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Abstract

The streaming model of computation is a popular approach for working with large-scale data.
In this setting, there is a stream of items and the goal is to compute the desired quantities
(usually data statistics) while making a single pass through the stream and using as little space
as possible.

Motivated by the importance of data privacy, we develop differentially private streaming
algorithms under the continual release setting, where the union of outputs of the algorithm
at every timestamp must be differentially private. Specifically, we study the fundamental ℓp
(p ∈ [0,+∞)) frequency moment estimation problem under this setting, and give an ε-DP
algorithm that achieves (1+ η)-relative approximation (∀η ∈ (0, 1)) with poly log(Tn) additive
error and uses poly log(Tn) ·max(1, n1−2/p) space, where T is the length of the stream and n
is the size of the universe of elements. Our space is near optimal up to poly-logarithmic factors
even in the non-private setting.

To obtain our results, we first reduce several primitives under the differentially private
continual release model, such as counting distinct elements, heavy hitters and counting low
frequency elements, to the simpler, counting/summing problems in the same setting. Based
on these primitives, we develop a differentially private continual release level set estimation
approach to address the ℓp frequency moment estimation problem.

We also provide a simple extension of our results to the harder sliding window model, where
the statistics must be maintained over the past W data items.

1 Introduction

Data privacy is a central concern in the deployment of real-world computational systems. In the vast
literature on privacy in computation Hsu et al. [2021], the notion of differential privacy (DP) Dwork
[2008], Dwork et al. [2014] has remained the de facto standard for more than a decade. The classical
formulation of differential privacy assumes that the data is static Dwork [2008], and that the data
curator is interested obtaining answers to a predetermined number of queries on the dataset.

1

http://arxiv.org/abs/2301.05605v1


Real world applications, however, often require the analysis of user datasets that are organi-
cally and rapidly growing. This is illustrated by the popular streaming model of computation Sr.
[1978], Alon et al. [1996], where data arrives over time, and at each update, a new solution is out-
put by the algorithm. In such streaming applications, the continual release model of differential
privacy Dwork et al. [2010a], Hubert Chan et al. [2010] promises a rigours guarantee of privacy: an
observer of all the outputs of the algorithm is information-theoretically bounded in the ability to
learn about the existence of an individual data point in the stream.

In this paper, we focus on two fundamental challenges in the field of private streaming algorithms:
the insertion only, or streaming, model and the sliding window model. In the former model, a data
curator receives a stream of data a1, a2, . . . and at each time t releases a statistical query depending
on all data received up to that point. In the latter, the computation depends only on the last W
items observed by the data curator.

The sliding window model may be generally more practically relevant compared to the streaming
model as it allows to account for information freshness and in some cases it can be a legal or privacy
requirement as well. For instance, in some situations, data privacy laws such as the General Data
Protection Regulation (GDPR)1 do not allow unlimited retention of user data.

Our main contribution is to provide private algorithms for a series of foundational streaming
problems under both the streaming and sliding window model.

Motivating example: Privacy Sandbox. We present a concrete practical application of our
results. As part of the Privacy Sandbox initiative, Chrome has developed a series of APIs to reduce
cross site tracking while supporting the digital advertising ecosystem. A key part of one of the
proposals is a k-Anonymity Server.2 The server ensures that each ad creative that is reported to
advertisers has won its respective auction at least k times over a particular time window. Abstract-
ing the specifics, this problem requires computing the number of distinct elements over a sliding
window. Moreover, to further strengthen privacy protections, the computation itself should be
made differentially private, which is precisely the setting we consider in this work.

The previous example elucidates a concrete motivation for the study of sliding window algo-
rithms for counting distinct element problems with differential privacy in the continual release
setting. The rest of the paper proceeds by formalizing this model and our results in this space.

In particular, we study a more general class of statistics of the input data than the problem
of counting distinct elements: the ℓp frequency moments problem. The ℓp frequency moment is
the sum of the p-th power of the frequencies of the elements. The number of distinct elements
is a special case for p = 0. The ℓp frequency moment problem is one of the most fundamental
problems in the streaming literature. The first non-trivial algorithm for p = 1 is Morris [1978].
Later Flajolet and Martin [1985] is the first to study the case for p = 0. Alon et al. [1996] initiates
the study for p = 2 and other p ∈ [0,∞). After the developments over several decades, the spaces
of the current best ℓp frequency moment estimation algorithms are near optimal for all p ∈ [0,∞),
i.e. they almost match the proven space lower bounds (see e.g., Ganguly [2011], Kane et al. [2011,
2010], Flajolet et al. [2007], Li and Woodruff [2013]).

However the landscape of DP streaming ℓp frequency moment is mysterious even in the non-
continual release setting. Most existing work only studied for p = 0, 1, 2 (see more discussion in
Section 1.4). The work of Wang et al. [2022] considered general p ∈ (0, 1]. A recent independent
work Blocki et al. [2022] studied all p ∈ [0,∞). But none of Blocki et al. [2022], Wang et al. [2022]

1https://gdpr-info.eu/art-17-gdpr/
2https://github.com/WICG/turtledove/blob/main/FLEDGE_k_anonymity_server.md
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considered continual release setting. In the DP continual release setting, Bolot et al. [2013] studied
the count of distinct elements but not in the low space streaming setting. In the DP streaming
continual release setting, existing work Dwork [2008], Hubert Chan et al. [2010] only studied the
case for p = 1. No previous algorithm for p 6= 1 is known in the DP low space streaming continual
release setting.

For ℓp frequency moment in the sliding window model, there are known techniques Datar et al.
[2002], Braverman and Ostrovsky [2007] which can convert the streaming algorithm into sliding
window algorithm using some additional small space. We show how to extend these techniques to
convert our DP streaming continual release streaming algorithms to DP sliding window continual
release algorithms.

1.1 Computational Model

In this paper, we consider a streaming setting with T timestamps. At each timestamp t ∈ [T ], we
get an input at ∈ U ∪ {⊥}, where U represents the universe of all possible input elements, and ⊥
represents empty. We sometimes also consider an input stream of integers, i.e., at each timestamp
t ∈ [T ], we get an input at ∈ Z. The goal is to compute some function g(·) based on the inputs.
Instead of only computing g at the end of the stream, we consider the continual release model
throughout the paper:

• Continual Release Model: At every timestamp t ∈ [T ], we want to output g(·) based on
the data a1, a2, · · · , at.

We consider two different streaming models depending on the range of inputs that g is based
on.

• (Insertion-only) Streaming Model: In this model, g depends on all past inputs, i.e. at
timestamp t ∈ [T ], we want to compute g(a1, ..., at). Unless otherwise specified, we use
streaming model to refer to insertion-only streaming model throughout the paper.

• Sliding Window Model: In this model, we have a parameter W ∈ Z≥1 for window
size. g depends on the last W inputs, i.e. at timestamp t ∈ [T ], we want to compute
g(amax(t−W+1,1), ..., at).

In this paper, we are particularly interested in algorithms that use space sub-linear in T . For
a (sub-)stream S, we use ‖S‖pp to denote the ℓp frequency moment of S. In particular, for p = 0,
‖S‖0 denotes the number of distinct elements. For p = 1, ‖S‖1 denotes the number of non-empty
elements. We refer readers to preliminaries section (Section 2) for detailed notation and definitions.

1.2 Our Results and Comparison to Prior Work

In this section, we give a brief overview of our results and comparison with prior work. We use
n to denote the size of the universe U . We use (α, γ)-approximation to specify the approximation
guarantee with multiplicative factor α and additive error γ. In all of our results, we use ε ≥ 0 for
the DP parameter, and use η ∈ (0, 0.5) in the relative error.
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1.2.1 Differentially Private Streaming Continual Release Algorithms

We developed a series of DP algorithms for solving frequency moments estimation and its related
problems in the streaming continual release model.

ℓp Frequency moment estimation (p ∈ [0,∞)). Our main result is a general ℓp frequency
moment estimation algorithm which works for all p ∈ [0,∞).

Theorem 1.1 (ℓp Frequency moment, informal version of Theorem 5.31). There is an ε-DP al-
gorithm in the streaming continual release model such that with probability at least 0.9, it always

outputs an

(

1 + η,
(

log(Tn)
ηε

)O(max(1,p))
)

-approximation to ‖S‖pp for every timestamp t, where S de-

notes the stream up to timestamp t. The algorithm uses space max(1, n1−2/p) ·
(

log(Tn)
ηε

)O(max(1,p))

.

To the best of our knowledge, we are the first to study the general ℓp frequency moment estima-
tion problem in the differentially private streaming continual release setting. Dwork et al. [2010a]
and Hubert Chan et al. [2010] studies the summing problem in the same setting, where the sum-
ming problem can be seen as a special case for p = 1. Wang et al. [2022] studies the streaming
ℓp frequency moment estimation for p ∈ (0, 1] based on the p-stable distribution, and a concurrent
independent work Blocki et al. [2022] studies the case for p ∈ (0, 1], but it is not clear how to
generalize their techniques to the continual release model, i.e., their approach only provides the
differential privacy guarantee of the output at the end of the stream. In addition, the approach of
Wang et al. [2022] does not achieve ε-DP for an arbitrarily small ε > 0, and they also mention that
their technique might not be easily extended to the case for p > 1.

Our space usage is near optimal up to poly-logarithmic factors even when comparing with the
non-private streaming ℓp frequency moment estimation algorithms: for p ≤ 2, the space needed
for both our algorithm and previous non-private algorithm (see e.g., Kane et al. [2010]) is poly-
logarithmic, for p > 2, the space needed for both our algorithm and previous non-private algo-
rithm Indyk and Woodruff [2005] is Õ(n1−2/p)3. Note that Ω(n1−2/p) space is a proven lower
bound for p > 2 even in the non-private case Saks and Sun [2002], Bar-Yossef et al. [2004].

Summing (ℓ1 frequency moment estimation). The easiest problem that is related to the ℓp
frequency moment estimation problem would be the summing problem: the goal is to compute the
summation of the input numbers. Note that ℓ1 frequency moment estimation is a special case of
the summing of a binary stream, i.e., we regard ⊥ as 0 and all other elements as 1.

Theorem 1.2 (Summing of a non-negative stream, informal version of Theorem 3.3). There is
an ε-DP algorithm for summing problem in the streaming continual release model. If the input
numbers are guaranteed to be non-negative, with probability at least 0.9, the output is always a
(1 + η,Oε,η(logT ))-approximation to the sum of all input numbers at any timestamp t ∈ [T ]. The
algorithm uses space O(1).

The summing problem was studied by Dwork et al. [2010a], Hubert Chan et al. [2010] in the
differentially private streaming continual release model. Their approximation has O(log2.5 T ) addi-
tive error. In our work, we show that if we allow (1+ η) relative error and work on the stream with
non-negative numbers only, we can reduce the additive error to O(log T ). This is useful when we

3We use Õ(g) to denote g · poly(log(g))
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cannot avoid the relative error for some problem (such as the number of distinct elements) in the
streaming model but we still need summing as a subroutine.

Counting distinct elements (ℓ0 frequency moment estimation). Counting distinct elements
if one of the fundamental problems in the streaming literature. The goal is to estimate the number
of distinct elements that appeared in the stream. We provide a DP streaming continual release
algorithm for counting distinct elements.

Theorem 1.3 (Number of distinct elements, informal version of Corollary 4.11). There is an ε-DP
algorithm for the number of distinct elements in the streaming continual release model. With proba-
bility at least 0.9, the output is always a

(

1 + η,Oε,η

(

log2(T )
)

)
)

-approximation for every timestamp

t ∈ [T ]. The algorithm uses poly
(

log(T )
ηmin(ε,1)

)

space.

In the non-private streaming setting, counting distinct element can be solved via sketching
algorithms of Flajolet and Martin [1985] and its variants e.g., Flajolet et al. [2007]. Some recent
work Choi et al. [2020], Smith et al. [2020] extends these sketching techniques for counting distinct
element in a DP streaming setting. However, it is not clear how to extend these techniques to the
continual release setting. Continual release of counts of distinct elements is studied by Bolot et al.
[2013]. However, Bolot et al. [2013] is not in the low space streaming setting.

Estimation of frequencies and ℓ2 frequency moments. The goal of ℓ2 frequency moment
estimation is to estimate the sum of square of frequencies of elements. We present a DP streaming
continual release CountSketch Charikar et al. [2002] algorithm and use it for estimating ℓ2 frequency
moments and the frequency of each element.

Theorem 1.4 (Frequency and ℓ2 frequency moments, informal version of Theorem 5.4). There is
an ε-DP algorithm in the streaming continual release model such that with probability at least 0.9,
it always outputs for every timestamp t ∈ [T ]:

1. f̂a for every a ∈ U such that |fa− f̂a| ≤ η‖S‖2+Õε,η

(

log3.5(Tn)
)

, where S denotes the stream
up to timestamp t and fa denotes the frequency of a in S,

2. F̂2 such that |F̂2 − ‖S‖22| ≤ η‖S‖22 + Õε,η

(

log7(Tn)
)

The algorithm uses O
(

log(Tn)
η2 · log(T )

)

space.

Although DP ℓ2 frequency moment was studied by a line of work (see e.g., Blocki et al. [2012],
Sheffet [2017], Bu et al. [2021]), none of them considers the streaming continual release setting, and
it is not clear how to extend previous techniques to the the continual release setting.

ℓp Heavy hitters. In the ℓp heavy hitters problem, we are given a parameter k, and the goal
is to find elements whose frequency to the p-th power is at least 1/k fraction of the ℓp frequency
moment. By extending our DP streaming continual release CountSketch algorithm, we obtain a
DP streaming continual release ℓp heavy hitters algorithm.

Theorem 1.5 (ℓp Heavy hitters for all p ∈ [0,∞), informal version of Theorem 5.10). There is an
ε-DP algorithm in the streaming continual release model such that with probability at least 0.9, it
always outputs a set H ⊆ U and a function f̂ : H → R for every timestamp t ∈ [T ] satisfying

1. ∀a ∈ H, f̂(a) ∈ (1± η) · fa where fa is the frequency of a in the stream S up to timestamp t,
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2. ∀a ∈ U , if fa ≥ 1
εη · poly

(

log
(

T ·k·n
η

))

and fp
a ≥ ‖S‖pp/k then a ∈ H,

3. The size of H is at most O (log(Tn) · 2p · k).

The algorithm uses max(1, n1−2/p) · k3

η2 · poly (log (T · k · n)) space.

To the best of our knowledge, though DP streaming continual release ℓ1 heavy hitters problem is
studied by Chan et al. [2012], ℓp (for p 6= 1) heavy hitters problem has not been studied in the DP
streaming continual release setting before. Note that Ω(n1−2/p) for p > 2 is a lower bound of space
needed for ℓp heavy hitters even in the non-private setting Saks and Sun [2002], Bar-Yossef et al.
[2004].

1.2.2 Differentially Private Sliding Window Continual Release Algorithms

Smooth histogram Braverman and Ostrovsky [2007] is a general algorithmic framework which can
convert a relative-approximate streaming algorithm into a relative-approximate sliding window
algorithm if the objective function that we want to compute has some nice properties.

We generalize the smooth histogram to make it support converting an approximate streaming
algorithm with both relative error and additive error into an approximate sliding window algorithm
with both relative error and additive error if the objective function has good properties. In addition,
we show that if the streaming algorithm is DP in the continual release setting, then the converted
sliding window algorithm is also DP in the continual release setting.

By applying our generalized smooth histogram approach and paying a poly
(

log T
η

)

more factor

than our DP streaming continual release algorithms in both additive error and space usage, we
show DP sliding window continual release algorithms for

1. ℓp Moment estimation (see Corollary 6.10),

2. Summing (see Corollary 6.7),

3. Counting distinct elements (see Corollary 6.8),

4. ℓ2 Moment estimation (see Corollary 6.9).

1.3 Our Techniques
In this section, we briefly discuss the high level ideas of our algorithms. We present a set of
techniques to reduce almost all problems that we considered in the DP streaming continual release
setting to the summing problem in the DP streaming continual release setting.
Summing with better additive error via grouping. To illustrate the intuition of using
grouping for differentially private streaming continual release algorithms, we start with the following
simple problem: given a stream of numbers c1, c2, · · · , cT where each ci is at least 10 · ln(10 · T )/ε,
the goal is to output a (1 ± 0.1)-approximation to

∑t
j=1 cj for every prefix t with probability at

least 0.9, and we want the set of all outputs to be ε-DP, i.e., the continual released results to
be ε-DP. A simple way to solve the above problem is that we release a stream of noisy numbers
ĉ1, ĉ2, · · · , ĉT where ∀t ∈ [T ], ĉt = ct + Lap(1/ε), and we report

∑t
j=1 ĉj for every prefix t ∈ [T ]. It

is easy to see that (ĉ1, ĉ2, · · · , ĉT ) is ε-DP. Since the reported approximate prefix sums only depend
on (ĉ1, ĉ2, · · · , ĉT ), the continual released results are ε-DP. Furthermore, with probability at least
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0.9, ∀t ∈ [T ], |ct − ĉt| ≤ ln(10 · T )/ε. Since ct is at least 10 ln(10 ·N)/ε, we have 0.9ct ≤ ĉt ≤ 1.1ct
which implies that every reported approximate prefix sum is a (1 ± 0.1)-approximation.

To generalize the above idea, we propose a grouping approach in to group the consecutive
numbers in the stream in a differentially private way such that the total count of each group is large
enough. To implement grouping, we need to apply the sparse vector technique (see e.g., Dwork et al.
[2014]) iteratively. The similar idea also appeared in Dwork et al. [2015] which shows a better
additive error guarantee for the summing problem than Dwork et al. [2010a] when the stream is
sparse. In contrast, our additive error guarantee is always better than Dwork et al. [2010a] and
Dwork et al. [2015] while we allow an additional (1 + ε) relative approximation.
Counting distinct elements. We explain how to reduce counting distinct elements problem
to the summing problem. Suppose the element universe is small, we are able to track the set of
elements that already appeared during the stream. Then, we can create a binary stream of {0, 1}
where 1 denotes that we see a new element and 0 denotes that the input element already appeared
or it is empty. Therefore, the sum of the binary stream at timestamp t is exactly the number of
distinct elements. Furthermore, if we change an element in the input stream from a to b, there are
only constant number of positions of the binary stream will flip: consider the change a →⊥→ b.
If a is not its first appearance in the input stream, changing a to ⊥ does not cause any change in
the binary stream. If a is its first appearance in the input stream, changing a to ⊥ will make the
corresponding 1 in the binary stream be 0 and make the 0 corresponding to the original second
appearance of a in the input stream to be 1. Thus, it will affect at most 2 entries of the binary
stream. Similarly, changing ⊥ to b will cause the change of at most 2 entries of the binary stream.
Thus, the binary stream has low sensitivity which implies that a DP streaming continual release
summing algorithm gives a good approximation to the number of distinct elements with a small
additive error. Next, we discuss how to handle the large universe. For large universe, we can try
different sampling rate 1/2, 1/4, 1/8 · · · , 1/T . There should be a sampling rate such that (1) if we
hash the sampled elements into hashing buckets, there is no collision with a good probability, (2)
the number of samples is much larger than the additive error caused by the summing subroutine
so we can have a good relative approximation of the number of distinct sampled elements. Then
we can use the number of distinct sampled elements to estimate the number of distinct elements in
the input stream.
CountSketch and ℓp heavy hitters. Let h : U → [k] be a hash function which uniformly hash
elements into k hash buckets. Let g : U → {−1, 1} randomly map each element to −1 or 1 with
equal probability. The CountSketch is a tuple of k numbers (z1, z2, · · · , zk) where zi is the sum of
weighted frequencies of elements hashed to the bucket i, and the weight of the frequency of element
a is g(a). Changing a to b in the input stream will change at most 2 buckets: the bucket i contains
a and the bucket j contains b. Since |g(a)| ≤ 1, zi and zj will be changed by at most 1. We can
use DP streaming continual release summing algorithm of Dwork et al. [2010a], Hubert Chan et al.
[2010] to estimate (z1, z2, · · · , zk) such that each estimation ẑi of zi only has poly(logT ) additive
error, and (ẑ1, ẑ2, · · · , ẑk) is DP under the streaming continual release model. Suppose the ℓ2
frequency moment is much larger than poly(logT ), then the additive error becomes the relative
error, and we can use ẑ1, ẑ2, · · · , ẑk to obtain a good relative approximation of the ℓ2 frequency
moment. Similarly, if an element has frequency much larger than poly(log(T )), then poly(log(T ))
becomes small relative error of the frequency and we are able to check whether it is an ℓ2 heavy
hitter by the standard analysis of CountSketch. Thus, we can use this DP streaming continual
release CountSketch to estimate ℓ2 frequency moment with (1 + η)-relative error and poly(log T )-
additive error, and we can use such CountSketch to find all elements which are at least poly(logT )
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and are ℓ2 heavy hitters.
Note that for p ≤ 2, if a has the largest frequency and it is an (1/k)-ℓp heavy hitter, then a

must be an (1/k)-ℓ2 heavy hitter. For p > 2, if a is an 1/k-ℓp heavy hitter, than a must be an
1/(kn1−2/p)-ℓ2 heavy hitter. Therefore, by some hashing technique, we can use ℓ2 heavy hitters
algorithm to construct ℓp heavy hitters algorithm. But since ℓ2 heavy hitters can only report the
elements with frequency larger than poly(logT ), the obtained ℓp heavy hitters algorithm can only
report the elements with frequency larger than poly(log T ) as well.
ℓp Frequency moment estimation. In high level we want to simulate the level set estimation
idea of Indyk and Woodruff [2005] in the DP streaming continual release setting. In particular, let
α = 1 + η, let fa denote the frequency of a and let Gi = {a | fa ∈ (αi, αi+1]}. Then

∑

i |Gi| · (αi)p

is a good approximation to the ℓp frequency moment. We say Gi is contributing, if |Gi| · (αi)p is
at least Ωα(1/ log(T )) fraction of the ℓp moment. Since non-contributing elements only contributes
a small total amount to the ℓp frequency moment, it is easy to see that

∑

contributing Gi
|Gi| · (αi)p

is still a good approximation to the ℓp frequency moment. Thus, we only need to estimate the
size of each contributing Gi. Due to the definition of contributing, it is easy to see that if Gi is
contributing, either αi is large or |Gi| is large. In fact, as observed by Indyk and Woodruff [2005],
for each contributing level set Gi, there must be a proper sampling probability such that after
sampling, there are at least poly(logT ) elements from Gi sampled and all of the sampled elements
from Gi are at least 1/poly(logT )-ℓp heavy hitters among the set of all sampled elements from
the universe U . Ideally, we can try different sampling rate 1, 1/2, 1/4, 1/8, · · · , 1/T and use our ℓp
heavy hitters algorithm to report the heavy hitters and estimate |Gi| for each i. However, for i with
αi ≪ poly(log T ), our DP streaming continual release ℓp heavy hitters algorithm does not report
any element from Gi. We must find another way to estimate |Gi| instead of using heavy hitters.

Similar to counting distinct elements, let us start with the case that the universe size is small so
we can track the sets A1, A2, · · · , Ak for some k = poly(logT ), where Ai is the set of all elements
whose frequency is exactly i. We can construct streams S1,S2, · · · ,Sk with numbers in {−1, 0, 1}.
During the stream, when we see an input element a, and if a is in the set Ai, then we move a to
the set Ai+1 due to the increase of the frequency of a. At the same time, we append −1 to the
stream Si, append 1 to the stream Si+1 and append 0 to Sj for j 6= i, i+1. It is easy to check that
the sum of Sl is always the same as |Al|, i.e., the number of elements which have frequency exactly
l. Furthermore, similar to the analysis for counting distinct elements, if we change an element
in the input stream, each Sl might be affected by at most 4 entries. Thus, the total sensitivity
of (S1,S2, · · · ,Sk) is at most O(k). Therefore, we can use the DP continual release summing to
estimate the sum of each Sl with additive error poly(logT ). Thus, we can estimate |Gi| for each i
with αi ≪ poly(log T ) with additive error poly(logT ) and will only introduce at most poly(logT )
additive error in approximating the ℓp frequency moment.

Now let us go back to the case that the size of the universe is large. In this case, we can use
the similar hashing and subsampling technique discussed for counting distinct elements to estimate
|Al| for each l ∈ [k].

1.4 Related Work

Dwork et al. [2010a] and Hubert Chan et al. [2010] initiated the study of differential privacy in
the continual release model, and proposed the binary tree mechanism for computing summations.
Bolot et al. [2013] and Perrier et al. [2019] generalized their results to decayed summations, counting
distinct elements without space constraints and summations with real-valued data. Song et al.
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[2018], Fichtenberger et al. [2021] studied graph problems under the differentially private continual
release model. Jain et al. [2012], Smith and Thakurta [2013], Agarwal and Singh [2017] studied
differentially private online learning. Jain et al. [2021] gave the first polynomial separation in
terms of error between the continual release model and the batch model under differential privacy.
Upadhyay [2019] studied heavy hitters in the differentially private sliding window model.

Differentially private frequency moment estimation for p = 0, 1, 2 (without continual releases)
has been well-studied Mir et al. [2011], Dwork et al. [2010b], Blocki et al. [2012], Sheffet [2017],
Choi et al. [2020], Smith et al. [2020], Bu et al. [2021]. Wang et al. [2022] studied frequency moment
estimation (without continual releases) for p ∈ (0, 1] with low space complexity. Recent concurrent
independent work Blocki et al. [2022] studies p ∈ [0,∞) with low space complexity but not in
continual release setting as well. The differentially private ℓ1 heavy hitters problem is studied
by Mir et al. [2011], Dwork et al. [2010b] in the low space streaming setting but not in the continual
release setting. Chan et al. [2012] studied differentially private ℓ1 heavy hitters problem in the low
space continual release streaming setting. But it is not clear how to extend their techniques to lp
case for p 6= 1.

ℓp Frequency moment estimation and ℓp heavy hitters are heavily studied in the non-private
streaming literature. For ℓp frequency moment estimation, the problem can be solved by e.g. Flajolet and Martin
[1985], Flajolet et al. [2007], Durand and Flajolet [2003] for p = 0, Alon et al. [1996], Charikar et al.
[2002], Thorup and Zhang [2004] for p = 2, Kane et al. [2010], Indyk [2006], Li [2008], Kane et al.
[2011] for p ∈ (0, 2) and Indyk and Woodruff [2005], Andoni et al. [2011], Andoni [2017] for p > 2.
For ℓp heavy hitters, the problem can be solved by e.g., Cormode and Muthukrishnan [2005],
Misra and Gries [1982] for p = 1, Charikar et al. [2002] for p = 2, Jowhari et al. [2011] for
p ∈ (0, 2), and Indyk and Woodruff [2005], Andoni et al. [2011] for p > 2.

2 Preliminaries

2.1 Notation

In this paper, for n ≥ 1, we use [n] to denote the set {1, 2, · · · , n}. If there is no ambiguity, for
i ≤ j ∈ Z, we sometimes use [i, j] to denote the set of integers {i, i + 1, · · · , j} instead of the
set of real numbers {a ∈ R | i ≤ a ≤ j}. We use fa(a1, a2, · · · , ak) to denote the frequency of
a in the sequence (a1, a2, · · · , ak), i.e., fa(a1, a2, · · · , ak) = |{i ∈ [k] | ai = a}|. If the sequence
(a1, a2, · · · , ak) is clear in the context, we use fa to denote the frequency of a for short. We use 1E

to denote a indicator, i.e., 1E = 1 if condition E holds and 1E = 0 if condition E does not hold.
For α ≥ 1, γ ≥ 0, if 1

α · x − γ ≤ y ≤ α · x + γ, then y is an (α, γ)-approximation to x. If y is
a (1, γ)-approximation to x, we say y is an approximation to x with additive error γ. If y is an
(α, 0)-approximation to x, we say y is an α-approximation to x. We use a ± b to denote the real
number interval [a−|b|, a+|b|]. For a set S of real numbers, we use S±b to denote the set

⋃

a∈S a±b,
and use S · c to denote the set

⋃

a∈S a · c. We use Lap(b) to denote the Laplace distribution with
scale b, i.e., Lap(b) has density function given by 1

2b exp(|x|/b)

2.2 Functions to Compute

We study several fundamental functions in the streaming literature. When the inputs are integers,
we consider the summing problem over a (sub-)stream (ai, · · · , aj):

• Sum of numbers: Sum(ai, · · · , aj) :=
∑j

k=i ak
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When the inputs are from U ∪ {⊥}, we consider the functions g(ai, · · · , aj) that are based on
the frequencies of the elements in a (sub-)stream (ai, · · · , aj).

• Count of non-empty elements: ‖(ai, ..., aj)‖1 :=
∑

a∈U fa(ai, ..., aj).

• The number of distinct elements: ‖(ai, ..., aj)‖0 :=
∑

a∈U 1fa(ai,...,aj)>0.

• ℓp-Frequency moment: ‖(ai, ..., aj)‖pp :=
∑

a∈U fa(ai, ..., aj)
p.

• ℓp-Heavy hitters: (1/k)-ℓp-HH(ai, ..., aj) := {a ∈ U | fa(ai, · · · , aj)p ≥ ‖(ai, · · · , aj)‖pp/k}.
Note that ‖(ai, ..., aj)‖1 is a special case of Sum(ai, · · · , aj) with binary inputs.

2.3 Differential Privacy

Neighboring streams: Consider two streams S = (a1, a2, · · · , aT ) and S ′ = (a′1, a
′
2, · · · , a′T ). If

there is at most one timestamp t ∈ [T ] such that (1). |at − a′t| ≤ 1 (only required when the inputs
are treated as integers) (2). ∀i 6= t, ai = a′i, then we say S and S ′ are neighboring streams.

Definition 2.1 (Differential Privacy). We say algorithm A is ε-DP, if for any two neighboring
streams S,S ′, and any output set O,

Pr[A(S) ∈ O] ≤ eε · Pr[A(S ′) ∈ O].

Note that in the continual release model, the output A(S) mentioned in Definition 2.1 is the
entire output history of the algorithm A over stream S at every timestamp.

Definition 2.2 (Distance between streams). Consider two streams S and S ′. If d is the minimum
number such that there exists a sequence of streams S0,S1, · · · ,Sd where S0 = S,Sd = S ′ and
∀i ∈ [d], Si and Si−1 are neighboring streams, then the distance between S and S ′ is dist(S,S ′) = d.

Definition 2.3 (Sensitivity of a stream mapping). Let F be a mapping which maps a given input
stream S to a tuple of streams (F1(S),F2(S), · · · ,Fk(S)). The sensitivity of F is the minimum
value s such that for any two neighboring streams S and S ′, ∑i∈[k] dist(Fi(S),Fi(S

′)) ≤ s.

Theorem 2.4 (Composition Dwork et al. [2014]). Let F be a mapping which maps a given input
stream S to a tuple of streams (F1(S),F2(S), · · · ,Fk(S)). Let A1, A2, · · · , Ak be k ε-DP algo-
rithms. Let A be an algorithm such that A(S) = M(A1(F1(S)), A2(F2(S)), · · · , Ak(Fk(S))) for
some function M(·). Then the algorithm A is (sε)-DP.

Example usage of Theorem 2.4: Some example usage of Theorem 2.4 in our paper are presented
as the following:

• Composition of multiple algorithms over the input stream: Suppose each of A1, A2, · · · , Ak

is ε-DP, then for any function M(·), M(A1(S), A2(S), · · · , Ak(S)) is (kε)-DP.

• Composition of algorithms on disjoint sub-streams: For an input stream S = (a1, a2, · · · , aT ),
we partition S into S1 = (a1,1, a1,2, · · · , a1,T ),S2 = (a2,1, a2,2, · · · , a2,T ), · · · ,Sk = (ak,1, ak,2, · · · , ak,T ),
i.e., ∀t ∈ [T ], there is only one i ∈ [k] such that ai,t = at, and ∀i′ 6= i, ai,t =⊥ (or 0). It
is clear that such partitioning has sensitivity 1. Thus, if each of A1, A2, · · · , Ak is an ε-DP
algorithms, then for any function M(·), M(A1(S1), A2(S2), · · · , Ak(Sk)) is ε-DP.
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2.4 Streaming Continual Release Summing and Counting

For summing problem in the streaming continual release model, the binary tree mechanism was
proposed in Dwork et al. [2010a], Hubert Chan et al. [2010]. It gets poly-logarithmic additive error
and uses logarithmic space. Furthermore, it can handle negative numbers in the stream.

Theorem 2.5 (Dwork et al. [2010a], Hubert Chan et al. [2010]). Let ε ≥ 0, ξ ∈ (0, 0.5), there is an
ε-DP algorithm for summing in the streaming continual release model. With probability 1 − ξ, the

additive error of the output for every timestamp t ∈ [T ] is always at most O
(

1
ε log

2.5(T ) log
(

1
ξ

))

.

The algorithm uses O(log(T )) space.

2.5 Probability Tools

Lemma 2.6 (Bellare and Rompel [1994]). Let λ ≥ 4 be an even integer. Let X be the sum of n
λ-wise independent random variables which take values in [0, 1]. Let µ = E[X ] and A > 0. Then
we have

Pr [|X − µ| > A] ≤ 8 ·
(

λµ+ λ2

A2

)λ/2

Lemma 2.7 (Median trick to boost success probability). Suppose X is a random estimator of value
v such that with probability at least 2/3, X is an (α, γ)-approximation to v. Then, for ξ ∈ (0, 0.5),
if we draw k = ⌈50 log(1/ξ)⌉ independent copies X1, X2, · · · , Xk of X, with probability at least 1−ξ,
the median of X1, X2, · · · , Xk is an (α, γ)-approximation to v.

Proof. We say Xi is good if Xi is an (α, γ)-approximation to v. If the median is not good, then
∑

i∈[k] 1Xi is good < k
2 . By Chernoff bound, Pr[median is not good] ≤ Pr[

∑

i∈[k] 1Xi is good < k
2 ] ≤

Pr[E[
∑

i∈[k] 1Xi is good]− k
2 > k

6 ] ≤ e−k/48 ≤ ξ.

3 Continual Released Summing with Better Additive Error

In this section, we show that if we allow a relative approximation and the input stream only contains
non-negative numbers, then we can have a continual released summing algorithm with additive error
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better than Theorem 2.5.
Algorithm 1: Grouping Stream of Counts.

Input: A stream of non-negative numbers c1, c2, · · · , cT DP parameter ε > 0,
approximation parameter η ∈ (0, 0.5), and failure probability ξ ∈ (0, 1).

Output: A stream of groups with grouped noisy counts (ĉ1, ĉ2, · · · , ĉT )
Let ε0 ← ε/2.
Initialize a group index i← 1, current group G1 ← ∅, and threshold

τ1 ←
(

1
η + 1

)

· 7
ε0
· ln (3 · T/γ) + Lap(2/ε0). //Gi is used for analysis only.

for t = 1 to T do
Gi ← Gi ∪ {t}.
Let νt ← Lap(4/ε0).
if νt +

∑

j∈Gi
cj ≥ τi then

ĉt ← Lap(1/ε0) +
∑

j∈Gi
cj .

i← i+ 1.
τi ←

(

1
η + 1

)

· 7
ε0
· ln (3 · T/γ) + Lap(2/ε0).

Gi ← ∅.
else

ĉt ← 0.
end

end

Lemma 3.1. The output stream ĉ1, ĉ2, · · · , ĉT of Algorithm 1 is ε-DP.

The proof idea is to iteratively apply sparse vector technique. We put the proof into Ap-
pendix A.1.

Lemma 3.2. Let ĉ1, ĉ2, · · · , ĉT be the output stream of Algorithm 1. Then with probability at least
1− ξ, ∀l, r satisfying 1 ≤ l ≤ r ≤ T ,

(1− η)

r
∑

j=l

cj −
(

1

η
+ 4

)

· 7
ε0
· ln (3 · T/ξ) ≤

r
∑

j=l

ĉj ≤ (1 + η)

r
∑

j=l

cj +

(

1

η
+ 4

)

· 7
ε0
· ln (3 · T/ξ) .

We put the proof of Lemma 3.2 into Appendix A.2

Theorem 3.3 (Summing of a non-negative stream). Let ε ≥ 0, ξ ∈ (0, 0.5), there is an ε-DP
algorithm for summing in the streaming continual release model. If the input numbers are guaranteed

to be non-negative, with probability at least 1 − ξ, the output is always a
(

1 + η,O
(

log(T/ξ)
εη

))

-

approximation to the summing problem at any timestamp t ∈ [T ]. The algorithm uses space O(1).

Proof. According to Lemma 3.1, the output stream of Algorithm 1 is ε-DP, thus, we only need
to solve non-private summing over (ĉ1, ĉ2, · · · , ĉT ). The approximation guarantee is given by
Lemma 3.2. Note that we do not need to store Gi, we only need to maintain the sum of num-
bers in Gi at any timestamp. Thus, the total space needed is O(1).

4 Continual Released Number of Distinct Elements

In this section, we show how to use ε-DP streaming continual release summing to solve ε-DP
streaming continual release number of distinct elements. In Section 4.1, we show how to estimate
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the number of distinct elements if the universe is small. In Section 4.2, we reduce the number
of distinct elements of a large universe to the number of distinct elements of a small universe via
subsampling.

4.1 Number of Distinct Elements for Small Universe

Algorithm 2: Number of Distinct Elements for Small Universe
Input: A stream S of elements a1, a2, · · · , aT ∈ U ∪ {⊥} with guarantee that |U| ≤ m.
Parameters :Relative approximation factor α ≥ 1 and additive approximation factor γ ≥ 0

depending on the streaming continual release summing algorithm.
//See Theorem 2.5.

Output: Estimation of the number of distinct elements at every timestamp t.
Initialize an empty stream C.
Let S ← ∅.
for each at in the stream S do

if at 6∈ S and at 6=⊥ then
S ← S ∪ {at}.
Append 1 to the end of the stream C.

end

else
Append 0 to the end of the stream C.

end

Output an (α, γ)-approximation to the total counts of C.
end

Lemma 4.1. At the end of any time t ∈ [T ], the output of Algorithm 2 is an (α, γ)-approximation
to the number of distinct elements.

Proof. Since we append 1 to the stream C if and only if we see a new non-empty element, the
total counts in C is always equal to the number of distinct elements at the end of any time t ∈ [T ].
Thus, an (α, γ)-approximation to the total counts of C is an (α, γ)-approximation to the number of
distinct elements.

Lemma 4.2. If the algorithm to continually release the approximate total counts of C in Algorithm 2
is ε-DP, Algorithm 2 is 5ε-DP in the continual release model.

Proof. Consider two neighboring stream S = (a1, a2, · · · , aT ) and S ′ = (a′1, a
′
2, · · · , a′T ) of elements

in U where they only differ at timestamp t, i.e., at 6= a′t. Let us consider the difference between the
generated count stream C = (c1, c2, · · · , cT ) and C′ = (c′1, c

′
2, · · · , c′T ).

Consider any timestamp i ∈ [T ], if ai 6= at and ai 6= a′t, it is easy to verify that ci = c′i. Suppose
i 6= t. If ai = at = u ∈ U but ai is at least the third appearance of u in S, then a′i = ai = u is at
least the second appearance of u in S ′ which implies that ci = c′i = 0. Similarly, if ai = a′t = u ∈ U
is at least third appearance of u in S, we can show ci = c′i = 0 as well. Thus the sensitivity of the
stream C is at most 5: only when i = t or ai is the first/second appearance of at, at′ , ci might be
different from c′i. Therefore, if we use an ε-DP algorithm to continually release the total counts of
C, the continually released output of Algorithm 2 is (5 · ε)-DP.
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Theorem 4.3. Let ε ≥ 0, ξ ∈ (0, 0.5), suppose there is an ε-DP streaming continual release sum-
ming algorithm (for stream of non-negative numbers) which uses space J and with probability at least
1−ξ always outputs an (α, γ)-approximation for every timestamp. There is a (5ε)-DP algorithm for
the number of distinct elements of streams with universe size at most m in the streaming continual
release model. With probability at least 1− ξ, the algorithm always outputs an (α, γ)-approximation
for every timestamp t ∈ [T ]. The algorithm uses O(m+ J) space.

Proof. Consider Algorithm 2. The approximation guarantee is proven by Lemma 4.1. The DP
guarantee is proven by Lemma 4.2. In the remaining of the proof, we only need to prove the space
usage. Since |U| ≤ m, the space needed to maintain set S is at most m. The space needed to
continually release an (α, γ)-approximation to the summing problem over C is at most J . Thus,
the total space needed is at most O(m+ J).

By combining the above theorem with Theorem 2.5, we obtain the following corollary.

Corollary 4.4 (Streaming continual release distinct elements for small universe). There is an
ε-DP algorithm for the number of distinct elements of streams with universe size at most m in
the streaming continual release model. With probability at least 1 − ξ, the additive error of the

output is always at most O
(

1
ε log

2.5(T ) log
(

1
ξ

))

for every timestamp t ∈ [T ]. The algorithm uses

O(m+ log(T )) space.

By combining Theorem 4.3 with Theorem 3.3, we obtain the following corollary:

Corollary 4.5 (Streaming continual release distinct elements for small universe, better additive
error). There is an ε-DP algorithm for the number of distinct elements of streams with universe size
at most m in the streaming continual release model. With probability at least 1−ξ, the additive error

of the output is always an
(

1 + η,O
(

log(T/ξ)
εη

))

-approximation to the number of distinct elements

for every timestamp t ∈ [T ]. The algorithm uses O(m) space.
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4.2 Number of Distinct Elements for General Universe

Algorithm 3: Number of Distinct Elements via Subsampling
Input: A stream S of elements a1, a2, · · · , aT ∈ U ∪ {⊥}, and a error parameter η ∈ (0, 0.5).
Parameters :Relative approximation factor α ≥ 1 and additive approximation factor γ ≥ 0

depending on the streaming continual release algorithm for number of distinct
elements of streams with small universe of elements. //See Theorem 4.3.

Output: Estimation of the number of distinct elements ‖S‖0.
L← ⌈logmin(|U|, T )⌉, λ← 2 log(1000L), m← 100L ·

(

16αmax
(

γ/η, 32αλ/η2
))2

.
Let h : U → [m] be a pairwise independent hash function.

//Here we treat [m] as a universe of elements with size m instead of a set of integers.
Let g : U → [L] ∪ {⊥} be a λ-wise independent hash function and
∀a ∈ U , i ∈ [L],Pr[g(a) = i] = 2−i,Pr[g(a) =⊥] = 2−L.

Initialize empty streams S1,S2, · · · ,SL.
for each at in the stream S do

for i ∈ [L] do

if at 6=⊥ and g(at) = i then
Append h(at) to the end of the stream Si.

end

else
Append ⊥ to the end of the stream Si.

end

end

∀i ∈ [L], compute ŝi which is an (α, γ)-approximation to ‖Si‖0.
Find the largest i ∈ [L] such that ŝi ≥ max

(

γ/η, 32αλ/η2
)

, and output ŝi · 2i.
If such i does not exist, output 0.

end

Lemma 4.6. Consider any timestamp t ∈ [T ]. Let v be the output of Algorithm 3. With probability
at least 0.9, v is a ((1+O(η))α,O(α2 max(γ/η, α log(L)/η2)))-approximation to ‖(a1, a2, · · · , at)‖0.

To prove Lemma 4.6, we need following intermediate statements. We consider a timestamp
t ∈ [T ]. Let S denote the input stream at timestamp t, i.e., S = (a1, a2, · · · , at). Let Gi = {aj |
g(aj) = i, j ≤ t} for i ∈ [L].

Claim 4.7. ∀i ∈ [L], if ‖S‖0 ≥ 2i · 4λ/η2,Pr[|Gi| ∈ (1 ± η) · ‖S‖0/2i] ≥ 1 − 0.01/L. Otherwise,
Pr[||Gi| − ‖S‖0/2i| ≤ 4λ/η] ≥ 1− 0.01/L.

Proof. Suppose ‖S‖0 ≥ 2i · 4λ/η2. Due to Lemma 2.6, we have:

Pr
[∣

∣|Gi| − ‖S‖0/2i
∣

∣ > η · ‖S‖0/2i
]

≤8 ·
(

λ · ‖S‖0/2i + λ2

(η · ‖S‖0/2i)2

)λ/2

≤0.01/L,

where the last inequality follows from that λ = 2 · log(1000L) and ‖S‖0 ≥ 2i · 4λ/η2.
Suppose ‖S‖0 ≤ 2i · 4λ/η2, By applying Lemma 2.6 again, we have:

Pr
[
∣

∣|Gi| − ‖S‖0/2i
∣

∣ > 4λ/η
]
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≤8 ·
(

λ · ‖S‖0/2i + λ2

(4λ/η)2

)λ/2

≤0.01/L,

where the last inequality follows from ‖S‖0/2i ≤ 4λ/η2 and λ = 2 · log(1000L).

Claim 4.8. For i ∈ [L], conditioning on |Gi| ≤ 16αmax
(

γ/η, 32αλ/η2
)

, the probability that
|Gi| = ‖Si‖0 is at least 1− 0.01/L.

Proof. Since h is pairwise independent, ∀a, b ∈ Gi,Pr[h(a) = h(b)] = 1/m. Since m = 100L ·
(

16αmax
(

γ/η, 32αλ/η2
))2

, Pr[∃a 6= b ∈ Gi, h(a) = h(b)] ≤ |Gi|2/m ≤ 0.01/L by a union bound.

Let E be the event that both of the following hold:

1. ∀i ∈ [L] with 2i · 4λ/η2 ≤ ‖S‖0, |Gi| ∈ (1± η) · ‖S‖0/2i.

2. ∀i ∈ [L] with 2i · 4λ/η2 > ‖S‖0, |Gi| ∈ ‖S‖0/2i ± 4λ/η.

According to Claim 4.7, E happens with probability at least 0.99. Let E ′ be the event that ∀i ∈ [L]
with |Gi| ≤ 16αmax(γ/η, 32αλ/η2), |Gi| = ‖Si‖0. According to Claim 4.8, E ′ happens with
probability at least 0.99.

Next, we are going to prove Lemma 4.6.

Proof of Lemma 4.6. In this proof, we condition on both events E and E ′. Note that the probability
that both E and E ′ happen is at least 0.98.

Consider the case that ‖S‖0 ≥ 8α · max
(

γ/η, 32αλ/η2
)

. Let i∗ ∈ [L] be the largest value
such that ‖S‖0/2i

∗ ≥ 4α · max(γ/η, 32αλ/η2). According to event E , we have |Gi∗ | ∈ (1 ±
η) · ‖S‖0/2i

∗

. Due to our choice of i∗, we have ‖S‖0/2i
∗ ≤ 8α · max

(

γ/η, 32αλ/η2
)

. Thus,
|Gi∗ | ≤ 16αmax

(

γ/η, 32αλ/η2
)

. According to event E ′, we have ‖Si∗‖0 = |Gi∗ |. Therefore,
we have ŝi∗ ≥ ‖Si∗‖0/α − γ ≥ |Gi∗ |/α − γ. Since |Gi∗ | ≥ 2α · max

(

γ/η, 32αλ/η2
)

, we have
ŝi∗ ≥ max

(

γ/η, 32αλ/η2
)

. Therefore, Algorithm 3 will output ŝi′ · 2i
′

for some i′ ≥ i∗. Due
to event E , we know |Gi′ | ≤ max(2 · ‖S‖0/2i

∗

, ‖S‖0/2i
∗

+ 4λ/η) ≤ 16αmax(γ/η, 32αλ/η2). Ac-
cording to event E ′, we have ‖Si′‖0 = |Gi′ |. Since the algorithm outputs ŝi′ · 2i

′

, we know that
ŝi′ ≥ max(γ/η, 32αλ/η2) which implies that

|Gi′ | = ‖Si′‖0
≥ (ŝi′ − γ)/α

≥ (1− η)ŝi′/α

≥ 16λ/η2.

According to event E , we have |Gi′ | ∈ (1± η) · ‖S‖0/2i
′

. Thus, we have

ŝi′ ≤ α‖Si′‖0 + γ

= α|Gi′ |+ γ

≤ α

1− η
· |Gi′ |
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≤ 1 + η

1− η
· α · ‖S‖0/2i

′

≤ (1 + 4η)α‖S‖0/2i
′

,

where the second inequality follows from ŝi′ ≥ γ/η and the last inequality follows from η ≤ 0.5.
Similarly, we have:

ŝi′ ≥ ‖Si′‖0/α− γ

= |Gi′ |/α− γ

≥ |Gi′ |/((1 + η)α)

≥ 1− η

1 + η
· 1
α
· ‖S‖0/2i

′

≥ (1 − 4η)/α · ‖S‖0/2i
′

,

where the second inequality follows from ŝi′ ≥ γ/η.
Next, consider the case that ‖S‖0 < 8α ·max(γ/η, 32αλ/η2). Algorithm 3 either outputs 0 or

outputs ŝi′ · 2i
′

for some i′ ∈ [L]. Suppose it outputs ŝi′ · 2i
′

. We have ŝi′ ≥ max
(

γ/η, 32αλ/η2
)

,
which implies that

|Gi′ | ≥ ‖Si′‖0 ≥ (ŝi′ − γ)/α ≥ (1− η)ŝi′/α ≥ 16λ/η2.

According to event E , we have |Gi′ | ≤ 2 · ‖S‖0/2i
′

. Therefore

ŝi′ · 2i
′ ≤ (α‖Si′‖0 + γ) · 2i′

≤ α

1− η
· ‖Si′‖0 · 2i

′

≤ α

1− η
· |Gi′ | · 2i

′

≤ 4α‖S‖0
≤ 32α2max(γ/η, 32αλ/η2).

Theorem 4.9. Let ε ≥ 0, ξ, ξ′ ∈ (0, 0.5), η ∈ (0, 0.5), suppose there is an ε-DP algorithm for
the number of distinct elements of streams with element universe size at most 100 log(min(|U|, T )) ·
(16αmax(γ/η, 32α·2 log(1000 log(min(|U|, T )))/η2))2 in the streaming continual release model which
uses space J and with probability at least 1 − ξ always outputs an (α, γ)-approximation for ev-
ery timestamp. There is an (ε′ = ⌈50 log(T/ξ′)⌉ε)-DP algorithm for the number of distinct ele-
ments of streams with element universe U in the streaming continual release model. With prob-
ability at least 1 − ξ′ − log(min(|U|, T )) · ⌈50 log(T/ξ′)⌉ · ξ, the algorithm always outputs an ((1 +
O(η))α,O(α2 max(γ/η, α log log(min(|U|, T ))/η2)))-approximation for every timestamp t ∈ [T ]. The
algorithm uses O(J · log(min(|U|, T )) · log(T/ξ′)) space.

Proof. According to our construction of S1,S2, · · · ,SL and the definition of the sensitivity (Defi-
nition 2.3), (S1,S2, · · · ,SL) has sensitivity 1. Since the algorithm to report ŝi for each i ∈ [L] is
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ε-DP, Algorithm 3 is ε-DP. According to Lemma 4.6, for any t ∈ [T ], condition on that ŝi is an (α, γ)-
approximation to ‖S‖0, with probability at least 0.9, the output is a ((1+O(η))α,O(α2 max(γ/η, α log log(min(|U|, T ))/η2)))-
approximation. To boost the probability to 1− ξ′ such that ∀t ∈ [T ] the approximation guarantee
always holds, we need to run ⌈50 log(T/ξ′)⌉ independent copies of Algorithm 3 and take the median
of the outputs at every timestamp. Thus, the overall algorithm is (⌈50 log(T/ξ′)⌉ · ε)-DP.

Next, consider the success probability that every ŝi is an (α, β)-approximation to ‖Si‖0. By
taking a union bound over all i and all independent copies of Algorithm 3, the success probability
is at least 1− log(min(|U|, T )) · ⌈50 log(T/ξ′)⌉ · ξ.

Finally, consider the space usage. Consider each running copy of Algorithm 3. Hashing function
h(·) takes O(1) space. Hashing function g(·) takes O(λ) = O(log log(min(|U|, T ))) space. To
continually release ŝi for all i, we need to use O(J · log(min(|U|, T ))) space. Thus, the total space
needed for all copies is at most O(J · log(min(|U|, T )) · log(T/ξ′)).

By plugging Corollary 4.4 into above theorem with ξ = ξ′/2
log(min(|U|,T ))·⌈50 log(2T/ξ′)⌉ , ε =

ε′

⌈50 log(2T/ξ′)⌉ ,

α = 1, γ = O(1ε log
2.5(T ) log(1/ξ)) and J = O(log(T ) + 100 log(min(|U|, T )) · (16αmax(γ/η, 32α ·

2 log(1000 log(min(|U|, T )))/η2))2), we get the following corollary.

Corollary 4.10 (Streaming continual release distinct elements). For η ∈ (0, 0.5), there is an
ε-DP algorithm for the number of distinct elements of streams with element universe U in the
streaming continual release model. With probability at least 1 − ξ, the output is always a (1 +

η,O
(

max
(

log(T/ξ) log2.5(T ) log(1/ξ) log log(T/ξ)
ηε , log log T

η2

))

)-approximation for every timestamp t ∈ [T ].

The algorithm uses poly
(

log(T/ξ)
ηmin(ε,1)

)

space.

By plugging Corollary 4.5 into Theorem 4.9 with ξ = ξ′/2
log(min(|U|,T ))·⌈50 log(2T/ξ′)⌉ , ε =

ε′

⌈50 log(2T/ξ′)⌉ ,

α = 1 + η, γ = O
(

log(T/ξ)
εη

)

and

J = O(100 log(min(|U|, T )) · (16αmax(γ/η, 32α · 2 log(1000 log(min(|U|, T )))/η2))2),

we get the following corollary.

Corollary 4.11 (Streaming continual release distinct elements, better dependence in log(T )). For
η ∈ (0, 0.5), there is an ε-DP algorithm for the number of distinct elements of streams with element
universe U in the streaming continual release model. With probability at least 1 − ξ, the output is

always a (1 + O(η), O
(

log2(T/ξ)
η2ε

)

)-approximation for every timestamp t ∈ [T ]. The algorithm uses

poly
(

log(T/ξ)
ηmin(ε,1)

)

space.

5 Continual Released ℓp Heavy Hitters and Frequency Mo-

ment Estimation

In this section, we present ε-DP streaming continual release algorithms for ℓp heavy hitters and fre-
quency moment estimation. In Section 5.1, we present an algorithm for ε-DP CountSketch Charikar et al.
[2002] in the streaming continual release model. The CountSketch is used for ℓ2 heavy hitters and
ℓ2 moment estimation. In Section 5.2, we show how to use ℓ2 heavy hitters to solve ℓp heavy hitters.
In Section 5.3, we show how to estimate the number of elements which have low frequencies. In
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Section 5.4, we show how to use ℓp heavy hitters and the estimator of low frequency elements to
estimate the ℓp frequency moment.

5.1 Continual Released CountSketch

Algorithm 4: Continual Released CountSketch
Input: A stream S of elements a1, a2, · · · , aT ∈ U ∪ {⊥}, a parameter k ∈ Z≥1.
Parameters :Relative approximation factor α ≥ 1 and additive approximation factor γ ≥ 0

depending on the streaming continual release summing algorithm.
//See Theorem 2.5.

Output: A tuple (z1, z2, · · · , zk) at every timestamp t.
Let h : U → [k] be a 4-wise independent hash function, s.t., ∀a ∈ U , i ∈ [k],Pr[h(a) = i] = 1

k
.

Let g : U → {−1, 1} be a 4-wise independent hash function, s.t., ∀a ∈ U ,Pr[g(a) = 1] = 1
2
.

Initialize empty streams S1,S2, · · · ,Sk.
for each at in the stream S do

if at =⊥ then
Append 0 to the end of every stream S1,S2, · · · ,Sk.

end

else
Append g(at) to the end of the stream Sh(at) and append 0 to the end of every stream Si
for i 6= h(at).

end

Output a tuple (z1, z2, · · · , zk) where zi is an estimation of the total counts of Si with additive
error at most γ.

end

Lemma 5.1 (DP guarantee). If the subroutine of continually releasing the approximate total counts
of Si for every i ∈ [k] in Algorithm 4 is ε-DP, Algorithm 4 is 2ε-DP.

Proof. Consider two neighboring streams S and S ′ where the only difference is the t-th element,
i.e., at 6= a′t. Consider their corresponding streams S1,S2, · · · ,Sk and S ′1,S ′2, · · · ,S ′k in Algorithm 4.
For i ∈ [k] and j 6= t, the j-th number in Si should be the same as the j-th number in S ′i. Thus,
we only need to consider the t-th number in Si and S ′i for every i ∈ [k]. Since at can only make the
t-th number of Sh(at) be non-zero, a′t can only make the t-th number of S ′h(a′

t)
be non-zero, and the

non-zero number can be only ±1, the sensitivity is at most 2. Thus, if we use ε-DP algorithm to
continually release the total counts of S1,S2, · · · ,Sk, the continually released output of Algorithm 4
is 2ε-DP.

Lemma 5.2 (Good approximation for frequent elements). Consider any a ∈ U and any timestamp
t ∈ [T ]. Let fa be the frequency of a in a1, a2, · · · , at. Let (z1, z2, · · · , zk) be the output of Algorithm 4
at timestamp t. Then ∀η ∈ (0, 0.5), with probability at least 1 − 1/(kη2), |fa − g(a) · zh(a)| ≤
η ·
√

∑

b∈U f2
b + γ.

Proof. Let ẑh(a) be the true total counts of stream Sh(a) at timestamp t. According to the original

CountSketch Charikar et al. [2002], we have Pr
[

|fa − g(a) · ẑh(a)| ≤ η
√

∑

b∈U f2
b

]

≥ 1 − 1/(kη2).

Since

|fa − g(a) · zh(a)| ≤ |fa − g(a) · ẑh(a)|+ |g(a)| · |zh(a) − ẑh(a)| ≤ |fa − g(a) · ẑh(a)|+ γ,
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we have with probability at least 1− 1/(kη2), |fa − g(a) · zh(a)| ≤ η ·
√

∑

b∈U f2
b + γ.

Lemma 5.3 (ℓ2 Frequency moment estimation). Consider any timestamp t ∈ [T ]. For a ∈ U ,
let fa be the frequency of a in a1, a2, · · · , at. Let (z1, z2, · · · , zk) be the output of Algorithm 4 at

timestamp t. Then ∀η ∈ (0, 0.5), with probability at least 1 − 100/(kη2), |∑k
i=1 z

2
i −

∑

a∈U f2
a | ≤

η
∑

a∈U f2
a + 4kγ2/η

Proof. Let F2 =
∑

a∈U f2
a . Let Z =

∑

i∈[k] z
2
i . For i ∈ [k], let ẑi be the true total counts of stream Si

at timestamp t. Let Ẑ =
∑

i∈[k] ẑ
2
i . According to the analysis of CountSketch Charikar et al. [2002],

Thorup and Zhang [2004], We have Pr
[

|F2 − Ẑ| ≤ η/4 · F2

]

≥ 1 − 100/(kη2). In the following, we

condition on |F2 − Ẑ| ≤ η/4 · F2.
We have

|F2 − Z|
≤|F2 − Ẑ|+ |Ẑ − Z|

≤η/4 · F2 +

k
∑

i=1

|z2i − ẑ2i |.

Denote zi = ẑi + vi for i ∈ [k]. We have |vi| ≤ γ. Due to convexity, we have:

(1− η/4)ẑ2i − 4v2i /η ≤ (ẑi + vi)
2 ≤ ẑ2i /(1− η/4) + 4v2i /η.

Since η ∈ (0, 0.5), 1/(1− η/4) ≤ (1 + η/2). Therefore, |z2i − ẑ2i | ≤ η/2 · ẑ2i + 4v2i /η. We have:

|F2 − Z| ≤ η/4 · F2 + η/2 · Ẑ + 4kγ2/η ≤ η/4 · F2 + η/2 · 3/2 · F2 + 4kγ2/η ≤ ηF2 + 4kγ2/η.

Theorem 5.4 (Streaming continual release ℓ2 frequency estimators). Let ε > 0, η ∈ (0, 0.5), ξ ∈
(0, 0.5). There is an ε-DP algorithm in the streaming continual release model such that with proba-
bility at least 1− ξ, it always outputs for every timestamp t ∈ [T ]:

1. f̂a for every a ∈ U such that |fa−f̂a| ≤ η‖S‖2+O
(

log(T/ξ)+log(|U|)
ε · log2.5(T ) · log

(

log(T/ξ)+log(|U|)
ξη

))

,

where S denotes the stream (a1, a2, · · · , at) and fa denotes the frequency of a in S,

2. F̂2 such that |F̂2 − ‖S‖22| ≤ η‖S‖22 +O
(

(log(T/ξ)+log(|U|))2

ε2η3 · log5(T ) · log2
(

log(T/ξ)+log(|U|)
ξη

))

The algorithm uses O
(

log(T/ξ)+log(|U|)
η2 · log(T )

)

space.

Proof. Suppose we set k = 400/η2. Due to Lemma 5.2 and Lemma 5.3, the approximation guar-
antees hold with probability at least 2/3 for each particular timestamp t ∈ [T ] and a ∈ U . To
boost the success probability to 1 − ξ/2 for the approximation guarantees and simultaneously for
all t ∈ [T ] and all a ∈ |U|, according to Lemma 2.7, we run ⌈50(log(2T/ξ) + log(|U|))⌉ copies of
Algorithm 4 and take the median of each estimator.

We apply Theorem 2.5 for the summing problem of Si for each i ∈ [k]. Since we run ⌈50(log(2T/ξ)+
log(|U|))⌉ copies of Algorithm 4, if we desire ε-DP algorithm in the end, we need each summing
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subroutine to be ε/(2 · ⌈50(log(2T/ξ) + log(|U|))⌉)-DP according to Lemma 5.1. To simultane-
ously make the call of each run of the summing subroutine succeeds with probability at least
1 − ξ/2, we need to apply union bound over all calls of summing and thus each run of the sum-
ming subroutine should success with probability at least 1− ξ/(2 · ⌈50(log(2T/ξ)+ log(|U|))⌉ · k) =
1− ξ/(2 · ⌈50(log(2T/ξ) + log(|U|))⌉ · 400/η2). Thus, according to Theorem 2.5, we have α = 1 and

γ = O
(

log(T/ξ)+log(|U|)
ε · log2.5(T ) · log

(

log(T/ξ)+log(|U|)
ξη2

))

.

Finally, let us consider the total space usage, since we call (⌈50(log(2T/ξ) + log(|U|))⌉ · 400/η2)
times of summing subroutine, the space needed for executing them is O

(

log(T/ξ)+log(|U|)
η2 · log(T )

)

.

Additional space needed is O(1). Thus, the total space required is O
(

log(T/ξ)+log(|U|)
η2 · log(T )

)

5.2 Continual Released ℓp Heavy Hitters

By applying the CountSketch, we are able to develop ℓp heavy hitters.

Algorithm 5: Continual Released ℓp Heavy Hitters (p ∈ [0,∞))

Input: A stream S of elements a1, a2, · · · , aT ∈ U ∪ {⊥}, a parameter k ∈ Z≥1, an error
parameter η ∈ (0, 0.5).

Parameters :Additive error parameters γ1, γ2 ≥ 0 depending on the streaming continual release
CountSketch algorithm. //See Theorem 5.4.

Output: A set H ⊆ U of elements and their estimated frequencies f̂ : H → R≥0 at every
timestamp t.

Let φ ≥ max
(

|U|1−2/p, 1
)

. Let m = 10k2.

Let h : U → [m] be a pairwise independent hash function where
∀a ∈ U , i ∈ [m],Pr[h(a) = i] = 1/m.

Initialize empty streams S1,S2, · · · ,Sm. for each at in the stream S do

if at =⊥ then
Append ⊥ to the end of every stream S1,S2, · · · ,Sm.

end

else
Append at to the end of the stream Sh(at) and append ⊥ to the end of every stream Si for
i 6= h(at).

end

For i ∈ [m], compute F̂2,i which is a (1.1, γ1)-approximation to ‖Si‖22.
For a ∈ U , compute f̂a which is a (1, (η/16)/(10

√
φk) · ‖Sh(a)‖2 + γ2)-approximation to fa, the

frequency of a in S (or equivalently in Sh(a)).
For a ∈ U , if f̂2

a ≥
F̂2,h(a)+γ1

25φk
+

512γ2
2

η2 , add a into Ĥ.

Let H ⊆ Ĥ only keep the elements a such that f̂a is one the top-
((

1+η
1−η

)p

· k
)

values among

{f̂b | b ∈ Ĥ}. For each a ∈ H , report f̂(a)← f̂a.
end

Lemma 5.5 (DP guarantee). If ∀i ∈ [m] the subroutine in Algorithm 5 of continually releasing

F̂2,i and f̂a for all a satisfying h(a) = i is ε-DP, Algorithm 5 is 2ε-DP.

Proof. Consider two neighboring streams S and S ′ where the only difference is the t-th element,
i.e., at 6= a′t. If at 6=⊥, it only causes the difference of at most one element between Sh(at) and
S ′h(at)

. Similarly, if a′t 6=⊥, it only causes the difference of at most one element between Sh(a′

t)
and
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S ′h(a′

t)
. Thus if for each i ∈ [m], the continual release algorithm which releases F̂2,i and f̂a for every

a ∈ U with h(a) = i is ε-DP, the overall algorithm is 2ε-DP.

Lemma 5.6. At any timestamp t ∈ [T ], ∀a ∈ U , if a ∈ Ĥ, (1− η)f2
a ≤ f̂2(a) ≤ (1 + η)f2

a where fa
is the frequency of a in a1, a2, · · · , at.
Proof. Since a ∈ Ĥ , we have:

f̂2
a ≥

F̂2,h(a) + γ1

25φk
+

512γ2
2

η2
.

Thus:

η

16
· f̂2

a ≥
16

η
·
(

2 · (η/16)2
100φk

·
(

2F̂2,h(a) + 2γ1

)

+ 2γ2
2

)

≥ 16

η
·
(

2 · (η/16)2
100φk

· ‖Sh(a)‖22 + 2γ2
2

)

=
16

η
·
(

2 ·
(

η/16

10
√
φk
· ‖Sh(a)‖2

)2

+ 2γ2
2

)

≥ 16

η
·
(

η/16

10
√
φk
· ‖Sh(a)‖2 + γ2

)2

By convexity:

f̂2
a ≥ (1− η/16) · f2

a −
16

η
·
(

η/16

10
√
φk
· ‖Sh(a)‖2 + γ2

)2

≥ (1− η/16) · f2
a − η/16 · f̂2

a

and

f̂2
a ≤ 1/(1− η/16) · f2

a +
16

η
·
(

η/16

10
√
φk
· ‖Sh(a)‖2 + γ2

)2

≤ 1/(1− η/16) · f2
a + η/16 · f̂2

a .

Since η ∈ (0, 0.5), we have (1− η)f2
a ≤ f̂2

a ≤ (1 + η)f2
a .

Lemma 5.7. At any timestamp t, the output H of Algorithm 5 has size at most
(

1+η
1−η

)p

· k.

Proof. Note that H only keeps the top-
((

1+η
1−η

)p

· k
)

values from Ĥ .

Lemma 5.8. At any timestamp t, consider any a ∈ U . Let fa be the frequency of a in a1, a2, · · · , at.
If fa ≥ 4

√

γ1/(φk) + 512γ2
2/η

2 and fp
a ≥ ‖S‖pp/k, with probability at least 0.9, a ∈ Ĥ.

Proof. In this proof, we consider all streams and variables at the timestamp t. Suppose fp
a ≥ ‖S‖pp/k.

Let B = {b ∈ U | fp
b ≥ ‖S‖pp/k}. Then with probability at least 0.9, ∀b ∈ B \ {a}, h(a) 6= h(b). In

the remaining of the proof, we condition on ∀b ∈ B \ {a}, h(a) 6= h(b).

Case 1, p ≤ 2: In this case, we have φ = 1. ∀x ∈ U with h(x) = h(a), we have fx ≤ fa which
implies that fp−2

x ≥ fp−2
a since p ≤ 2. Since ∀x ∈ U , fp

x

f2
x
≤ 1, we have

‖Sh(a)‖pp
‖Sh(a)‖22

=

∑

x∈U :h(x)=h(a) f
p
x

∑

x∈U :h(x)=h(a) f
2
x

≥ min
x∈U :h(x)=h(a)

fp
x

f2
x

=
fp
a

f2
a

,
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which implies that f2
a/‖Sh(a)‖22 ≥ fp

a/‖Sh(a)‖pp ≥ fp
a/‖S‖pp ≥ 1/k and thus f2

a ≥ ‖Sh(a)‖22/(φk).

Case 2, p > 2: In this case, we have φ = |U|1−2/p. Since fp
a ≥ ‖S‖pp/k, we have:

fa ≥ ‖S‖p/k1/p ≥ ‖S‖p/k1/2 ≥ ‖S‖2/(k1/2 · |U|1/2−1/p),

where the second inequality follows from k1/2 ≥ k1/p for p > 2, and the third inequality follows
from Holder’s inequality that ‖S‖2 ≤ |U|1/2−1/p · ‖S‖p. Therefore, f2

a ≥ ‖S‖22/(φk).
Therefore, in both above cases, we always have f2

a ≥ ‖S‖22/(φk).
By convexity, we have

f̂2
a ≥ (1 − η/16) · f2

a −
16

η
·
(

η/16

10
√
φk
· ‖Sh(a)‖2 + γ2

)2

≥ (1 − η/16) · f2
a −

16

η
·
(

2(η/16)2

100φk
· ‖Sh(a)‖22 + 2γ2

2

)

Thus we have:

f̂2
a ≥

1

2
· ‖Sh(a)‖22/(φk)−

16

η
·
(

2(η/16)2

100φk
· ‖Sh(a)‖22 + 2γ2

2

)

≥ 1

2
· 1
2
· (F̂2,h(a) − γ1)/(φk)−

16

η
·
(

2(η/16)2

100φk
· 2 · (F̂2,h(a) + γ1) + 2γ2

2

)

=

(

1

4
− η/16

25

)

· F̂2,h(a)

φk
−
(

1

4
+

η/16

25

)

· γ1
φk
− 32

η
· γ2

2

≥ 1

5
· F̂2,h(a)

φk
− 1

3
· γ1
φk
− 32

η2
· γ2

2

≥ 2 ·
(

F̂2,h(a) + γ1

25φk
+

512γ2
2

η2

)

−
(

2048γ2
2

η2
+

2

3
· γ1
φk
− 3

25φk
· F̂2,h(a)

)

(1)

On the other hand, by convexity, we have:

f̂2
a ≥ (1 − η/16)f2

a −
16

η
·
(

η/16

10
√
φk
‖Sh(a)‖2 + γ2

)2

≥ (1 − η/16)f2
a −

16

η
·
(

2(η/16)2

100φk
‖Sh(a)‖22 + 2γ2

2

)

and thus

f̂2
a ≥

1

2
· 16 · (γ1/(φk) + 512γ2

2/η
2)− 16

η
·
(

2(η/16)2

100φk
· 2 · (F̂2,h(a) + γ1) + 2γ2

2

)

=

(

8− η/16

25k

)

· γ1
φk

+

(

4096

η2
− 32

η

)

γ2
2 −

η/16

25φk
· F̂2,h(a)

≥ 2

3
· γ1
φk

+
2048

η2
· γ2

2 −
3

25φk
· F̂2,h(a) (2)

By looking at Equation (1) + Equation (2), we have f̂2
a ≥

F̂2,h(a)+γ1

25φk +
512γ2

2

η2 . Thus, a ∈ Ĥ .

23



Lemma 5.9. At any timestamp t, if fp
a ≥ ‖S‖pp/k and a ∈ Ĥ, then a ∈ H.

Proof. We prove the statement by contradiction. Suppose a 6∈ H , there is a subset Q ⊆ H with

|Q| ≥
(

1+η
1−η

)p

· k such that ∀b ∈ Q, f̂b ≥ f̂a. According to Lemma 5.6, we have ∀b ∈ Q, fp
b ≥

(

1−η
1+η

)p

·fp
a ≥

(

1−η
1+η

)p

· ‖S‖pp/k. Then we have
∑

b∈Q fp
b ≥ ‖S‖pp which leads to a contradiction.

Theorem 5.10 (ℓp Heavy hitters for all p ∈ [0,∞)). Let ε > 0, η ∈ (0, 0.5), k ≥ 1, ξ ∈ (0, 0.5). Let
φ = max(1, |U|1−2/p). There is an ε-DP algorithm in the streaming continual release model such

that with probability at least 1 − ξ, it always outputs a set H ⊆ U and a function f̂ : H → R for
every timestamp t ∈ [T ]: such that

1. ∀a ∈ H, f̂(a) ∈ (1 ± η) · fa where fa is the frequency of a in the stream S = (a1, a2, · · · , at),

2. ∀a ∈ U , if fa ≥ 1
εη · log

C
(

T ·k·|U|
ξη

)

for some sufficiently large constant C > 0 and fp
a ≥ ‖S‖pp/k

then a ∈ H,

3. The size of H is at most O
(

(log(T/ξ) + log(|U|)) ·
(

1+η
1−η

)p

· k
)

.

The algorithm uses φk3

η2 · poly
(

log
(

T ·k·|U|
ξ

))

space.

Proof. The first property follows from Lemma 5.6.
According to Lemma 5.8 and Lemma 5.9, the guarantee holds with probability 0.9 for any

particular t ∈ [T ] and a ∈ U . To boost the probability to make the guarantee holds simultane-
ously for all t ∈ [T ] and a ∈ U with probability at least 1 − ξ/2, we need to repeat Algorithm 5
⌈50(log(2T/ξ) + log(|U|))⌉ times, and let final H at timestamp t be the union of all output H at
timestamp t, and let final f̂(a) at timestamp t be any output f̂(a) at timestamp t. According to

Lemma 5.7, the output H of a single running copy of Algorithm 5 is at most
(

1+η
1−η

)p

· k. Thus,

the size of the final output H is at most O
(

(log(T/ξ) + log(|U|)) ·
(

1+η
1−η

)p

· k
)

which proves the

second property.
We apply Theorem 5.4 for the frequency and ℓ2 frequency moment estimators of Si for each

i ∈ [m]. Since we run ⌈50(log(2T/ξ) + log(|U|))⌉ copies of Algorithm 5, if we desire ε-DP al-
gorithm in the end, we need each frequency and ℓ2 frequency moment subroutine to be ε/(4 ·
⌈50(log(2T/ξ) + log(|U|))⌉)-DP according to Lemma 5.5. To simultaneously make the call of
each run of the frequency and ℓ2 frequency moment subroutine succeeds with probability at least
1 − ξ/2, we need to apply union bound over all calls of the subroutines and thus each run of
the subroutine should succeed with probability at least 1 − ξ/(4 · ⌈50(log(T/ξ) + log(|U|))⌉ ·m) =
1 − ξ/(4 · ⌈50(log(T/ξ) + log(|U|))⌉ · 10k2). Notice that we also need to re-scale η in Theorem 5.4
to be (η/16)/(10

√
φk) used in Algorithm 5 for estimation of the frequency of each element and

set η = 0.01 in Theorem 5.4 for the estimation of the ℓ2 frequency moment. Thus, according to
Theorem 5.4, we have

γ1 =
1

ε2
· poly

(

log

(

T · k · |U|
ξ

))
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and

γ2 =
1

ε
· poly

(

log

(

T · k · |U|
ξη

))

Therefore, the second property follows from Lemma 5.8 and Lemma 5.9 and our probability boosting
argument.

Finally, let us consider the space usage. Since we run O(log(T/ξ) + log(|U|)) copies of Al-
gorithm 5, and each copy calls O(k2) frequency estimator and ℓ2 frequency moment estimator
using the parameters discussed above. Due to Theorem 5.4, the total space usage is at most
φk3

η2 · poly
(

log
(

T ·k·|U|
ξ

))

.

5.3 Differentially Private Continual Released Counting of Low Frequency

Elements

In this section, we show a differentially private continual released algorithm for counting the number
of elements that have a certain (low) frequency. Similar to our counting distinct elements algorithm,
we first consider the case where the universe of the elements is small.

5.3.1 Number of Low Frequency Elements for Small Universe

Algorithm 6: Number of Low Frequency Elements for Small Universe
Input: A stream S of elements a1, a2, · · · , aT ∈ U ∪ {⊥} with gaurantee that |U| ≤ m, and a

target frequency k.
Parameters :Relative approximation factor α ≥ 1 and additive approximation factor γ ≥ 0

depending on the streaming continual release summing algorithm.
//See Theorem 2.5.

Output: Estimation of the number of elements with frequency exactly i for each i ∈ [k] at every
timestamp t.

Initialize empty streams C1, C2, · · · , Ck.
For each a ∈ U , initialize frequency f(a)← 0
for each at in the stream S do

If at 6=⊥, f(at)← f(at) + 1.
for each i ∈ [k] do

if at 6=⊥ and f(at) = i+ 1 then
Append −1 at the end of Ci.

end

else if at 6=⊥ and f(at) = i then
Append 1 at the end of Ci.

end

else
Append 0 at the end of Ci.

end

end

For each i ∈ [k], output ŝi which is an (α, γ)-approximation to the total counts of Ci.
end

Lemma 5.11. At the end of any time t ∈ [T ], ∀i ∈ [k], the output ŝi of Algorithm 6 is an (α, γ)-
approximation to |{a ∈ U | fa = i}|, the size of the set of elements of which the frequency is exact
i.
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Proof. It is easy to observe that Algorithm 6 maintains f(a) such that f(a) = fa for any a ∈ U .
For i ∈ [k], if before adding at the frequency of at is i, we append −1 to Ci. If after adding at the
frequency of at becomes i, we append 1 to Ci. Note that if the frequency of at has the value which
is not in above two cases, it does not affect the number of elements with frequency i. Therefore,
the total counts of Ci is always the number of elements of which frequency is i. Thus, ŝi is an
(α, γ)-approximation to the number of elements of which frequency is i.

Lemma 5.12. If the algorithm that continually release the approximate total counts of Ci for every
i ∈ [k] is ε-DP, Algorithm 6 is (8kε)-DP in the continual release model.

Proof. Consider two neighboring stream S = (a1, a2, · · · , aT ) and S ′ = (a′1, a
′
2, · · · , a′T ) of elements

in U where they only differ at timestamp t, i.e., at 6= a′t. Fix any i ∈ [k], let us consider the
differences between the corresponding count streams Ci = (c1, c2, · · · , cT ) and C′i = (c′1, c

′
2, · · · , c′T ).

Consider an intermediate neighboring stream S ′′ = (a1, a2, · · · , at−1,⊥, at+1, · · · , aT ). Let C′′i =
(c′′1 , c

′′
2 , · · · , c′′T ) be the count stream corresponding to S ′′. The total difference between Ci and C′i is

bounded by the sum of the total difference between Ci and C′′ and the total difference between C′i
and C′′i .

Consider the difference between Ci and C′′i . If at =⊥, C′′i is exactly the same as Ci. Suppose
at = a ∈ U is the j-th appearance of a in S. If j > i, change at to ⊥ does not affect Ci. Suppose
j ≤ i. Let at1 , at2 , at3 be the i-th, (i + 1)-th, (i + 2)-th appearances of a in S respectively. Then
it is easy to verify that ct1 = 1, c′′t1 = 0, ct2 = −1, c′′t2 = 1, ct3 = 0, c′′t3 = −1, and for any other
p 6= t1, t2, t3, we have cp = c′′p . Thus, the total difference between Ci and C′′i is at most 4.

Similarly, the total difference between C′i and C′′i is at most 4. Thus, the total difference between
Ci and C′i is at most 8. Therefore, the total sensitivity of C1, C2, · · · , Ck is at most 8k. If we use
an ε-DP algorithm to continually release the total counts of Ci for every i ∈ [k], the continually
released outputs of Algorithm 6 is (8kε)-DP.

Theorem 5.13 (Streaming continual release count of low frequency elements for small universe).
Let k ≥ 1, ε ≥ 0, ξ ∈ (0, 0.5). Suppose the universe U has size at most m. There is an ε-DP
algorithm in the streaming continual release model such that with probability at least 1− ξ, it always
outputs k numbers ŝ1, ŝ2, · · · , ŝk for every timestamp t, such that ∀i ∈ [k], ŝi is an approximation to

|{a ∈ U | fa = i}| with additive error O
(

k
ε · log

2.5(T ) log
(

k
ξ

))

. The algorithm uses O(m+k log(T ))
space.

Proof. Consider Algorithm 6, we use Theorem 2.5 as the summing subroutine. According to
Lemma 5.12, if we want the final algorithm to be ε-DP, then each subroutine must be (ε/(8k))-DP.
Furthermore, if we want the over success probability to be 1 − ξ, the success probability of each
summing subroutine should be at least 1 − ξ/k. By applying Theorem 2.5, we have α = 1 and

γ = O
(

k
ε · log

2.5(T ) log
(

k
ξ

))

.

We need O(m) space to maintain the frequency of the elements. We need O(k log(T )) space to
run k summing subroutines. Therefore, the total space usage is O(m+ k log(T )).
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5.3.2 Number of Low Frequency Elements for General Universe

Algorithm 7: Number of Low Frequency Elements via Subsampling
Input: A stream S of elements a1, a2, · · · , aT ∈ U ∪ {⊥}, an error parameter η ∈ (0, 0.5), and a

parameter k ≥ 1.
Parameters :Additive approximation factor γ1 depending on the streaming continual release

number of distinct elements, relative approximation factor α2 ≥ 1 and additive
approximation factor γ2 ≥ 0 depending on the streaming continual release count of
low frequency elements for small universe.

//See Corollary 4.10 and Theorem 5.13.
Output: Estimation of the number of elements with frequency exactly i for each i ∈ [k] at every

timestamp t.
L← ⌈logmin(|U|, T )⌉, λ← 2 log(1000k), m← 100 · (25600λ/η2)2.
Let h : U → [m] be a pairwise independent hash function.
Let g : U → [L] ∪ {⊥} be a λ-wise independent hash function and
∀a ∈ U , i ∈ [L],Pr[g(a) = i] = 2−i,Pr[g(a) =⊥] = 2−L.

Initialize empty streams S1,S2, · · · ,SL.
for each at in the stream S do

for i ∈ L do

if at 6=⊥ and g(at) = i then
Append h(at) to the end of the stream Si.

end

else
Append ⊥ to the end of the stream Si.

end

end

Compute d̂ which is a (1.1, γ1)-approximation to the number of distinct elements in S .
For i ∈ [L], compute ŝi,1, ŝi,2, · · · , ŝi,k where ŝi,j is an (α2, γ2)-approximation to the number of
elements in Si where each element has frequency exact j.

If d̂ ≤ max(3γ1, 64λ/η
2), set ŝ1 = ŝ2 = · · · = ŝk = 0.

Otherwise, find the largest i∗ ∈ [L] such that 2i
∗ · (64λ/η2) ≤ d̂, and ∀j ∈ [k], set ŝj = ŝi∗,j · 2i.

Output ŝ1, ŝ2, · · · , ŝk.
end

Lemma 5.14. If the subroutine of continually releasing d̂ in Algorithm 7 is ε-DP and the subroutine
of continually releasing {ŝi,1, ŝi,2, · · · , ŝi,k} for each i ∈ [k] is also ε-DP, Algorithm 7 is 3ε-DP.

Proof. Consider two neighboring streams S and S ′ where the only difference is the t-th element, i.e.,
at 6= a′t. Consider their corresponding streams S1,S2, · · · ,SL and S ′1,S ′2, · · · ,S ′L in Algorithm 7.
For i ∈ [L] and j 6= t, the j-th element in Si should be the same as the j-th element in S ′i. Since
at can only make the t-th element of Sh(at) be different from the t-th element of S ′h(at)

, and a′t
can only make the t-th element of Sh(a′

t)
be different from the t-th element of S ′h(a′

t)
, the total

sensitivity of {S1,S2, · · · ,SL} is at most 2. Thus, if the continual release of d̂ is ε-DP and for every
i ∈ [L], the continual release of ŝi,1, ŝi,2, · · · , ŝi,k is also ε-DP, the continual release of ŝ1, ŝ2, · · · , ŝk
is (3ε)-DP.

Lemma 5.15. Consider an arbitrary timestamp t ∈ [T ]. ∀a ∈ U , let fa denote the frequency
of a in a1, a2, · · · , at. With probability at least 0.9, ∀j ∈ [k], the output ŝj of Algorithm 7 is a
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(

α2,
(

α2η +
η2γ2

32λ

)

· ‖S‖0 + 6γ1 + 128λ/η2
)

-approximation to |{a ∈ U | fa = j}|, where ‖S‖0 is the

number of distinct elements in a1, a2, · · · , at.
To prove Lemma 5.15, we need following intermediate statements. Consider timestamp t ∈ [T ].

∀a ∈ U , let fa denote the frequency of a in a1, a2, · · · , at. If i∗ exists in Algorithm 7, we define
G = {aj | g(aj) = i∗, j ∈ [t]}. Let ‖S‖0 denote the number of distinct elements in a1, a2, · · · , at.
For l ∈ [k], define Gl = {a ∈ G | fa = l}.
Claim 5.16. With probability at least 0.98, ∀a 6= a′ ∈ G, h(a) 6= h(a′).

Proof. Since E [|G|] = ‖S‖0/2i
∗

, we have |G| ≤ 100 · ‖S‖0/2i
∗

with probability at least 0.99 by
Markov’s inequality. Since i∗ can be found by Algorithm 7, we have ‖S‖0 ≤ 1.1 · (d̂ + γ1) ≤ 2d̂.
By the choice of i∗, we have 2i

∗ ≥ d̂/(128λ/η2). Therefore, ‖S‖0/2i
∗ ≤ 256λ/η2. With probability

at least 0.99, |G| ≤ 25600λ/η2. By union bound and Markov’s inequality, Pr[∀a 6= a′ ∈ G, h(a) 6=
h(a′) | |G| ≤ 25600λ/η2] ≥ 1− |G|2/m ≥ 0.99.

Claim 5.17. ∀l ∈ [k],Pr[2i
∗ · |Gl| ∈ |{a ∈ U | fa = l}| ± η‖S‖0] ≥ 1− 0.01/k.

Proof. Let sl = |{a ∈ U | fa = l}|. Since i∗ can be found, we have d̂ ≥ 3γ1. Note that sl ≤ ‖S‖0 ≤
1.1(d̂+ γ1) ≤ 2d̂ ≤ 2i

∗ · 4 · 64λ/η2. By applying Lemma 2.6, ∀l ∈ [k] we have:

Pr
[∣

∣

∣
|Gl| − sl/2

i∗
∣

∣

∣
> 32λ/η

]

≤8 ·
(

λ · sl/2i
∗

+ λ2

(32λ/η)2

)λ/2

≤0.01/k,

where the last inequality follows from sl/2
i∗ ≤ 4 · 64λ/η2 and λ = 2 · log(1000k). Since ‖S‖0 ≥

(d̂− γ1)/1.1 ≥ d̂/2 ≥ 2i
∗ · 32λ/η2, we have

Pr
[
∣

∣

∣
|Gl| − sl/2

i∗
∣

∣

∣
> η‖S‖0/2i

∗
]

≤ 0.01/k.

Next we show the proof of Lemma 5.15

Proof of Lemma 5.15. Let E denote the event that ∀a 6= a′ ∈ G, h(a) 6= h(a′). Let ∀l ∈ [k], sl =
|{a ∈ U | fa = l}|. Let E ′ denote the event that ∀l ∈ [k], 2i

∗ · |Gl| ∈ sl ± η‖S‖0. According to
Claim 5.16 and Claim 5.17, the probability that both E and E ′ happen is at least 0.97. In the
remaining of the proof, we condition on both events E and E ′.

First, consider the case that d̂ < max(3γ1, 64λ/η
2). Since d̂ is a (1.1, γ1)-approximation to ‖S‖0,

we have ‖S‖0 ≤ 6γ1 + 128λ/η2. In this case, ∀l ∈ [k], ŝl = 0 and |{a ∈ U | fa = l}| ≤ ‖S‖0 ≤
6γ1 + 128λ/η2.

Next, consider the case that d̂ ≥ max(3γ1, 64λ/η
2). For each j ∈ [k], let si∗,l denote the

number of elements in Sl where each element has frequency exact j. According to event E , we have
∀l ∈ [k], si∗,l = |Gl|. According to event E ′, ∀l ∈ [k], we have:

ŝl ≥ 2i
∗ ·
(

1

α2
· |Gl| − γ2

)

≥ 1

α2
· (sl − η‖S‖0)− 2i

∗ · γ2
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≥ 1

α2
· sl −

(

η +
η2γ2
32λ

)

· ‖S‖0,

where the first inequality follows from that ŝi∗,l is an (α2, γ2)-approximation to si∗,l and si∗,l = |Gl|,
the second inequality follows from event E ′, and the third inequality follows from α2 ≥ 1 and
‖S‖0 ≥ (d̂− γ1)/1.1 ≥ d̂/2 ≥ 2i

∗ · 32λ/η2. Similarly, ∀l ∈ [k], we have:

ŝl ≤ 2i
∗ · (α2 · |Gl|+ γ2) ≤ α2 · (sl + η‖S‖0) + 2i

∗ · γ2

≤ α2 · sl +
(

α2η +
η2γ2
32λ

)

· ‖S‖0.

Theorem 5.18 (Streaming continual release of count of low frequency elements). Let k ≥ 1, ε ≥
0, ξ ∈ (0, 0.5), η ∈ (0, 0.5). There is an ε-DP algorithm in the streaming continual release model such
that with probability at least 1 − ξ, it always outputs k numbers ŝ1, ŝ2, · · · , ŝk for every timestamp
t such that ∀i ∈ [k], ŝi is an approximation to |{a ∈ U | fa = i}| with additive error:

(

η + η2 · k
ε
· poly

(

log

(

Tk

ξ

)))

· ‖S‖0 +
1

ε
· poly

(

log

(

T

ξ

))

+O

(

log k

η2

)

The algorithm uses 1
η4 · poly

(

log(T ·k/ξ)
min(ε,1)

)

space.

Proof. According to Lemma 5.15, the approximation guarantee holds with probability at least 0.9.
To boost the success probability to 1 − ξ/3 for all t ∈ [T ], we need to run ⌈50 log(3T/ξ)⌉ indepen-
dent copies of Algorithm 7. Since we run ⌈50 log(3T/ξ)⌉ copies of Algorithm 7 and according to
Lemma 5.14, if we want the final algorithm to be ε-DP, we need each subroutine of the streaming
continual release of {ŝi,1, ŝi,2, · · · , ŝi,k} for each i ∈ [k] to be (ε/(3·⌈50 log(2T/ξ))⌉)-DP and we need
the subroutine of the streaming continual release of d̂ to be also (ε/(3·⌈50 log(3T/ξ))⌉)-DP. To simul-
taneously make the call of each subroutine of the streaming continual release of {ŝi,1, ŝi,2, · · · , ŝi,k}
over all independent copies of Algorithm 7 satisfy the desired (α2, γ2)-approximation with prob-
ability at least 1 − ξ/3, we need to make {ŝi,1, ŝi,2, · · · , ŝi,k} satisfy the approximation guaran-
tee for each particular i ∈ [L] and a particular copy of Algorithm 7 with probability at least
1 − ξ/(3 · ⌈50 log(3T/ξ))⌉ · L). To simultaneously make the call of each subroutine of the stream-
ing continual release of d̂ over all independent copies of Algorithm 7 satisfy the desired (1.1, γ1)-
approximation with probability at least 1− ξ/3, we need to make d̂ satisfy the approximation guar-
antee for each particular copy of Algorithm 7 with probability at least 1 − ξ/(3 · ⌈50 log(3T/ξ))⌉).
Then, according to Corollary 4.10, we have γ1 = 1

ε · poly
(

log
(

T
ξ

))

. According to Theorem 5.13,

we have α2 = 1 and γ2 = k
ε · poly

(

log
(

Tk
ξ

))

. By plugging above parameters into Lemma 5.15, we

have ∀i ∈ [k], ŝi is an approximation to |{a ∈ U | fa = i}| with additive error:
(

η + η2 · k
ε
· poly

(

log

(

Tk

ξ

)))

· ‖S‖0 +
1

ε
· poly

(

log

(

T

ξ

))

+O

(

log k

η2

)

.

Next, consider the space usage. According to Corollary 4.10, the total space needed to release

d̂ for all copies of Algorithm 7 needs poly
(

log(T/ξ)
min(ε,1)

)

. According to Theorem 5.13, the total space

needed to release {ŝi,1, ŝi,2, · · · , ŝi,k} for all i ∈ [L] over all copies of Algorithm 7 needs O(log(T/ξ) ·
L·(m+log(T ))) = 1

η4 ·poly
(

log
(

T ·k
ξ

))

. Thus, the overall space is at most 1
η4 ·poly

(

log(T ·k/ξ)
min(ε,1)

)

.
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5.4 ℓp Moment Estimation

In this section, we show how to use our ℓp heavy hitters and the estimator of number of low frequency
elements to solve ℓp moment estimation problem.

Algorithm 8: ℓp Frequency Moment Estimation

Input: A stream S of elements a1, a2, · · · , aT ∈ U ∪ {⊥}, an error parameter η ∈ (0, 0.5).
Parameters :A threshold parameter τ depending on the heavy hitter algorithm, a relative

approximation factor α and an additive approximation factor γ depending on the
algorithm of estimating count of low frequency elements. //See Theorem 5.10 and
Theorem 5.18.

Output: Estimation of the ℓp frequency moment at every timestamp t.
Let β′ be drawn uniformly at random from [1/2, 1] and let β ∈ β′ ± (η/T )C for some sufficiently
large constant C > 0. //Thus β can be represented by Θ(log(T/η)) bits.

Let q∗1 be the smallest integer that β(1 + η)q
∗

1 > τ and let q∗2 be the smallest integer that
β(1 + η)q

∗

2+1 ≥ T , and for any q ∈ [q∗1 , q
∗
2 ], define the interval Iq = (β(1 + η)q , β(1 + η)q+1].

⌈L← log(|U|)⌉, λ← 2 · log(1000(L + 1) log(4T )/η).

Let k be the largest integer such that k ≤ β(1+ η)q
∗

1 . Let B ←
(

log(4T )
η

)

· 100(L+1) · 32λ
η3 · (1+ η)p.

Let g : U → [L] ∪ {⊥} be a λ-wise independent hash function and
∀a ∈ U , i ∈ [L],Pr[g(a) = i] = 2−i,Pr[g(a) =⊥] = 2−L.

Initialize empty streams S0,S1,S2, · · · ,SL.
for each at in the stream S do

if at 6=⊥ then
Append at at the end of S0.
For i ∈ [L], if g(at) = i, append at to Si, otherwise append ⊥ to Si.

end

else

For i ∈ [L] ∪ {0}, append ⊥ at the end of Si.
end

For each i ∈ [L] ∪ {0}, compute a set Hi ⊆ U together with a function f̂i : Hi → R≥0 satisfying:

1. ∀a ∈ Hi, (1− η′) · fa ≤ f̂i(a) ≤ (1 + η′) · fa, where fa is the frequency of a in a1, a2, · · · , at, and η′

satisfies η′ ≤ η
10000(L+1)|Hi |

.

2. ∀a ∈ U that appears in Si, if fa ≥ τ and fp
a ≥ ‖Si‖pp/B, a ∈ Hi.

Compute ŝ1, ŝ2, · · · , ŝk where ∀l ∈ [k], ŝl is an (α, γ)-approximation to |{a ∈ U | fa = l}|.
for q ∈ [q∗1 , q

∗
2 ] do

Initialize ẑq = 0.
for i ∈ [L] ∪ {0} do

if |{a ∈ Hi | f̂i(a) ∈ Iq}| ≥ 8λ/η2
or i = 0 then

ẑq ← max(ẑq, |{a ∈ Hi | f̂i(a) ∈ Iq}| · 2i).
end

end

end

Output F̂p =
∑

l∈[k] ŝl · lp +
∑

q∈[q∗1 ,q
∗
2 ] ẑq · (β(1 + η)q)p

end

Lemma 5.19. Consider the subroutines in Algorithm 8. If the algorithm that continually release
ŝ1, ŝ2, · · · , ŝk is ε-DP and for every i ∈ [L] ∪ {0} the algorithm that continually release (Hi, f̂i) is
ε-DP. Algorithm 8 is 4ε-DP in the continual release model.
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Proof. Consider two neighboring stream S = (a1, a2, · · · , aT ) and S ′ = (a′1, a
′
2, · · · , a′T ) where

they only differ at timestamp t, i.e., at 6= a′t. Consider the corresponding streams S0,S1, · · · ,SL
and S ′0,S ′1, · · · ,S ′L. ∀i ∈ [L] ∪ {0}, j 6= t, the j-th element of Si should be the same as the j-
th element of S ′i. Furthermore, ∀i ∈ [L] with i 6= g(at), i 6= g(a′t), the t-th element of Si is
also the same as the t-th element of S ′i. Thus, at most 3 streams S0,Sg(at) and Sg(a′

t)
might be

different from S ′0,S ′g(at)
and S ′g(a′

t)
respectively. Thus, the output {(H0, f̂0), (H1, f̂1), · · · , (HL, f̂L)}

is 3ε-DP. Since (ŝ1, ŝ2, · · · , ŝk) is ε-DP and the final output only depends on (ŝ1, ŝ2, · · · , ŝk) and
{(H0, f̂0), (H1, f̂1), · · · , (HL, f̂L)}, the final output is 4ε-DP.

In the remaining of the section, let us analyze the approximation guarantee of Algorithm 8. Let
us consider a timestamp t ∈ [T ] and ∀a ∈ U , let fa denote the frequency of a in a1, a2, · · · , at. Let
S,S0,S1, · · · ,SL denote the streams up to timestamp t. Let I = {[1, 1], [2, 2], · · · , [k, k], Iq∗1 , Iq∗1+1, · · · , Iq∗2 }.
By our choice of k, q∗1 , q

∗
2 , we have the following observation:

Observation 5.20.
∑

I∈I

∑

a∈U :fa∈I f
p
a = ‖S‖pp.

Definition 5.21. For any I ∈ I, if
∑

a∈U :fa∈I f
p
a ≥ η‖S‖pp/(q∗2 − q∗1 + 1) or I is {i} for some

i ∈ [k], then interval I is contributing.

5.4.1 Analysis of High Frequency Elements

In this section, we show that
∑

q∈[q∗1 ,q
∗

2 ]
ẑq·(β(1+η)q)p is a good approximation to

∑

q∈[q∗1 ,q
∗

2 ]

∑

a∈U :fa∈Iq
fp
a

and
∑

q∈[q∗1 ,q
∗

2 ]:Iq is contributing

∑

a∈U :fa∈Iq
fp
a .

The following lemma says that the frequency of any particular sampled element should be
sufficiently far away from the boundary of intervals Iq∗1 , Iq∗1+1, · · · , Iq∗2 with a good probability.

Lemma 5.22 (Indyk and Woodruff [2005]). Consider β in Algorithm 8. Consider any f ∈ [T ] and
any r ≥ 2(η/T )C−1.

Pr
β′

[

min
q∈{q∗1 ,q

∗

1+1,··· ,q∗2 ,q
∗

2+1}
|f − β(1 + η)q| < r

]

≤ 100r

η · f

By applying above lemma, we show that with high probability, we can use f̂i(a) to correctly
classify a into right interval in Iq∗1 , Iq∗1+1, Iq∗1+2, · · · , Iq∗2 .

Lemma 5.23. With probability at least 0.99, ∀i ∈ [L] ∪ {0}, ∀a ∈ Hi, and ∀q ∈ [q∗1 , q
∗
2 ], f̂i(a) ∈ Iq

if and only if fa ∈ Iq.

Proof. According to Lemma 5.22, for any i ∈ [L] ∪ {0} and any a ∈ Hi, we have:

Pr

[

min
q∈{q∗1 ,q∗1+1,··· ,q∗2+1}

|fa − β(1 + η)q| < η′fa

]

≤ 1

100 · (L+ 1) · |Hi|
,

where the inequality follows from η′ ≤ η
10000(L+1)|Hi|

. By taking a union bound over all i ∈ [L]∪{0}
and all a ∈ Hi, with probability at least 0.99, the following event happens: ∀i ∈ [L] ∪ {0}, ∀a ∈
Hi, ∀q ∈ {q∗1 , q∗1 + 1, · · · , q∗2 + 1},

1. if fa ≤ β(1 + η)q, then f̂i(a) ≤ fa + η′fa ≤ β(1 + η)q,
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2. if fa > β(1 + η)q, then f̂i(a) ≥ fa − η′fa > β(1 + η)q.

Therefore, with probability at least 0.99, ∀i ∈ [L] ∪ {0}, ∀a ∈ Hi, and ∀q ∈ [q∗1 , q
∗
2 ], f̂i(a) ∈ Iq if

and only if fa ∈ Iq.

Let Gi denote the set of elements that appears in the stream Si and let Gi,q denote the set of
elements that appear in the stream Si and whose frequency is in the interval Iq. Formally, ∀i ∈ [L],
let Gi = {aj | g(aj) = i, j ≤ t}, G0 = {aj | j ≤ t}, and ∀q ∈ {q∗1 , q∗1 + 1, · · · , q∗2}, ∀i ∈ [L] ∪ {0}, let
Gi,q = {a ∈ Gi | fa ∈ Iq}. For q ∈ [q∗1 , q

∗
2 ], let zq = |G0,q|, i.e., the number of elements that are in

the stream S and have frequency in the range Iq.

Lemma 5.24. ∀i ∈ [L]∪{0}, q ∈ [q∗1 , q
∗
2 ], if i = 0 or zq ≥ 2i ·4λ/η2,Pr[|Gi,q| ∈ (1±η) ·zq/2i] ≥ 1−

0.01/ ((L+ 1) · log(4T )/η). Otherwise, Pr[||Gi,q | − zq/2
i| ≤ 4λ/η] ≥ 1− 0.01/ ((L+ 1) · log(4T )/η).

Proof. Consider any i ∈ [L] ∪ {0} and q ∈ [q∗1 , q
∗
2 ]. If i = 0, by definition zq = |G0,q|.

Suppose zq ≥ 2i · 4λ/η2. Due to Lemma 2.6, we have:

Pr
[∣

∣|Gi,q| − zq/2
i
∣

∣ > η · zq/2i
]

≤8 ·
(

λ · zq/2i + λ2

(η · zq/2i)2

)λ/2

≤0.01/ ((L+ 1) · log(4T )/η) ,

where the last inequality follows from that λ = 2 · log(1000(L+ 1) log(4T )/η) and zq ≥ 2i · 4λ/η2.
Suppose zq ≤ 2i · 4λ/η2, By applying Lemma 2.6 again, we have:

Pr
[∣

∣|Gi,q| − zq/2
i
∣

∣ > 4λ/η
]

≤8 ·
(

λ · zq/2i + λ2

(4λ/η)2

)λ/2

≤0.01/ ((L + 1) · log(4T )/η) ,

where the last inequality follows from zq/2
i ≤ 4λ/η2 and λ = 2 · log(1000(L+ 1) log(4T )/η).

We define events E1 and E2 as the following: E1 denotes the event ∀i ∈ [L] ∪ {0}, ∀a ∈ Hi, ∀q ∈
[q∗1 , q

∗
2 ], f̂i(a) ∈ Iq if and only if fa ∈ Iq . E2 denotes the event:

1. ∀i ∈ [L] ∪ {0}, ∀q ∈ [q∗1 , q
∗
2 ], if zq ≥ 2i · 4λ/η2 or i = 0, |Gi,q| · 2i ∈ (1± η)zq.

2. ∀i ∈ [L], ∀q ∈ [q∗1 , q
∗
2 ], if zq < 2i · 4λ/η2, |Gi,q| ∈ zq/2

i ± 4λ/η.

According to Lemma 5.22, E1 happens with probability at least 0.99. According to Lemma 5.24,
since ∀q ∈ [q∗1 , q

∗
2 ], zq = |G0,q| and q∗2 − q∗1 + 1 ≤ log(4T )/η, by taking a union bound over all

i ∈ [L] ∪ {0} and all q ∈ [q∗1 , q
∗
2 ], E2 happens with probability at least 0.99.

Lemma 5.25 (Upper bound of estimation of high frequency moment). Condition on E1 and E2,
∑

q∈[q∗1 ,q
∗

2 ]

ẑq · (β(1 + η)q)p ≤ (1 + η) ·
∑

q∈[q∗1 ,q
∗

2 ]

∑

a∈U ,fa∈Iq

fp
a
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Proof. Due to event E1, we have ∀i ∈ [L]∪{0}, ∀q ∈ [q∗1 , q
∗
2 ], {a ∈ Hi | f̂i(a) ∈ Iq} ⊆ Gi,q. Note that

for q ∈ [q∗1 , q
∗
2 ], ẑq is either 0, or ẑq = 2i

′ · |{a ∈ Hi′ | f̂i′(a) ∈ Iq}| for some i′ satisfying i′ = 0 or
|{a ∈ Hi′ | f̂i′(a) ∈ Iq}| ≥ 8λ/η2. Since ∀q ∈ [q∗1 , q

∗
2 ], ∀i ∈ [L] ∪ {0}, |{a ∈ Hi | f̂i(a) ∈ Iq}| ≤ |Gi,q|,

∀q ∈ [q∗1 , q
∗
2 ], if ẑq 6= 0, there is some i′ ∈ [L] ∪ {0} such that:

ẑq = 2i
′ · |{a ∈ Hi′ | f̂i′(a) ∈ Iq}|

≤ 2i
′ · |Gi′,q|

≤ (1 + η) · zq,

where the second inequality follows from that |Gi′,q| ≥ 8λ/η2 which implies that |Gi′,q|·2i
′ ∈ (1±η)zq

according to event E2.
Therefore,

∑

q∈[q∗1 ,q
∗

2 ]

ẑq · (β(1 + η)q)p

≤(1 + η)
∑

q∈[q∗1 ,q
∗

2 ]

zq · (β(1 + η)q)p

≤(1 + η)
∑

q∈[q∗1 ,q
∗

2 ]

∑

a∈U :fa∈Iq

(β(1 + η)q)p

≤(1 + η)
∑

q∈[q∗1 ,q
∗

2 ]

∑

a∈U :fa∈Iq

fp
a ,

where the first inequality follows from ẑq ≤ (1+η)zq, the second inequality follows from the definition
of zq, i.e., zq = |{a ∈ U | fa ∈ Iq}|, and the last inequality follows from that fa ≥ β(1 + η)q if
fa ∈ Iq.

Define the event E3 as: ∀i ∈ [L] ∩ {0}, ‖Si‖pp ≤ 100(L+ 1) · ‖S‖pp/2i.
Lemma 5.26. E3 happens with probability at least 0.99.

Proof. Consider i ∈ [L]∪{0}. We have E
[

‖Si‖pp
]

=
∑

a∈U Pr[g(a) = i] ·fp
a = ‖S‖pp/2i. By Markov’s

inequality, with probability at least 1− 1/(100(L+ 1)), ‖Si‖pp ≤ 100(L+ 1) · ‖S‖pp/2i. By taking a
union bound over all i ∈ [L] ∪ {0}, E3 happens with probability at least 0.99.

In the remaining of the analysis, we condition on E3 as well.

Lemma 5.27 (Lower bound of estimation of contributing high frequency moment). Condition on
E1, E2, E3.

∑

q∈[q∗1 ,q
∗

2 ]

ẑq · (β(1 + η)q)p ≥ (1− η)p+1 ·
∑

q∈[q∗1 ,q
∗

2 ]:Iq is contributing

∑

a∈U ,fa∈Iq

fp
a

Proof. Consider any contributing q ∈ [q∗1 , q
∗
2 ].

Case 1: zq ≤ 16λ/η2. According to Definition 5.21, we have
∑

a∈U :fa∈Iq
fp
a ≥ η‖S‖pp/(q∗2 − q∗1 + 1)

which implies that η‖S0‖pp/(q∗2 − q∗1 + 1) ≤ zq · (β(1 + η)q+1)p ≤ 16λ/η2 · (1 + η)p · (β(1 + η)q)p.
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Since B ≥ (q∗2 − q∗1 + 1) · 16λ · (1 + η)p/η3, ∀a ∈ U with fa ∈ Iq, fp
a ≥ ‖S0‖pp/B . Therefore, ∀a ∈ U

with fa ∈ Iq, we have a ∈ H0. According to event E1, we have |{a ∈ H0 | f̂0(a) ∈ Iq}| = |G0,q| = zq.
Thus, we have ẑq ≥ |{a ∈ H0 | f̂0(a) ∈ Iq}| ≥ zq.

Case 2: zq > 16λ/η2. Let i∗ ∈ {0}∪ [L] be the largest value such that zq/2i
∗ ≥ 16λ/η2. According

to event E2, we have |Gi∗,q| ≥ 8λ/η2.
Since q is contributing, we have:

zq · (β(1 + η)q+1)p

≥
∑

a∈U :fa∈Iq

fp
a

≥η‖S‖pp/(q∗2 − q∗1 + 1)

≥2i∗ · η‖Si∗‖pp/((q∗2 − q∗1 + 1) · 100(L+ 1)),

where the last inequality follows from event E3. Therefore, we have

(β(1 + η)q)p

≥η‖Si∗‖pp/((q∗2 − q∗1 + 1) · 100(L+ 1) · (zq/2i
∗

) · (1 + η)p)

≥η‖Si∗‖pp/((q∗2 − q∗1 + 1) · 100(L+ 1) · (32λ/η2) · (1 + η)p),

where the last inequality follows from zq/2
i∗ ≤ 32λ/η2. Since B ≥ ((q∗2 − q∗1 + 1) · 100(L + 1) ·

(32λ/η2) · (1 + η)p)/η, we have ∀a ∈ U with a ∈ Gi∗,q, fp
a ≥ ‖Si∗‖pp/B and fa > β(1 + η)q > τ

which implies that a ∈ Hi∗ . According to event E1, we have {a ∈ Hi∗ | f̂i∗(a) ∈ Iq} = Gi∗,q.
Therefore, |{a ∈ Hi∗ | f̂i∗(a) ∈ Iq}| ≥ 8λ/η2. Finally, in addition, according to event E2, we have
ẑq ≥ |{a ∈ Hi∗ | f̂i∗(a) ∈ Iq}| · 2i

∗ ≥ (1− η)zq.
Therefore, in any case, we have ẑq ≥ (1− η)zq, and we have:

∑

q∈[q∗1 ,q
∗

2 ]

ẑq · (β(1 + η)q)p

≥
∑

q∈[q∗1 ,q
∗

2 ]:Iq is contributing

ẑq · (β(1 + η)q)p

≥
∑

q∈[q∗1 ,q
∗

2 ]:Iq is contributing

(1 − η)zq · (β(1 + η)q)p

=
1− η

(1 + η)p

∑

q∈[q∗1 ,q
∗

2 ]:Iq is contributing

∑

a∈U :fa∈Iq

(β(1 + η)q+1)p

≥ 1− η

(1 + η)p

∑

q∈[q∗1 ,q
∗

2 ]:Iq is contributing

∑

a∈U :fa∈Iq

fp
a

≥(1− η)p+1
∑

q∈[q∗1 ,q
∗

2 ]:Iq is contributing

∑

a∈U :fa∈Iq

fp
a ,

where the equality follows from the definition that zq = |{a ∈ U | fa ∈ Iq}|.
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5.4.2 Analysis of Low Frequency Elements

In this section, we show that
∑

l∈[k] ŝl · lp is a good approximation to
∑

l∈[k]

∑

a∈U :fa=l f
p
a .

Lemma 5.28 (Approximation of low frequency moments).
∑

l∈[k] ŝl · lp is a (α, γ · (2τ)p+1)-

approximation to
∑

l∈[k]

∑

a∈U :fa=l f
p
a .

Proof. For l ∈ [k], let sl = |{a ∈ U | fa = l}|. We have:

∑

l∈[k]

ŝl · lp

≥
∑

l∈[k]

(
1

α
· sl − γ) · lp

≥ 1

α
·
∑

l∈[k]

∑

a∈U :fa=l

fp
a − k · γ · kp

≥ 1

α
·
∑

l∈[k]

∑

a∈U :fa=l

fp
a − γ · (2τ)p+1,

where the last inequality follows from that our choice of k implies that k ≤ 2τ . Similarly, we have:

∑

l∈[k]

ŝl · lp

≤
∑

l∈[k]

(α · sl + γ) · lp

≤α ·
∑

l∈[k]

∑

a∈U :fa=l

fp
a − γ · (2τ)p+1.

5.4.3 Putting High Frequency Moments and Low Frequency Moments Together

Lemma 5.29.
∑

contributing I∈I

∑

a∈U :fa∈I f
p
a ≥ (1− η) · ‖S‖pp.

Proof.

∑

contributing I∈I

∑

a∈U :fa∈I

fp
a

=
∑

I∈I

∑

a∈U :fa∈I

fp
a −

∑

non-contributing I∈I

∑

a∈U :fa∈I

fp
a

≥‖S‖pp − (q∗2 − q∗1 + 1) · η · ‖S‖pp/(q∗2 − q∗1 + 1)

≥(1− η) · ‖S‖pp.
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Lemma 5.30. Consider any timestamp t ∈ [T ]. ∀a ∈ U , let fa denote the frequency of a in

a1, a2, · · · , at. With probability at least 0.9, the output F̂p of Algorithm 8 is a
(

max
(

α
1−η , (1 + 2η)p+2

)

, γ · (2τ)p+1
)

-

approximation to ‖S‖pp.

Proof. According to Lemma 5.25 and Lemma 5.27, we have:

(1− η)p+1
∑

q∈[q∗1 ,q
∗

2 ]:Iq is contributing

∑

a∈U ,fa∈Iq

fp
a ≤

∑

q∈[q∗1 ,q
∗

2 ]

ẑq · (β(1 + η)q)p ≤ (1 + η)
∑

q∈[q∗1 ,q
∗

2 ]

∑

a∈U ,fa∈Iq

fp
a .

According to Lemma 5.28, we have:

1

α
·
∑

l∈[k]

∑

a∈U :fa=l

fp
a − γ · (2τ)p+1 ≤

∑

l∈[k]

ŝl · lp ≤ α ·
∑

l∈[k]

∑

a∈U :fa=l

fp
a + γ · (2τ)p+1

Therefore, we have:

F̂p ≥ min

(

1

α
, (1− η)p+1

)

∑

I∈I:I is contributing

∑

a∈U :fa∈I

fp
a − γ · (2τ)p+1

≥ min

(

1− η

α
, (1 − η)p+2

)

‖S‖pp − γ · (2τ)p+1

≥ min

(

1− η

α
,

1

(1 + 2η)p+2

)

‖S‖pp − γ · (2τ)p+1

where the second step follows from Lemma 5.29. Similarly, we have:

F̂p ≤ max(α, 1 + η)
∑

I∈I

∑

a∈U :fa∈I

fp
a + γ · (2τ)p+1

= max(α, 1 + η) · ‖S‖pp + γ · (2τ)p+1

Theorem 5.31 (Streaming continual release ℓp frequency moment estimation). Let p > 0, ε ≥ 0, ξ ∈
(0, 0.5), η ∈ (0, 0.5). There is an ε-DP algorithm in the streaming continual release model such that

with probability at least 1− ξ, it always outputs an

(

1 + η,
(

log(T |U|/ξ)
ηε

)O(max(1,p))
)

-approximation

to ‖S‖pp. The algorithm uses space at most

φ ·
(

log(T |U|/ξ)
ηε

)O(max(1,p))

,

where φ = max(1, |U|1−2/p).

Proof. To boost the probability of the approximation guarantee of Lemma 5.30 to 1 − ξ/3 and
simultaneously for all timestamps t ∈ T , we run ⌈50 log(3T/ξ)⌉ independent copies of Algorithm 8
and take the median of the outputs. Since we run ⌈50 log(3T/ξ)⌉ independent copies of Algorithm 8
and according to Lemma 5.19, if we want the final algorithm to be ε-DP, we need each subroutine
of the streaming continual release of (Hi, f̂i) for i ∈ [L] ∪ {0} to be (ε/(4 · ⌈50 log(3T/ξ)⌉))-DP
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and we need the subroutine of the streaming continual release of {ŝ1, ŝ2, · · · , ŝk} to be (ε/(4 ·
⌈50 log(3T/ξ)⌉))-DP as well. To simultaneously make the call of each subroutine of the streaming
continual release of (Hi, f̂i) over all independent copies of Algorithm 8 satisfy the desired properties
stated in Algorithm 8 with probability at least 1 − ξ/3, we need to make (Hi, f̂i) satisfy the
property for each particular i ∈ [L] ∪ {0} and a particular copy of Algorithm 8 with probability
at least 1 − ξ/(4 · ⌈50 log(3T/ξ)⌉ · (L + 1)). To simultaneously make the call of each subroutine
of the streaming continual release of {ŝ1, ŝ2, · · · , ŝk} over all independent copies of Algorithm 8
satisfy the desired property stated in Algorithm 8 with probability at least 1 − ξ/3, we need to
make {ŝ1, ŝ2, · · · , ŝk} satisfy the desired property for each particular i ∈ [L] ∪ {0} and a particular
copy of Algorithm 8 with probability at least 1− ξ/(3 · ⌈50 log(3T/ξ)⌉). According to Algorithm 8,
we have

B = Θ

(

log(T ) log(|U|) log(log(T |U|)/η) · (1 + η)p

η4

)

.

Thus, according to Theorem 5.10, the size of |Hi| in Algorithm 8 for i ∈ [L] ∪ {0} is at most

poly
(

log(T |U|/ξ)
η

)

· 2O(p). Thus, we choose η′ = 1/
(

poly
(

log(T |U|/ξ)
η

)

· 2O(p)
)

. Then according to

Theorem 5.10, we have

τ =
1

ε
· poly

(

log(T · |U|/ξ)
η

)

· 2O(p).

According to Theorem 5.18, we have α = 1, and we choose γ to be
(

η′′ + η′′
2 · τ

ε
· poly

(

log

(

Tτ

ξ

)))

· ‖S‖0 +
1

ε
· poly

(

log

(

T

ξ

))

+O

(

log τ

η′′2

)

,

where we choose η′′ to be

εη

τO(max(1,p))poly
(

log(T |U|/ξ)
η

) =
1

(

log(T |U|/ξ)
ηε

)O(max(1,p))

such that

γ · (2τ)p+1 ≤ η‖S‖0 +
(

log(T |U|/ξ)
ηε

)O(max(1,p))

≤ η‖S‖pp +
(

log(T |U|/ξ)
ηε

)O(max(1,p))

.

Note that η‖S‖pp becomes the relative error. Thus, according to Lemma 5.30, the output F̂p is an
(

(1 + η)O(max(1,p)),
(

log(T |U|/ξ)
ηε

)O(max(1,p))
)

-approximation.

Next, consider the space usage. According to Theorem 5.10, the total space needed to run all
heavy hitters subroutines is at most

φ · 2O(max(1,p)) · poly
(

log(T |U|/ξ)
η

)

.
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According to Theorem 5.18, the total space needed for computing {ŝ1, ŝ2, · · · , ŝk} for all running
copies of Algorithm 8 is at most

(

log(T |U|/ξ)
ηε

)O(max(1,p))

.

Therefore, the overall space needed is at most

φ ·
(

log(T |U|/ξ)
ηε

)O(max(1,p))

.

6 Extension to Sliding Window Continual Release Algorithms

In this section, we briefly review the smooth histogram Braverman and Ostrovsky [2007] technique
which converts any (non-private) streaming algorithm into (non-private) sliding window algorithm.
The original framework only supports the approximation algorithm which only has relative error
and no additive error. In this section, we show how to extend it to support the additive error as
well.

Suppose there are two streams A = (a1, a2, · · · , at1) and B = (b1, b2, · · · , bt2). We use A ∪ B
to denote the concatenation of two streams, i.e., A ∪ B = (a1, a2, · · · , at1 , b1, b2, · · · , bt2). If B is a
suffix of A, i.e., ∃i ∈ [t1] such that ai = b1, ai+1 = b2, · · · , at1 = bt2 , then we denote it as B ⊆r A.

Definition 6.1 (Smooth function Braverman and Ostrovsky [2007]). Let g(·) be a function over
streams. Function g(·) is (ζ, β)-smooth if:

1. ∀A, 0 ≤ g(A) ≤ poly(T ).

2. ∀A,B with B ⊆r A, g(A) ≥ g(B)

3. For any η ∈ (0, 1), there exists ζ(η, g) and β(η, g) such that

(a) 0 < β ≤ ζ < 1.

(b) If B ⊆r A and (1− β)g(A) ≤ g(B) then (1− ζ)g(A ∪ C) ≤ g(B ∪ C) for any stream C.

Lemma 6.2 (Smoothness of frequency moments Braverman and Ostrovsky [2007]). For p > 1,

‖S‖pp is
(

η,
(

η
p

)p)

-smooth. For 0 < p ≤ 1, ‖S‖pp is (η, η)-smooth. ‖S‖0 is (η, η)-smooth.

Lemma 6.3. Let 0 ≤ Z ≤ poly(T ). If g(S) := ‖S‖pp + Z, then g(·) is
(

η,
(

η
p

)p)

-smooth if p > 1

and g(·) is (η, η)-smooth if 0 < p ≤ 1. If g(S) = ‖S‖0 + Z, g(·) is (η, η)-smooth.

Proof. For g(·) stated in the lemma statement, the first two requirements in Definition 6.1 are
satisfied obviously. Therefore, we only need to justify the third requirement of Definition 6.1.

Let us consider A and B such that B ⊆r A and (1−β)g(A) ≤ g(B). Consider any stream C. We
are going to prove (1 − ζ)g(A ∪ C) ≤ g(B ∪ C). Consider the case g(S) = ‖S‖pp + Z. We construct
an auxiliary stream X such that the elements of X do not appear in any of A,B, C and ‖X‖pp = Z.
Then, we have (1−β)‖A∪X‖pp = (1−β)g(A) ≤ g(B) = ‖B ∪X‖pp. Due to the smoothness of ‖S‖pp
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(Lemma 6.2), we have (1− ζ)g(A∪C) = (1− ζ)‖A∪X ∪C‖pp ≤ ‖B∪X ∪C‖pp = g(B∪C). According

to Lemma 6.2, g(·) is
(

η,
(

η
p

)p)

-smooth if p > 1 and g(·) is (η, η)-smooth if 0 < p ≤ 1.

Similarly, using the similar argument by constructing ‖X‖0 = Z, we can show that g(S) =
‖S‖0 + Z is (η, η)-smooth.

Lemma 6.4. Let α ≥ 1, γ ≥ 0. If g′ is an (α, γ)-approximation to g, then g′ + Z is an α-
approximation to g + Z if Z ≥ α

α−1 · γ.

Proof. We have:

g′ + Z ≥ 1

α
· g − γ + Z

≥ 1

α
· g − α− 1

α
· Z + Z

≥ 1

α
· (g + Z).

On the other hand,

g′ + Z ≤ α · g + γ + Z

≤ α · g + (α− 1)Z + Z

≤ α · (g + Z).

Theorem 6.5 (Smooth histogram algorithmic framework Braverman and Ostrovsky [2007]). Let
η ∈ (0, 0.5). Let g(·) be an (ζ, β)-smooth function. If there exists a streaming algorithm Λ which
maintains an ( 1

1−η )-approximation of g(·) simultaneously for all timestamps t ∈ [T ] with probability

at least 1 − ξ, using space h(η, ξ), then there is a sliding window algorithm Λ′ that maintains a
(

1
1−η−ζ

)

-approximation of g(·) over sliding windows simultaneously for all timestamps t ∈ [T ] with

probability at least 1− ξ and uses space O
(

log T
β · h(η, ξβ/ log(T ))

)

.

Furthermore, at any timestamp t ∈ [T ], Λ′ starts a new instance of Λ which regards the t-th
element in the stream as the beginning of the stream, and Λ′ only keeps at most O(log(T )/β) past
instances of Λ (started from different timestamps). The output of Λ′ at any timestamp t only depends
on the outputs of its maintained instances Λ, and the decision of whether keeping an instance Λ to
timestamp t+ 1 only depends on the outputs of its maintained instances Λ at timestamp t as well.

We are able to extend the above smooth histogram framework to the differentially private
continual release setting.

Theorem 6.6 (Smooth histogram for differentially private continual release model). Let g(·) be
an (ζ, β)-smooth function. If there exists a ε′-DP streaming continual release algorithm Λ which

maintains an
(

1
1−η

)

-approximation of g(·) simultaneously for all timestamps t ∈ [T ] with probability

at least 1 − ξ, using space h(η, ξ), then there is a ε-DP sliding window continual release algorithm

Λ′ with ε = O(ε′β/ log(T )) which maintains a
(

1
1−η−ζ

)

-approximation of g(·) over sliding windows

for all timestamps t ∈ [T ] with probability at least 1− ξ and uses space O
(

log T
β · h(η, ξβ/ log(T ))

)

.
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Proof. The approximation guarantee, space guarantee and success probability follows from Theo-
rem 6.5 directly. In the remaining of the proof, we prove the DP guarantee.

Let Λ1,Λ2, · · · ,ΛT be instances of Λ where Λt is started at timestamp t. Let ot,1, ot,2, · · · , ot,T
be the outputs of Λt, if at timestamp j, Λt is not started yet or is already kicked out by Λ′, then
ot,j =⊥. According to Theorem 6.5, the outputs of Λ′ over all timestamps t ∈ [T ] is determined
by {oi,j | i, j ∈ [T ]}. Thus, we only need to show that {oi,j | i, j ∈ [T ]} is ε-DP. Consider two
neighboring streams S and S ′ where only the r-th elements are different. Let us fix a possible
configuration {oi,j | i, j ∈ [T ]}. According to Theorem 6.5, there are at most O(log(T )/β) different
i ∈ [T ] such that oi,r 6=⊥. Let such set of i to be I. Since each Λi for i ∈ I is ε′-DP in the streaming
continual releasing setting, we have:

Pr [∀i ∈ I, j ∈ [T ], oi,j(S) = oi,j ] ≤ exp(ε′ · |I|) · Pr [∀i ∈ I, j ∈ [T ], oi,j(S ′) = oi,j ]

≤ exp(ε) · Pr [∀i ∈ I, j ∈ [T ], oi,j(S ′) = oi,j ] .

On the other hand, we have:

Pr [∀i 6∈ I, j ∈ [T ], oi,j(S) = oi,j | oi,j(S) = oi,j∀i ∈ I, j ∈ [T ]]

=Pr [∀i 6∈ I, j ∈ [T ], oi,j(S ′) = oi,j | oi,j(S ′) = oi,j∀i ∈ I, j ∈ [T ]]

Therefore, the algorithm is ε-DP.

By combining Theorem 3.3 with Lemma 6.3, Lemma 6.4 and Theorem 6.6, we are able to obtain
the following sliding window continual release algorithm for summing non-negative numbers.

Corollary 6.7 (Sliding window summing of a non-negative numbers). Let η ∈ (0, 0.5), ε ≥ 0, ξ ∈
(0, 0.5), there is an ε-DP algorithm for summing in the sliding window continual release model. If
the input numbers are guaranteed to be non-negative, with probability at least 1 − ξ, the output is

always a
(

1 + η,O
(

log(T/(ηξ)) log(T )
εη3

))

-approximation to the summing problem at any timestamp

t ∈ [T ]. The algorithm uses space O(log(T )/η).

By combining Corollary 4.11 with Lemma 6.3, Lemma 6.4 and Theorem 6.6, we are able to
obtain the following sliding window continual release algorithm for number of distinct elements.

Corollary 6.8 (Sliding window continual release distinct elements). For η ∈ (0, 0.5), ε ≥ 0, ξ ∈
(0, 0.5) there is an ε-DP algorithm for the number of distinct elements of streams with element
universe U in the sliding window continual release model. With probability at least 1− ξ, the output

is always a (1+η,O
(

log2(T/(ηξ)) log(T )
η4ε

)

)-approximation for every timestamp t ∈ [T ]. The algorithm

uses poly
(

log(T/ξ)
ηmin(ε,1)

)

space.

By combining Theorem 5.4 with Lemma 6.3, Lemma 6.4 and Theorem 6.6, we are able to obtain
the following sliding window continual release algorithm for ℓ2 frequency moment.

Corollary 6.9 (Sliding window continual release ℓ2 frequency moments). Let ε > 0, η ∈ (0, 0.5), ξ ∈
(0, 0.5). There is an ε-DP algorithm in the sliding window continual release model such that with
probability at least 1− ξ, it always outputs F̂2 for every timestamp t ∈ [T ] such that |F̂2 − ‖S‖22| ≤
η‖S‖22+O

(

(log(T/(ξη))+log(|U|))2 log2(T )
ε2η8 · log5(T ) · log2

(

log(T/ξ)+log(|U|)
ξη

))

, where S denotes the sub-

stream corresponding to the latest W elements at timestamp t. The algorithm uses O
(

log(T/(ξη))+log(|U|)
η4 · log2(T )

)

space.
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By combining Theorem 5.31 with Lemma 6.3, Lemma 6.4 and Theorem 6.6, we are able to
obtain the following sliding window continual release algorithm for ℓp frequency moment.

Corollary 6.10 (Sliding window continual release ℓp frequency moments). Let p > 0, ε ≥ 0, ξ ∈
(0, 0.5), η ∈ (0, 0.5). There is an ε-DP algorithm in the sliding window continual release model such

that with probability at least 1− ξ, it always outputs an

(

1 + η,
(

log(T |U|/ξ)
ηε

)O(p)
)

-approximation to

‖S‖pp, where S denotes the sub-stream corresponding to the latest W elements at timestamp t. The
algorithm uses space at most

φ ·
(

log(T |U|/ξ)
ηε

)O(p)

,

where φ = max(1, |U|1−2/p).
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A Missing Details of Section 3

A.1 Proof of Lemma 3.1

Proof. We first show that the output groups G1, G2, · · · , Gm is ε0-DP. Let O1, O2, · · · , Om be any
fixed grouping. Let c′1, c

′
2, · · · , c′T be any neighboring stream, i.e., ∃q ∈ [T ] such that |cq − c′q| ≤

1 and ∀j 6= q, cj = c′j . Let G′
1, G

′
2, · · · , G′

m′ be the output groups of the neighboring stream.
Suppose q ∈ Or for some r ∈ [m]. Let us consider Pr [(G1, G2, · · · , Gm) = (O1, O2, · · · , Om)] and
Pr [(G′

1, G
′
2, · · · , G′

m′) = (O1, O2, · · · , Om)] (in this case m′ = m). We have:

Pr [(G1, G2, · · · , Gm) = (O1, O2, · · · , Om)]

Pr [(G′
1, G

′
2, · · · , G′

m) = (O1, O2, · · · , Om)]

=
Pr [(G1, G2, · · · , Gr−1) = (O1, O2, · · · , Or−1)]

Pr
[

(G′
1, G

′
2, · · · , G′

r−1) = (O1, O2, · · · , Or−1)
] · Pr [Gr = Or | (G1, G2, · · · , Gr−1) = (O1, O2, · · · , Or−1)]

Pr
[

G′
r = Or | (G′

1, G
′
2, · · · , G′

r−1) = (O1, O2, · · · , Or−1)
]

· Pr [(Gr+1, Gr+2, · · · , Gm) = (Or+1, Or+2, · · · , Om) | (G1, G2, · · · , Gr) = (O1, O2, · · · , Or)]

Pr
[

(G′
r+1, G

′
r+2, · · · , G′

m) = (Or+1, Or+2, · · · , Om) | (G′
1, G

′
2, · · · , G′

r) = (O1, O2, · · · , Or)
]

Since ∀j ∈ O1∪O2∪· · ·∪Or−1, cj = c′j , the behavior of running Algorithm 1 on the prefix O1∪O2∪
· · ·∪Or−1 of c1, c2, · · · , cT is the same as the behavior of running it on the prefix O1∪O2∪· · ·∪Or−1

of c′1, c
′
2, · · · , c′T . Therefore, we have Pr[(G1,G2,··· ,Gr−1)=(O1,O2,··· ,Or−1)]

Pr[(G′

1,G
′

2,··· ,G
′

r−1)=(O1,O2,··· ,Or−1)]
= 1. Similarly, since ∀j ∈
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Or+1∪Or+2∪· · ·∪Om, cj = c′j , when Gr = G′
r = Or, the behavior of running Algorithm 1 on the suf-

fix Or+1∪Or+2∪· · ·∪Om of c1, c2, · · · , cT is the same as the behabior of running it on the same suffix
of c′1, c

′
2, · · · , c′T . Therefore, we have Pr[(Gr+1,Gr+2,··· ,Gm)=(Or+1,Or+2,··· ,Om)|(G1,G2,··· ,Gr)=(O1,O2,··· ,Or)]

Pr[(G′

r+1,G
′

r+2,··· ,G
′
m)=(Or+1,Or+2,··· ,Om)|(G′

1,G
′

2,··· ,G
′
r)=(O1,O2,··· ,Or)]

.

Thus, we have:

Pr [(G1, G2, · · · , Gm) = (O1, O2, · · · , Om)]

Pr [(G′
1, G

′
2, · · · , G′

m) = (O1, O2, · · · , Om)]

=
Pr [Gr = Or | (G1, G2, · · · , Gr−1) = (O1, O2, · · · , Or−1)]

Pr
[

G′
r = Or | (G′

1, G
′
2, · · · , G′

r−1) = (O1, O2, · · · , Or−1)
] .

Suppose Or = {x+ 1, · · · , x+ k}.
Consider the first case where r 6= m. In this case, we have

Pr [Gr = Or | (G1, G2, · · · , Gr−1) = (O1, O2, · · · , Or−1)]

=Pr [Gr = Or | Gr−1 = Or−1]

=Pr

[(

∀j ∈ [k − 1], νx+j +

j
∑

b=1

cx+b < τr

)

∧

(

νx+k +
k
∑

b=1

cx+b ≥ τr

)]

.

Now, let us fix νx+1, νx+2, · · · , νx+k−1 and let g = maxj∈[k−1] νx+j +
∑j

b=1 cx+b. Then,

Pr
νx+k,τr

[Gr = Or | Gr−1 = Or−1]

= Pr
νx+k,τr

[

τr ∈ (g, νx+k +

k
∑

b=1

cx+b]

]

=

∫ ∞

−∞

∫ ∞

−∞

pνx+k
(v) · pτr(τ) · 1

(

τ ∈ (g, v +

k
∑

b=1

cx+b)

)

dvdτ (3)

where pνx+k
(·) and pτr(·) are density functions of νx+k and τr respectively. Let g′ = maxj∈[k−1] νx+j+

∑j
b=1 c

′
x+b. Let v′ = v + g − g′ +

∑k
b=1 c

′
x+b −

∑k
b=1 cx+b. Let τ ′ = τ + g − g′. Since |cq − c′q| ≤ 1,

it is easy to see that |v′ − v| ≤ 2 and |τ − τ ′| ≤ 1. Note that dv′ = dv and dτ ′ = dτ . Therefore,
Equation (3) is equal to the following:

∫ ∞

−∞

∫ ∞

−∞

pνx+k
(v′) · pτr(τ ′) · 1

(

τ + g − g′ ∈
(

g, v + g − g′ +
k
∑

b=1

c′x+b

))

dvdτ

=

∫ ∞

−∞

∫ ∞

−∞

pνx+k
(v′) · pτr(τ ′) · 1

(

τ ∈
(

g′, v +

k
∑

b=1

c′x+b

))

dvdτ

≤
∫ ∞

−∞

∫ ∞

−∞

exp(ε0/2) · pνx+k
(v) · exp(ε0/2) · pτr(τ) · 1

(

τ ∈
(

g′, v +

k
∑

b=1

c′x+b

))

dvdτ

=exp(ε0) · Pr
νx+k,τr

[

τr ∈ (g′, νx+k +

k
∑

b=1

c′x+b]

]

=exp(ε0) · Pr
νx+k,τr

[

G′
r = Or | G′

r−1 = Or−1

]
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=exp(ε0) · Pr
νx+k,τr

[

G′
r = Or | (G′

1, G
′
2, · · · , G′

r−1) = (O1, O2, · · · , Or−1)
]

.

Next, consider the second case where r = m. In this case, we have

Pr [Gr = Or | (G1, G2, · · · , Gr−1) = (O1, O2, · · · , Or−1)]

=Pr [Gr = Or | Gr−1 = Or−1]

=Pr

[

∀j ∈ [k], νx+j +

j
∑

b=1

cx+b < τr

]

.

Now, let us fix νx+1, νx+2, · · · νx+k and let g = maxj∈[k] νx+j +
∑j

b=1 cx+b. Let g′ = maxj∈[k] νx+j +
∑j

b=1 c
′
x+b. Since |cq − c′q| ≤ 1, we have |g − g′| ≤ 1. Then,

Pr
τr

[τr > g] ≤ exp(ε0) · Pr
τr

[τr > g′] .

Thus, we have

Pr [Gr = Or | (G1, G2, · · · , Gr−1) = (O1, O2, · · · , Or−1)]

≤ exp(ε0) · Pr
[

G′
r = Or | (G′

1, G
′
2, · · · , G′

r−1) = (O1, O2, · · · , Or−1)
]

.

Therefore, we can conclude that (G1, G2, · · · , Gm) is always ε0 DP.
Notice that, given any fixed (O1, O2, · · · , Om) and condition on (G1, G2, · · · , Gm) = (O1, O2, · · · , Om),

ĉ1, ĉ2, · · · , ĉT is ε0-DP by Laplace mechanism. Thus, by composition theorem, the output stream
ĉ1, ĉ2, · · · , ĉT is ε-DP.

A.2 Proof of Lemma 3.2

Let G1, G2, · · · , Gm be the groups produced during Algorithm 1. Let c̃1, c̃2, · · · , c̃m be that ∀i ∈
[m], c̃i = ĉmax(Gi), i.e., c̃i is the noisy count of the group Gi.

Lemma A.1. With probability at least 1−ξ, the output stream of Algorithm 1 satisfies the following
properties:

1. ∀i ∈ [m− 1],
∑

j∈Gi\{maxj′∈Gi
j′} cj ≤ 7

ηε0
· ln (3 · T/ξ) + 13

ε0
· ln(3 · T/ξ).

2.
∑

j∈Gm
cj ≤ 7

ηε0
· ln (3 · T/ξ) + 13

ε0
· ln(3 · T/ξ).

3. ∀i ∈ [m− 1], (1− η)
∑

j∈Gi
cj ≤ c̃i ≤ (1 + η)

∑

j∈Gi
cj.

Proof. Let E denote the event that

1. ∀i ∈ [m],
∣

∣

∣
τi −

(

1
η + 1

)

· 7
ε0
· ln (3 · T/ξ)

∣

∣

∣
≤ 2

ε0
· ln (3 · T/ξ).

2. ∀t ∈ [T ], |νt| ≤ 4
ε0
· ln (3 · T/ξ).

3. ∀i ∈ [m− 1], |c̃i −
∑

j∈Gi
cj | ≤ 1

ε0
· ln(3 · T/ξ)
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According to the CDF of Laplace noise, it is easy to show that E happens with probability at least
1− ξ by a union bound over all i ∈ [m], t ∈ [T ]. In the remaining of the proof we condition on the
event E .

Consider property 1. Consider any i ∈ [m − 1]. Let t = maxj∈Gi
j − 1. Then we have

νt +
∑

j∈Gi,j≤t cj ≤ τi. Since |νt| ≤ 4
ε0
· ln (3 · T/ξ) and τi ≤ 7

η·ε0
· ln (3 · T/ξ) + 9

ε0
· ln(3 · T/ξ), we

have
∑

j∈Gi,j≤t cj ≤ 7
ηε0
· ln(3 · T/ξ) + 13

ε0
· ln(3 · T/ξ).

The proof of property 2 is the same as the proof of property 1.
Consider property 3. Consider any i ∈ [m − 1]. Let t = maxj∈Gi

j. Then we have νt +
∑

j∈Gi
cj ≥ τi. Since |νt| ≤ 4

ε0
· ln (3 · T/ξ) and τi ≥ 7

η·ε0
· ln (3 · T/ξ) + 5

ε0
· ln(3 · T/ξ), we

have
∑

j∈Gi
cj ≥ 7

ηε0
· ln(3 · T/ξ). Note that |c̃i −

∑

j∈Gi
cj | ≤ 1

ε0
· ln (3 · T/ξ). Thus, we know that

∑

j∈Gi
cj ≥ 7

ηε0
·ln (3 · T/ξ). Thus, ∀i ∈ [m−1] we have (1−η)∑j∈Gi

cj ≤ c̃i ≤ (1+η)
∑

j∈Gi
cj .

Now, we are able to prove Lemma 3.2.

Proof of Lemma 3.2. With probability at least 1− ξ, the properies listed in Lemma A.1 hold.
Let l′ ∈ [m] be the smallest index such that maxj∈Gl′

j ≥ l and r′ ∈ [m] be the largest index
such that maxj∈Gr′

j ≤ r.
We have:

r
∑

j=l

ĉj =

r′
∑

j′=l′

c̃j′

≥(1− η)

r′
∑

j′=l′

∑

j∈Gj′

cj −
(

7

ηε0
· ln (3 · T/ξ) + 13

ε0
· ln(3 · T/ξ)

)

≥(1− η)

maxb∈G
r′

b
∑

j=l

cj −
(

7

ηε0
· ln (3 · T/ξ) + 13

ε0
· ln(3 · T/ξ)

)

≥(1− η)

r
∑

j=l

cj −
7

ηε0
· ln (3 · T/ξ)− 26

ε0
· ln (3 · T/ξ) ,

where the first inequality follows from property 3 and property 2 of Lemma A.1, the second inequal-
ity follows from the choice of l′, and the third inequality follows from property 1 of Lemma A.1.

Similarly, we can show

r
∑

j=l

ĉj =

r′
∑

j′=l′

c̃j′

≤(1 + η)

r′
∑

j′=l′

∑

j∈Gj′

cj +

(

7

ηε0
· ln (3 · T/ξ) + 13

ε0
· ln(3 · T/ξ)

)

≤(1 + η)

r
∑

j=minb∈G
l′

b

cj +

(

7

ηε0
· ln (3 · T/ξ) + 13

ε0
· ln(3 · T/ξ)

)

≤(1 + η)

r
∑

j=l

cj +
7

ηε0
· ln (3 · T/ξ) + 26

ε0
· ln (3 · T/ξ) ,
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where the first inequality follows from property 3 and property 2 of Lemma A.1, the second inequal-
ity follows from the choice of r′, and the third inequality follows from property 1 of Lemma A.1.
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