retrieval is usually accomplished via approximate
nearest neighbor search (ANNS) [1]. Sparse retrieval [2, 6, 26] in-
stead uses sparse representations, mostly based on lexical features
(e.g., BM25), and can be served via inverted index.

This work is licensed under a Creative Commons Attribution
International 4.0 License.

SIGIR ’23, July 23–27, 2023, Taipei, Taiwan
© 2023 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9408-6/23/07.
https://doi.org/10.1145/3539618.3592065

Figure 1: SparseEmbed architecture overview.

There are exciting advancements from neural information re-
trieval for both dense and sparse retrieval. For dense retrieval, prior
work [14, 17] found that single-vector representations could be
inadequate to capture all the key information and proposed to use
multi-vector representations to improve model expressiveness, as
exemplified by ColBERT [13]. However, ColBERT is also expensive
to be deployed for large scale retrieval systems due to its large ANNS
index size and quadratic-time scoring method (Section 4). For sparse
retrieval, SPLADE [5–7] and other recent work [2] demonstrated
that one can also learn sparse lexical representations to achieve
comparable performance while offer enhanced interpretability and
easier deployment.

In this work, we aim to combine the strengths of sparse and
dense representations for retrieval, and propose SparseEmbed –
a novel retrieval model that learns sparse lexical representations
with contextual embeddings for retrieval. As illustrated in Figure 1,
SparseEmbed first encodes a given query (or document) into a
sparse vector over the lexical vocabulary feature space, following
SPLADE. For example, query “big apple stands for” could be en-
coded as {“big”, “apple”, “nyc”, ...} with weights for each word. Note
that the encoder could generate expansion terms (e.g., “nyc”) which
do not appear in the original input.

To improve model expressiveness, we borrow the idea from
ColBERT to use contextual embeddings. Specifically, SparseEmbed
further generates a contextual embedding for each term activated
in the sparse vector. The contextual embeddings are pooled from
underlying transformer sequence encodings to capture contextual
information for each term. For example, embeddings for “apple”
can then capture semantic difference when the word appears in the
context of “big apple” versus “apple stock”.

https://doi.org/10.1145/3539618.3592065
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3539618.3592065

SIGIR ’23, July 23–27, 2023, Taipei, Taiwan Weize Kong, Jeffrey M. Dudek, Cheng Li, Mingyang Zhang, & Michael Bendersky

SparseEmbed offers several strengths, inherited from SPLADE,
ColBERT. First, SparseEmbed improves model expressiveness with
contextual embeddings, compared against SPLADEwhich is limited
to lexical matching. Second, SparseEmbed provides efficiency and
cost advantages compared with ColBERT. We apply sparsity loss
(Section 2.4) on the sparse vector to control the number of contex-
tual embeddings. This enables optimizing index and querying cost
during training. In addition, SparseEmbed is more efficient than Col-
BERT in scoring contextual embeddings (Section 2.3), since it only
needs to compare contextual embeddings for matching query and
document terms (linear complexity) instead of all query-document
term pairs in ColBERT’s late interaction (quadratic complexity).
Third, SparseEmbed can be served using inverted index via attach-
ing the contextual embeddings in the posting lists (Section 2.5), as
with COIL [9]. Different from COIL, SparseEmbed can encode input
text with expansion terms addressing the classic lexical mismatch
problem COIL faces.

Our contributions can be summarized as follows:
• We propose SparseEmbed, a sparse-dense hybrid model that
learns sparse lexical representations with dense contextual
embedding for first stage retrieval.

• We design a lightweight contextual embedding layer (Sec-
tion 2.2) and use a top-k layer (Section 2.1) for SparseEmbed.
These enable combining sparse retrieval as in SPLADE and
dense retrieval as in ColBERT effectively and practically.

• We conduct experiments on public datasets which test the
effectiveness of SparseEmbed and demonstrate its capability
of effectiveness-efficiency trade-off.

2 MODEL
As illustrated in Figure 1, SparseEmbed first encodes a query 𝑄 =

(𝑞1, 𝑞2, ..., 𝑞 |𝑄 |) into a sparse vector𝑤 ∈ R |𝑉 | over a vocabulary 𝑉 .
𝑤 can be viewed as a term weight vector with only a few terms ac-
tivated, i.e., having non-zero weights. Second, the model computes
a contextual embedding for each activated term. Lastly, we apply
scoring on top of the sparse-dense hybrid representations from
the query and document side. Note that we encode the document
𝐷 = (𝑑1, 𝑑2, ..., 𝑑 |𝐷 |) in the same way as the query. We describe
each parts in detail below, using the query side as an example.

2.1 Sparse Vector
We follow SPLADE [5, 6] to compute the sparse vector𝑤 ∈ R |𝑉 | ,
as illustrated in Figure 2. We first feed the query 𝑄 into a BERT
encoder, producing the sequence encodings 𝑆 ∈ R |𝑄 |×𝐻 , where
𝐻 is the hidden size. Then we use BERT’s MLM head to compute
the MLM logits,𝑀 ∈ R |𝑄 |× |𝑉 | . Lastly, we transform the logits and
apply max-pooling to compute the sparse vector𝑤 as follows,

𝑤𝑖 = max
𝑗=1.. |𝑄 |

log
(
1 + ReLU(𝑚 𝑗,𝑖)

)
, (1)

where 𝑤𝑖 is the i-th value in 𝑤 and 𝑚 𝑗,𝑖 is the logits in 𝑀 . See
SPLADE [5] for more details.

Different from SPLADE, to facilitate the computation of contex-
tual embeddings in the next step, we apply a top-k layer which
select k dimensions with the highest weights in𝑤 , and zero-mask
the other dimensions. This process helps bound the number of
contextual embeddings we need to process.

Figure 2: Sparse vector computation.

2.2 Contextual Embedding
We compute a context embedding for each term activated in the
sparse vector, i.e., terms with𝑤𝑖 > 0. Different from ColBERT [3],
we can’t directly use the sequence encodings from the BERT en-
coder as contextual embeddings. This is because some activated
terms may not appear in the input, as a result there are no corre-
sponding sequence encodings for them.

To address this, we use an attention layer to pool from the se-
quence encodings for each activated term, e.g., term #2 and #6 as
illustrated in Figure 3. Our attention layer is lightweight. Since the

Figure 3: Contextual embedding computation.

MLM logits already measure the association between tokens in the
input sequence and terms in the vocabulary, we can directly use
the logits to compute the attention scores over the input sequence.
Specifically, we compute the contextual embedding for the 𝑖-th term
in the vocabulary, 𝑒𝑖 ∈ R𝐻 , as,

𝑒𝑖 = softmax(𝑚𝑇
𝑖)𝑆, (2)

where 𝑚𝑖 ∈ R |𝑄 | is the 𝑖-th column in MLM logits 𝑀 and 𝑆 ∈
R |𝑄 |×𝐻 is the sequence encodings. With this attention layer we
can represent all the terms including expansion terms.

Lastly, we project the resulting embedding from hidden size 𝐻
to a smaller size using a linear layer and apply ReLU activation to
ensure values are all non-negatives, i.e., ReLU(linear_layer(𝑒𝑖)).
The dimension reduction helps reduce querying and index space

SparseEmbed: Learning Sparse Lexical Representations with Contextual Embeddings for Retrieval SIGIR ’23, July 23–27, 2023, Taipei, Taiwan

cost (see Section 2.5). The non-negative values in embeddings en-
sure dot-products computed upon are also non-negative. This en-
ables querying time optimization when aggregating scores, e.g.,
early stop on candidate documents with low accumulated scores.
In the end, we have a set of contextual embeddings {𝑒𝑖 |𝑖 ∈ 𝐼 } for
the activated terms in the vocabulary, where 𝐼 are the indices (to
the vocabulary) for the activated terms, 𝐼 = {𝑖 |𝑤𝑖 > 0}.

2.3 Scoring
After encoding a query and a document, we compute their relevance
score using dot-products between query and document contextual
embeddings of matching terms, or more formally,

𝑠 (𝑄, 𝐷) =
∑

(𝑖, 𝑗) ∈𝐼𝑄×𝐼𝐷 ,𝑖=𝑗
(𝑒𝑄
𝑖
)𝑇 𝑒𝐷𝑗 , (3)

where superscript 𝑄 and 𝐷 indicate query and document variables,
e.g., 𝑒𝑄

𝑖
is a contextual embedding from the query side. 𝐼𝑄 and 𝐼𝐷

are the indices to the vocabulary for the activated terms. 𝑖 = 𝑗

means 𝑒𝑄
𝑖
and 𝑒𝐷

𝑗
are for the same term. This scoring uses linear

time complexity, O
(
min(∥𝑤𝑄 ∥0, ∥𝑤𝐷 ∥0)

)
; while late interaction

scoring in ColBERT [3] uses quadratic time, O(|𝑄 | |𝐷 |).

2.4 Losses
We train SparseEmbed with two types of losses – sparsity loss and
ranking loss. Sparsity loss is important as it not only encourages
sparsity in the sparse vector𝑤 , but also in turn controls the number
of contextual embeddings. Using sparsity loss, we can reduce both
scoring cost (or the pairs of contextual embeddings we need to com-
pare) and index space cost (or the number of document contextual
embeddings to store).

We follow SPLADE [6] to use FLOPS loss [19]. It is a smooth
relaxation of the average number of floating-point operations neces-
sary to score a document based on its sparse vector, or equivalently
the average number of contextual embedding pairs we need to
compute dot-product for SparseEmbed scoring (See Section 2.3). L1
regularization loss is also applicable, but was found to produce less
balanced sparse vectors than FLOPS loss [19].

Ranking loss aims to improve ranking. In our experiment, we use
a distillation dataset for training. Each example is a triplet, contain-
ing a query𝑄 , a positive document𝐷+ and a negative document𝐷−,
with distillation scores from a teacher model. We use MarginMSE
loss [10] on two heads – the score based on the contextual em-
beddings 𝑒𝑖 in Equation 3 and the score based on sparse vectors
defined as 𝑠 (𝑄, 𝐷) = (𝑤𝑄)𝑇𝑤𝐷 . We denote them as L𝑒

MarginMSE
and L𝑤

MarginMSE respectively. L
𝑤
MarginMSE helps the model to learn

to select terms for generating contextual embeddings.
Finally, we combine sparsity and ranking losses together,

L = L𝑒
MarginMSE + 𝜆𝑤L𝑤

MarginMSE + 𝜆𝑄L𝑄

FLOPS + 𝜆𝐷L𝐷
FLOPS, (4)

where weight 𝜆𝑄 , 𝜆𝐷 can be used to control model sparsity for
efficiency-effectiveness trade-off, and weight 𝜆𝑤 is fixed to 0.1 in
our experiment.

2.5 Inverted Index
Similar to COIL [9], SparseEmbed can be served with inverted index.
We index documents based on their activated terms in the same way
as other lexical IR systems, except that their associated contextual
embeddings are also attached to the posting lists. At querying time,
for each activated term of the query, we retrieve documents from
its posting list together with the document contextual embeddings.
Instead of scoring based on term frequency and inverse document
frequency, the relevance score is computed based the contextual
embeddings as defined in Equation 3.

3 EXPERIMENTS
3.1 Experimental Setup
Data. We follow SPLADE [7] to use theMSMARCOpassage dataset1
for in-domain retrieval experiments and the BEIR [22] benchmark
datasets for zero-shot experiments. The MS MARCO dataset con-
tains 8.8M passages, 500k training queries and 6980 dev queries. We
train models on the public msmarco-hard-negatives distillation
dataset2. It contains 50 hard negatives mined from BM25 and 12
dense retrievers for each training queries with distillation scores
from a cross-attention teacher model. From this dataset, we sample
25.6M triplets (𝑄, 𝐷+, 𝐷−) for training.

Implementation. Following SPLADE++ [7], we implement SparseEm-
bed using bert-base-uncased BERT encoder initialized from the
CoCondenser [8] pretrained checkpoint. Queries and documents
share the same BERT encoder, but use distinct MLM heads and
contextual embedding projection layers (Section 2.2). 𝑘 in the top-k
layer (Section 2.1) is set to 64, 256 for queries and documents respec-
tively. We train models with the MSEMargin loss and the FLOPS
loss (Section 2.4). We quadratically increase the FLOPS loss weights
(Equation 4) at each training step until 50k steps, from which it
remains constant, as in SPLADE[6]. We train for 150k steps with
batch size 128. We re-implement SPLADE++ [7], an improved hard-
negative distillation version of the original model [5, 6], using the
same settings as SparseEmbed. For other baselines, including Col-
BERTv2 [21], we cite metrics from prior work for comparison.

Metrics & Evaluation. We evaluate models on MS MARCO dev
queries for in-domain evaluation and on BEIR datasets for zero-shot
evaluation. In addition to ranking metrics, we report an efficiency
measure called TERMS, which estimates the average number of
matched terms in a random query and a random document based
on their sparse vectors:

TERMS =
∑
𝑄∈Q

1
|Q | ∥𝑤

𝑄 ∥0 ·
∑
𝐷∈D

1
|D | ∥𝑤

𝐷 ∥0, (5)

whereQ is the test query set andD is the document corpus,𝑤 is the
sparse vectors. TERMS is closely related to the FLOPS measure [6]
that estimates the average number of floating-point operations
for scoring one document. For SPLADE model, the prior work [6]
estimated its FLOPS exactly the same as TERMS. For SparseEmbed,
we can estimate FLOPS = TERMS×𝐻 ′, where 𝐻 ′ is the contextual
embedding size after projection and accounts for the floating-point
operations involved in an embedding dot-product (Section 2.3).
1https://github.com/microsoft/MSMARCO-Passage-Ranking
2https://huggingface.co/datasets/sentence-transformers/msmarco-hard-negatives

https://huggingface.co/datasets/sentence-transformers/msmarco-hard-negatives

SIGIR ’23, July 23–27, 2023, Taipei, Taiwan Weize Kong, Jeffrey M. Dudek, Cheng Li, Mingyang Zhang, & Michael Bendersky

3.2 Results
In-domain Evaluation. We report the in-domain evaluation results
on MS MARCO in Table 1. TERMS and FLOPS are described in Sec-
tion 3.1. 𝜆𝑞 , 𝜆𝑑 are FLOPS loss weights (Equation 4). SPLADE𝑜++ is
our SPLADE++ re-implementation. Superscript 𝑆 and𝐿 for SparseEm-
bed denote different FLOPS loss weights used. Subscript 16, 32, 64
denote the projection dimension for contextual embeddings (Sec-
tion 2.2). Upper section numbers are copied from the cited papers.

Model MRR@10 R@1k TERMS FLOPS 𝜆𝑄 , 𝜆𝐷

BM25 [7] 18.4 85.4 - - -
COIL-full [9] 35.5 96.4 - - -
ColBERT [13] 36.8 96.9 - - -
ColBERTv2 [21] 39.7 98.3 - - -
SPLADE [6] 32.2 95.5 - -
SPLADE++ [7] 38.0 98.2 - - -
SPLADE𝑜++ 37.8 98.2 1.22 1.22 4𝑒−1, 5𝑒−1
SparseEmbed𝑆32 38.4 98.2 0.57 0.57×32 4𝑒−2, 5𝑒−2
SparseEmbed𝐿16 38.8 98.1 0.74 0.74×16 4𝑒−3, 5𝑒−3
SparseEmbed𝐿32 39.0 98.2 4.46 4.46×32 4𝑒−3, 5𝑒−3
SparseEmbed𝐿64 39.2 98.1 1.63 1.63×64 4𝑒−3, 5𝑒−3

Table 1: Evaluation results forMSMARCOpassage retrieval.

First, all runs of SparseEmbed outperform SPLADE models on
MRR@10, demonstrating the effectiveness of SparseEmbed. For ex-
ample, SparseEmbed𝑆16 improves SPLADE𝑜++ by +2.6% onMRR@10,
while using less TERMS (0.74 v.s. 1.22). This indicates the perfor-
mance gain is not due to SparseEmbed using more activated terms
but due to its contextual embeddings. In fact, we find SparseEm-
bed is always more effective at a similar TERMS measure, when
comparing metrics reported in Figure 1 of the SPLADE++ paper [7].
That said, SPLADE++ is still more efficient according to FLOPS.

Second, comparing SparseEmbed𝑆32 and SparseEmbed𝐿32, we show
that one can adjust the FLOPS loss weights (Section 2.4) to make
trade-off between efficiency and effectiveness. Comparing different
SparseEmbed𝐿∗ runs, we find larger contextual embedding projec-
tion size is more effective. Third, ColBERTv2 is still more effective
than SparseEmbed. However, ColBERT is also more expensive to
serve due to its quadratic time-complexity scoring (Section 2.3).

Zero-shot Evaluation. We report zero-shot evaluation results on the
same 13 BEIR datasets as the prior work [5, 7] in Table 2.

First, SparseEmbed demonstrates strong out-of-domain gener-
alizability. It achieves the best average NDCG@10, slightly better
than SPLADE++. Second, while ColBERTv2 perform strongly in
the in-domain setting (Table 1), both SparseEmbed and SPLADE++
perform better in the zero-shot setting than ColBERT on average
NDCG@10. This indicates sparse retrieval models may have some
inductive bias for out-of-domain generalizability.

4 RELATEDWORK
Our work is related to both dense retrieval and sparse retrieval. For
dense retrieval, prior work [14, 17] found single-vector dense repre-
sentations could be inadequate. ColBERT [13] proposed to usemulti-
vector representations by directly using contextual embeddings

Dataset BM25 ColBERTv2[21] SPLADE++[7] SparseEmbed𝐿64

ArguAna 31.5 46.3 52.5 51.2
Climate-FEVER 21.3 17.6 23.0 21.8
DBPedia 31.3 44.6 43.6 45.7
FEVER 75.3 78.5 79.3 79.6
FiQA-2018 23.6 35.6 34.8 33.5
HotpotQA 60.3 66.7 68.7 69.7
NFCorpus 32.5 33.8 34.8 34.1
NQ 32.9 56.2 53.7 54.4
Quora 78.9 85.2 83.4 84.9
SCIDOCS 15.8 15.4 15.9 16.0
SciFact 66.5 69.3 70.2 70.6
TREC-COVID 65.6 73.8 72.7 72.4
Touché-2020 36.7 26.3 24.5 27.3
Average 44.0 49.9 50.5 50.9

Table 2: NDCG@10 on BEIR datasets in zero-shot setting.
Baseline metric values are copied from the cited papers.

from a BERT encoder. This significantly improves model expressive-
ness, but is also expensive to scale. Follow-up work [12, 15, 21, 23]
has explored pruning or compressionmethods to improve efficiency.
We also use contextual embeddings, but we rely on the underly-
ing sparse lexical representation learning to optimize contextual
embedding selection for both efficiency and effectiveness. This is
achieved by sparsity loss and ranking loss (Section 2.4). Our model
is also more efficient in scoring, as it avoids the quadratic contextual
embedding interaction in ColBERT (Section 2.3). Another orthogo-
nal research direction, started from dense retrieval, is hard negative
mining [20, 24] and distillation [10, 11, 16, 20].

Sparse retrieval such as BM25 has been studied for decades.
More recent work [2, 4, 6, 18, 26] started learning sparse lexical
representation using neural networks. In this category, SPLADE [5–
7] have shown that one could learn a sparse lexical encoder to
achieve comparable performance as other dense retrieval models,
and offers enhanced interpretability. We build SparseEmbed on
top of SPLADE and add contextual embeddings to improve model
expressiveness.

To the best of our knowledge, there is limited work in sparse-
dense hybrid representations for retrieval. COIL [9] uses the term-
level contextual embeddings to perform lexical match. However,
COIL does not learn the sparse representation as SparseEmbed (Sec-
tion 2.1), it simply encodes the text input based on term occurrence,
which can lead to lexical mismatch issues.

5 CONCLUSIONS
We present SparseEmbed, a retrieval model that learns sparse
lexical representations with contextual embeddings. The model
combines the strengths of sparse retrieval like SPLADE and multi-
vector dense retrieval like ColBERT. With contextual embeddings,
SparseEmbed improves model expressiveness over SPLADE. With
the sparse representations and sparsity loss, SparseEmbed pro-
vides efficiency advantages over ColBERT in both querying and
index space cost. This sparse-dense hybrid representations can
also be served via inverted index. Our experiments demonstrate
both in-domain and out-of-domain effectiveness, as well as the
effectiveness-efficiency trade-off SparseEmbed offers.

SparseEmbed: Learning Sparse Lexical Representations with Contextual Embeddings for Retrieval SIGIR ’23, July 23–27, 2023, Taipei, Taiwan

REFERENCES
[1] Alexandr Andoni, Piotr Indyk, and Ilya Razenshteyn. Approximate nearest

neighbor search in high dimensions. In Proceedings of the International Congress
of Mathematicians: Rio de Janeiro 2018, pages 3287–3318. World Scientific, 2018.

[2] Yang Bai, Xiaoguang Li, Gang Wang, Chaoliang Zhang, Lifeng Shang, Jun Xu,
Zhaowei Wang, Fangshan Wang, and Qun Liu. Sparterm: Learning term-based
sparse representation for fast text retrieval. arXiv preprint arXiv:2010.00768, 2020.

[3] Ronan Collobert and Jason Weston. A unified architecture for natural language
processing: Deep neural networks with multitask learning. In Proc. of ICML,
pages 160–167, 2008.

[4] Zhuyun Dai and Jamie Callan. Context-aware term weighting for first stage
passage retrieval. In Proceedings of the 43rd International ACM SIGIR conference
on research and development in Information Retrieval, pages 1533–1536, 2020.

[5] Thibault Formal, Carlos Lassance, Benjamin Piwowarski, and Stéphane Clinchant.
Splade v2: Sparse lexical and expansion model for information retrieval. arXiv
preprint arXiv:2109.10086, 2021.

[6] Thibault Formal, Benjamin Piwowarski, and Stéphane Clinchant. Splade: Sparse
lexical and expansion model for first stage ranking. In Proceedings of the 44th
International ACM SIGIR Conference on Research and Development in Information
Retrieval, pages 2288–2292, 2021.

[7] Thibault Formal, Carlos Lassance, Benjamin Piwowarski, and Stéphane Clinchant.
From distillation to hard negative sampling: Making sparse neural ir models
more effective. In Proceedings of the 45th International ACM SIGIR Conference on
Research and Development in Information Retrieval, pages 2353–2359, 2022.

[8] Luyu Gao and Jamie Callan. Unsupervised corpus aware language model pre-
training for dense passage retrieval. In Proceedings of the 60th Annual Meeting
of the Association for Computational Linguistics (Volume 1: Long Papers), pages
2843–2853, 2022.

[9] Luyu Gao, Zhuyun Dai, and Jamie Callan. Coil: Revisit exact lexical match in
information retrieval with contextualized inverted list. In Proceedings of the 2021
Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, pages 3030–3042, 2021.

[10] Sebastian Hofstätter, Sophia Althammer, Michael Schröder, Mete Sertkan, and
AllanHanbury. Improving efficient neural rankingmodels with cross-architecture
knowledge distillation. arXiv preprint arXiv:2010.02666, 2020.

[11] Sebastian Hofstätter, Sheng-Chieh Lin, Jheng-Hong Yang, Jimmy Lin, and Allan
Hanbury. Efficiently teaching an effective dense retriever with balanced topic
aware sampling. In Proceedings of the 44th International ACM SIGIR Conference
on Research and Development in Information Retrieval, pages 113–122, 2021.

[12] Sebastian Hofstätter, Omar Khattab, Sophia Althammer, Mete Sertkan, and Allan
Hanbury. Introducing neural bag of whole-words with colberter: Contextualized
late interactions using enhanced reduction. In Proceedings of the 31st ACM Inter-
national Conference on Information and Knowledge Management, page 737–747,
2022.

[13] Omar Khattab and Matei Zaharia. Colbert: Efficient and effective passage search
via contextualized late interaction over bert. In Proc. of SIGIR, pages 39–48, 2020.

[14] Weize Kong, Swaraj Khadanga, Cheng Li, Shaleen Kumar Gupta, Mingyang
Zhang, Wensong Xu, and Michael Bendersky. Multi-aspect dense retrieval. In
Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and
Data Mining, pages 3178–3186, 2022.

[15] Carlos Lassance, Maroua Maachou, Joohee Park, and Stéphane Clinchant. A
study on token pruning for colbert. arXiv preprint arXiv:2112.06540, 2021.

[16] Sheng-Chieh Lin, Jheng-Hong Yang, and Jimmy Lin. In-batch negatives for
knowledge distillation with tightly-coupled teachers for dense retrieval. In
Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-
2021), pages 163–173, 2021.

[17] Yi Luan, Jacob Eisenstein, Kristina Toutanova, and Michael Collins. Sparse, dense,
and attentional representations for text retrieval. arXiv preprint arXiv:2005.00181,
2020.

[18] Antonio Mallia, Omar Khattab, Torsten Suel, and Nicola Tonellotto. Learning
passage impacts for inverted indexes. In Proceedings of the 44th International
ACM SIGIR Conference on Research and Development in Information Retrieval,
pages 1723–1727, 2021.

[19] Biswajit Paria, Chih-Kuan Yeh, Ian EH Yen, Ning Xu, Pradeep Ravikumar, and
Barnabás Póczos. Minimizing flops to learn efficient sparse representations. In
International Conference on Learning Representations, 2019.

[20] Yingqi Qu, Yuchen Ding, Jing Liu, Kai Liu, Ruiyang Ren, Wayne Xin Zhao, Dax-
iang Dong, Hua Wu, and Haifeng Wang. Rocketqa: An optimized training
approach to dense passage retrieval for open-domain question answering. arXiv
preprint arXiv:2010.08191, 2020.

[21] Keshav Santhanam, Omar Khattab, Jon Saad-Falcon, Christopher Potts, and
Matei Zaharia. Colbertv2: Effective and efficient retrieval via lightweight late
interaction. arXiv preprint arXiv:2112.01488, 2021.

[22] Nandan Thakur, Nils Reimers, Andreas Rücklé, Abhishek Srivastava, and Iryna
Gurevych. BEIR: A heterogeneous benchmark for zero-shot evaluation of in-
formation retrieval models. In Thirty-fifth Conference on Neural Information
Processing Systems Datasets and Benchmarks Track (Round 2), 2021.

[23] Nicola Tonellotto and Craig Macdonald. Query embedding pruning for dense
retrieval. In Proceedings of the 30th ACM International Conference on Information
& Knowledge Management, pages 3453–3457, 2021.

[24] Lee Xiong, Chenyan Xiong, Ye Li, Kwok-Fung Tang, Jialin Liu, Paul Bennett,
Junaid Ahmed, and Arnold Overwijk. Approximate nearest neighbor negative
contrastive learning for dense text retrieval. arXiv preprint arXiv:2007.00808,
2020.

[25] Andrew Yates, Rodrigo Nogueira, and Jimmy Lin. Pretrained transformers for
text ranking: Bert and beyond. In Proceedings of the 14th ACM International
Conference on web search and data mining, pages 1154–1156, 2021.

[26] Hamed Zamani, Mostafa Dehghani, W Bruce Croft, Erik Learned-Miller, and
Jaap Kamps. From neural re-ranking to neural ranking: Learning a sparse rep-
resentation for inverted indexing. In Proceedings of the 27th ACM international
conference on information and knowledge management, pages 497–506, 2018.

	Abstract
	1 Introduction
	2 Model
	2.1 Sparse Vector
	2.2 Contextual Embedding
	2.3 Scoring
	2.4 Losses
	2.5 Inverted Index

	3 Experiments
	3.1 Experimental Setup
	3.2 Results

	4 Related Work
	5 Conclusions
	References

