
Brahmic Schwa-Deletion with Neural Classifiers: Experiments with Bengali

Cibu Johny, Martin Jansche

Google AI, London, United Kingdom
{cibu, mjansche}@google.com

Abstract
The Brahmic family of writing systems is an alpha-syllabary, in
which a consonant letter without an explicit vowel marker can
be ambiguous: it can either represent a consonant phoneme or
a CV syllable with an inherent vowel (“schwa”). The schwa-
deletion ambiguity must be resolved when converting from text
to an accurate phonemic representation, particularly for text-to-
speech synthesis. We situate the problem of Bengali schwa-
deletion in the larger context of grapheme-to-phoneme conver-
sion for Brahmic scripts and solve it using neural network clas-
sifiers with graphemic features that are independent of the script
and the language. Classifier training is implemented using Ten-
sorFlow and related tools. We analyze the impact of both train-
ing data size and trained model size, as these represent real-life
data collection and system deployment constraints. Our method
achieves high accuracy for Bengali and is applicable to other
languages written with Brahmic scripts.
Index Terms: Schwa-deletion, grapheme-to-phoneme, Bengali,
Brahmic scripts, phonology, TensorFlow, neural networks

1. Introduction
The English word table exists as a loanword in Bengali, where it
is pronounced /ʈebil/1. In Bengali script – also known as Eastern
Nagari, a prominent member of the Brahmic family [1] – this is
written as টিবল. It is divided into three parts, one of which is
ট followed by িব and ল. The first, ট, represents the syllable

/ʈe/ and consists of the consonant letter ট (indicating /ʈ/) and
the modifier ◌ appearing on its left and indicating /e/. This
illustrates the workings of an alpha-syllabary [2] or abugida: in
this type of writing system, consonant letters like ট and ব can
support vowel modifiers, which attach to them. A typical visual
cluster represents a consonant-vowel (CV) syllable: ট is read
/ʈe/ and িব is read /bi/.

This raises two related questions: How should a consonant
sound be written when it is not followed by a vowel? And how
should a consonant letter be read if no modifier is attached?

In an abugida an unmodified consonant is thought to carry
an inherent vowel and is read as a CV syllable. The precise pho-
netic quality of that vowel varies across languages, and some-
times within the same language. Following established conven-
tions, we refer to the inherent vowel as schwa. We use that term
in a purely graphemic sense, without any phonetic implications.

The English word ball is pronounced /bɔl/ as a loanword in
Bengali. Its written representation বল consists of two unmodi-
fied consonant letters already familiar from above. The default
reading of the inherent vowel in Bengali is /ɔ/, and so plain ব is
read /bɔ/. We say that schwa has been phonetically realized.

In both বল /bɔl/ and the earlier example টিবল /ʈebil/ the
last letter ল has no modifiers attached and represents the final
consonant sound. The inherent vowel of ল is not realized pho-
netically. We say that schwa has been deleted.

1Phonetic transcriptions are written with IPA symbols inside slashes.

Table 1: The words car and bus as loanwords in various lan-
guages, shown in native orthography and transliteration

Group Languages Orth. Trans. Orth. Trans.

1 Bengali কার kār@ বাস bās@
Hindi, Marathi, Nepali कार kār@ बस b@s@
Gujarati કાર kār@ બસ b@s@

2 Sinhala කා kār බ b@s
Malayalam കാർ kār ബസ് b@s
Tamil கா kār ப p@s

The phenomenon of schwa deletion arises in several lan-
guages written in Brahmic scripts, including in Hindi [3, 4],
Punjabi [5] in Brahmic Gurmukhi (as opposed to Perso-Arabic
Shahmukhi) script, Marathi [6, 7], and others. Choudhury
et al. [8] approach the problem diachronically for several lan-
guages, including Bengali.

Schwa deletion does not affect the entire Brahmic fam-
ily. To show the absence of an inherent vowel, most Brah-
mic scripts can make use of ligatures and of an explicit vowel
suppression mark, generically called virama following Sanskrit/
Unicode conventions. One subset of languages – including San-
skrit, Sinhala, and the major Dravidian languages – requires ex-
plicit signaling of schwa deletion: a consonant without an inher-
ent vowel must appear in ligated form or carry a visible virama;
otherwise the inherent vowel is always realized.

The cross-linguistic situation is illustrated in Table 1. For
easy comparison a uniform alphabetic transliteration (based on
[9] and purely graphemic) is shown alongside the native abugida
orthographies. Bengali and other languages in Group 1 do not
explicitly suppress the final schwa: phonetically both car and
bus end in a consonant, but this fact is not indicated in the or-
thography and must be inferred. Hindi ⟨kār@⟩2, and ⟨b@s@⟩
contrast with Sinhala ⟨kār⟩ and ⟨b@s⟩. Sinhala and the Dra-
vidian languages in Group 2 consistently use a visible virama
(sometimes ligated in Malayalam) on the last letter of each
word. Group 2 has a straightforward answer to our first ques-
tions: How should a consonant sound be written when it is not
followed by a vowel? The consonant letter must be explicitly
marked as lacking a vowel.

Such simple conventions are absent from Group 1 lan-
guages, not only those listed in Table 1 but also Punjabi and
Kashmiri in Brahmic scripts, Bhojpuri, Maithili, Assamese, Syl-
heti, and others. Consequently Group 1 has no straightforward
answer to our second question: How should a consonant letter
be read if no modifier is attached? As the words बस ⟨b@s@⟩
/bəs/ in Hindi and বল ⟨b@l@⟩ /bɔl/ in Bengali illustrate, the
inherent vowel can either be realized or deleted. This paper de-
scribes a general method for resolving this ambiguity.

2Brahmic graphemes are transliterated to the Latin script inside ⟨⟩.
The inherent vowel is represented by ⟨@⟩ unless it has been explicitly
suppressed, in which case no corresponding vowel symbol is written.

The 6th Intl. Workshop on Spoken Language Technologies for Under-Resourced Languages
29-31 August 2018, Gurugram, India

259 10.21437/SLTU.2018-54

http://www.isca-speech.org/archive/SLTU_2018/abstracts/Cibu.html


Table 2: Illustration of g2p stages and schwa outcomes

Representation stage Example
processing step

1 Orthography ক ম ল ন গ র
↓ transliterate

2 Abstract graphemes, with schwa k @ m @ l @ n @ g @ r @
↓ resolve schwa

3 Abstract graphemes, no schwa k a m a l n a g a r
↓ convert to phonemes

4 Phonemes k ɔ m o l n ɔ g o r

2. Background
The task of relating a written representation of a word to a
phonemic representation is known as grapheme-to-phoneme
conversion, or g2p for short. It is a common building block in
several larger tasks, including transliteration [7], speech recog-
nition, and text-to-speech synthesis (TTS) [3, 4], where the need
for highly accurate pronunciations is especially acute.

2.1. Grapheme-to-phoneme conversion for Brahmic

The wide variety of Brahmic scripts used for writing South
Asian languages creates both complexities and opportunities.
The sheer diversity of scripts is an obstacle, but their similar
workings provide an opportunity for applying a single generic
solution to many similar problems. Our larger aim – beyond the
scope of this paper – is towards generic grapheme-to-phoneme
for Brahmic across similar languages, with minimal language-
specific customization. A generic approach must arguably be
able to deal with the schwa deletion phenomenon, as it affects a
large group of languages to various degrees.

We conceive of schwa resolution as one module in a mul-
tistage process outlined in Table 2 which converts script char-
acters (Stage 1) to phonemes (Stage 4). Table 2 illustrates
the processing stages and steps using the Bengali place name
কমলনগর (Kamalnagar), pronounced /kɔmolnɔgor/.

The first processing step – shared with a large body of re-
lated work on South Asian languages – is to transliterate the na-
tive script to an abstract grapheme representation (Stage 2). We
use a modified version of ISO Romanization [9], solving two
problems: First, it reduces complexity by mapping many differ-
ent scripts (Devanagari, Eastern Nagari, Gurmukhi, etc.) into a
single representation. Second, by mapping into Latin characters
(as opposed to Devanagari, for example) the abstract grapheme
representation (Stage 2 and 3) becomes alphabetic, matching
the “size” of the alphabetic phoneme representation (Stage 4).
In other words, the first processing step converts many different
abugidas into a single alphabet.

The second processing step resolves each schwa grapheme
⟨@⟩ by either deleting it or replacing it with the grapheme ⟨a⟩.
In the example in Table 2, we can see that the first and second
instance of schwa become ⟨a⟩, while the third one gets deleted.
As this step operates on the abstract graphemes, it allows for the
possibility to make it language- and script-agnostic. The rest of
this paper describes this step in detail.

The third processing step converts from abstract graphemes
to phonemes. Even when large portions of the phoneme inven-
tories may be shared among languages, this step is necessarily
language-specific. As mentioned earlier, the precise phonetic
details of the inherent vowel depend on the language. In the
Bengali example in Table 2, some realized schwas surface as
/ɔ/, while others surface as /o/. This is largely a consequence of

Table 3: Comparison of schwa deletion in Hindi and Bengali

Language Orthography Transliteration Phonemes

Hindi राम rām@ ram
Bengali রাম rām@ ram

Hindi आठ सौ āṭ@ sau aʈsɔ
Bengali আটশ āṭ@ś@ aʈʃo

Hindi कम k@rm@ kərm
Bengali কম k@rm@ kɔrmo

Hindi अपया त ap@ryāpt@ əpərjapt
Bengali অপযা ap@ryāpt@ ɔpɔrdʒapto

larger g2p and phonological regularities in Bengali.3 For exam-
ple the raising of /ɔ/ to /o/ generally affects all occurrences of /ɔ/,
regardless of whether they arose from an inherent vowel or from
the independent vowel letter অ ⟨a⟩. It also parallels the raising
of /ɛ/ to /e/ in Bengali. In the context of Bengali TTS [11] our
preferred approach is to train sequence-to-sequence models on
annotated data. For other languages, hand-written rewrite rules
go a long way. Details are beyond the scope of the current paper.

2.2. Schwa deletion in Bengali compared with Hindi

Schwa deletion is a well-studied phenomenon of Hindi [3, 4].
Bengali shares some similarities, but differs in important ways.

Table 3 compares cognates between Hindi and Bengali.
Words like the name Ram that end in simple final consonants
are written and pronounced essentially the same in Hindi and
Bengali: the final schwa deletes. On the other hand, in the com-
pound word আটশ ⟨āṭ@ś@⟩ (eight hundred) the middle schwa
deletes and the final schwa is pronounced.

Hindi has a very strong prohibition against final schwa.
While this is a general preference in Bengali as well, a simi-
larly strong restriction does not exist there. In fact, in several
situations a final schwa must be pronounced in Bengali, when
it would be deleted in the corresponding Hindi word. One large
and systematic class of exceptions are those that end in conso-
nant clusters in Hindi and in the corresponding cluster followed
by /o/ in Bengali. Table 3 lists several examples.

Another systematic class of contexts where schwa deletion
is difficult in Bengali are certain inflected verb forms. Roughly
speaking, Bengali has several classes of consonant-stem verbs.
The verb বল- /bɔl-/ (to speak) has inflected forms বলা /bɔla/,
বিল /boli/, বেল /bɔle/ and /bole/4, etc. The inflected form /bɔlo/
is often written as বল ⟨b@l@⟩, i.e. the final schwa must be pro-
nounced. Deleting the final schwa in বল and pronouncing it
as /bɔl/ changes the meaning to ball, an accidental homograph.
The inflected form /bolte/ is written বলেত ⟨b@l@te⟩. Writing
it instead with a ligated form as বে ⟨b@lte⟩ would be highly
unusual as that would obscure the shape of the stem বল-. To
summarize, in the verb form ⟨b@l@⟩ the inherent vowel in ⟨l@⟩
must be pronounced; but in the related form ⟨b@l@te⟩ the inher-
ent vowel in ⟨l@⟩ must be deleted. The latter situation is similar
to Hindi बोलते ⟨bol@te⟩, but the occurrence of /-o/ in verb end-
ings in Bengali has no analogue in Hindi that would give rise to
similar problems there.

Crucially, Bengali has several homographs related to schwa

3The phonemic ambiguity of the realized schwa is arguably the next
most important problem in Bengali g2p, second only to schwa deletion.
This problem is not restricted to Bengali either. It also features promi-
nently in Sinhala [10], where the inherent vowel is ambiguous between
/a/ and /ə/. This also shows that the problem of phoneme conversion is
independent of schwa deletion, as Sinhala lacks schwa deletion per the
discussion around Table 1.

4A systematic class of frequent homographs, noted in passing.

260



Table 4: Entries from the aligned Bengali pronunciation lexicon

Orthography Graphemes
Phonemes

অকথ a k @ tʰ ỹ @
ɔ k o t tʰ o

অকপট a k @ p @ ṭ @
ɔ k o p ɔ ʈ

deletion that can only be resolved contextually. We saw that বল
⟨b@l@⟩ is a homograph (/bɔlo/ vs. /bɔl/), and so are other fre-
quent words like হল ⟨h@l@⟩ (/holo/ vs. /hɔl/) or কান ⟨kon@⟩
(/kono/ vs. /kon/). Without contextual homograph disambigua-
tion, schwa deletion is inherently ambiguous.

2.3. Related work

The schwa deletion problem can be viewed as a simple binary
classification task: For each occurrence of the grapheme ⟨@⟩,
decide whether it should be deleted or not. As in the existing lit-
erature, we evaluate quality in terms of classification accuracy.

The algorithm by Narasimhan et al. [3] uses morphologi-
cal analysis with finite state transducers and cost models. It
achieves 89% accuracy for Hindi schwa deletion.

The Epitran tool [12] adopts the same approach for Bengali.
It uses the following regular expression contexts:

1. Schwa preceding a vowel (_V).
2. Schwa at the end of a word, following a vowel and con-

sonants sequence (VC+_$).
3. Schwa sandwiched between vowel + consonant and con-

sonant + vowel (VC_CV).
Chaudhary et al. [8] employ a diachronically motivated ap-

proach for Hindi schwa deletion that uses hand-written regu-
lar expression constraints. It achieves an accuracy of 96% for
Hindi. With additional word-morphology information, this in-
creases up to 99.9%.

Tyson and Nagar [4] construct an algorithm that uses sylla-
ble structure and stress assignment for words of two and three
syllables for schwa deletion in Hindi, with an accuracy of 94%.

All of the above algorithms require significant linguistic
knowledge. They use regular expressions that describe the trig-
gering environments for schwa deletion, they use curated con-
sonant cluster datasets, require syllabification, morphological
analysis, and prosodic modeling. Moreover, aside from [8], all
approaches are highly language-specific.

3. Method, data, and evaluation
Our approach is knowledge-lean and data-intensive. We train
off-the-shelf neural network classifiers on data derived from a
Bengali pronunciation lexicon, optimize hyper-parameters on a
validation set, and evaluate on a held-out test set.

We started with a Bengali pronunciation lexicon5 that had
been built for use in a TTS system [11]. It contains more than
60,000 entries in Bengali script. Each entry consists of an or-
thographic string and a corresponding phoneme string that had
been transcribed by native-speaker experts.

We transliterated the Bengali spellings into the abstract
graphemic representation described above. We then force-
aligned the abstract graphemes and phonemes for each entry
based on the parametric approach described in [13]. This re-
sulted in an aligned dataset over pairs of grapheme chunks and
corresponding phoneme chunks. Table 4 shows a few entries
from the aligned lexicon.

5https://github.com/googlei18n/language-resources/tree/master/bn/data

Table 5: Example input feature columns

L3 L2 L1 C R1 R2 R3 R4 Label

BOS a k @ p @ ṭ @ False
k @ p @ ṭ @ EOS False
p @ ṭ @ EOS True

We used the alignment of the inherent vowel grapheme ⟨@⟩
to derive supervised labels for the neural classifiers. If ⟨@⟩ was
aligned with a phoneme chunk, we assigned a label False; oth-
erwise ⟨a⟩ was aligned with the empty string and we assigned
a label True. This resulted in a labeled dataset with 84k schwa
deletion/conversion instances.

We then prepared the following featurized dataset for the bi-
nary classifiers. The input feature columns are graphemes and
represented as category columns with the entire grapheme set as
the vocabulary. The target label is a Boolean indicating whether
schwa is deleted or not. Crucially, no phonetic information from
the pronunciation lexicon appears in the input features. Table 5
shows 3 consecutive instances of schwa processing produced
from the single word অকপট whose alignment appears in Ta-
ble 4. In this example, the left context length is 3 and the right
one 4; both lengths are tunable hyperparameters.

We experimented with two additional sets of computed fea-
ture columns, expecting that they could potentially enhance
classification quality. The first set of Boolean valued columns
encodes the regular expression contexts of Epitran discussed
above. The second set of columns decomposes the graphemes
into linguistic features. For example, the grapheme ⟨ā⟩ is ex-
pressed in terms of articulatory features of its typical realization
as an open central unrounded vowel.

We employ a DNNClassifier from TensorFlow [14] with
most of the network parameters tuned as described below. The
result of training is a binary classifier model which can predict
schwa deletion. Table 6 lists the hyperparameters used.

Our objective is to build a model with high accuracy while
controlling the training dataset size and tracking the output
model size. As training data can be expensive, we want to un-
derstand the impact of data size on accuracy. Model size is the
disk footprint of the fully trained model. Low capacity devices
like mobile phones can be sensitive to model size, which is also
a proxy for runtime complexity. We want to understand the pos-
sible trade-offs between model size and classification accuracy.

To that end, we set various input dataset size and output
model size cut-offs, then tune hyperparameters and train a clas-
sifier under those constraints. A subset S of the given input
dataset size is sampled uniformly at random from the full 84k
dataset. The remaining dataset K is held out to evaluate the
accuracy of the fully trained model.

Google Vizier [15] tuning is run on the sampled dataset S
to determine hyperparameter values optimized for accuracy. In
order to incorporate model size constraints, if the model size is
greater than the given cut-off, the accuracy is demoted by the
square of the ratio between the cut-off size and the model size.

Accuracy measurements are based on 250 Vizier tuning it-
erations. In each iteration, the sampled dataset S is randomly
partitioned into training (90%) and validation (10%) sets. Each
training cycle takes from a few minutes to an hour depending
on the hyperparameters selected. The tunable hyperparameters
and their respective value ranges are as per Table 6.

Note that the number of neural network layers and size of
each layer are tunable parameters. We found that 4 layers or
fewer are sufficient for the problem we are addressing. For
small model sizes, the number of nodes in a layer is also small.

Left and right grapheme contexts are varied in length from

261



Table 6: Hyperparameters, their range and tuned values for
16kB sized model trained from 216 data giving accuracy 92.53%

Hyperparameter Range Tuned value

Left Context Length 0 – 12 4
Right Context Length 0 – 12 4
Linguistic Feature Columns Boolean False
Regex Feature Columns Boolean False
Batch size 10 – 10000 7215
Steps 10 – 30000 2863
Epochs 1 – 260 226
Learning rate 10−4 – 10 0.26
Nodes in a Hidden Layer 2 – 2000 2
Number of Hidden Layers 1 – 4 3
Dropout 0 – 0.99 0.06
Activation function ReLU, ReLU6, CReLU,

ELU, SeLU, SoftPlus,
SoftSign, Sigmoid, Tanh

CReLU

Loss Reduction Mean, Sum,
Sum by non-zero weights,
Sum over batch size,
Sum over non-zero weights

Sum over
batch size

Optimizer Adadelta, Adagrad, Adam,
Ftrl, Proximal GD,
Proximal Adagrad,
RMSProp, Momentum

Adagrad

0 to 12 for tuning. However, they reach their maximum values
only when model sizes are practically unbounded.

After hyperparameter tuning, the entire sampled dataset S
is used for training the DNNClassifier with the network param-
eters tuned in the previous tuning step. The held-out dataset K
is used to measure the accuracy of this final trained model.

4. Results and discussion
Figure 1 shows parametric plots of classification error in terms
of model size for a variety of dataset sizes. Figure 2 shows the
minimal observed classification error as a function of dataset
size (typically achieved with large models). We observe:

1. Without any constraints, accuracy caps at around 97.5%.
2. When evaluated for word-ending schwa alone, our maxi-

mally trained model predicts schwa-deletion with 98.2%
accuracy and for the remaining set of cases this is 97.1%.

3. Each quadrupling of the dataset size provides a similar
relative reduction in error that has yet to level off.

4. The model size vs. error chart has a knee at around 12kB
and 91% accuracy (9% error).

5. For fixed smaller dataset sizes, models seem to saturate.
Increasing the model size yields diminishing returns on
small datasets.

6. For all dataset sizes, the maximum achievable accuracy
is only reached for the largest models.

7. Model sizes below 16kB limit the achievable accuracy.
8. The additional computed columns did not improve the

accuracy and were inconsequential in the learning pro-
cess, except at very small dataset sizes.

From the available accuracy data points, we can call out the
tuned hyperparameters situated at the knee point of the curve
representing the maximum dataset. This means, for a large train-
ing data, the hyperparameters listed in Table 6 would provide
maximal accuracy while keeping the model size small.

The observed accuracies are consistent with the notion that
schwa deletion is a “wide” problem where the classifiers need to
encounter and memorize many different input contexts during
training. If that is correct, it would also mean that knowledge-
heavy approaches are unlikely to result in drastic improvements.

 50

 100

 1

 2

 4

 8

 16

 32

 64

 8  16  32  64  128  256  512

C
la

ss
ifi

ca
ti

o
n
 E

rr
o
r 

(%
)

Model Size (kB)

Data Size = 256
Data Size = 1k
Data Size = 4k
Data Size = 16k
Data Size = 64k

Figure 1: Classification error by model size and data size

 50

 100

 1

 2

 4

 8

 16

 32

 64

 256  512  1024  2048  4096  8192  16384  32768  65536

C
la

ss
ifi

ca
ti

o
n
 E

rr
o
r 

(%
)

Data Size (training examples)

Figure 2: Minimal classification error by data size

5. Conclusion and future work
We have described a method for predicting schwa deletion with
neural network classifiers. The classifiers are trained using only
language- and script-agnostic features and supervised labels de-
rived from an expert-transcribed pronunciation lexicon. All lin-
guistic knowledge and all language-specific information comes
exclusively from that lexicon.

When trained on as few as 256 examples, the classifiers
achieve an accuracy of more than 85%. The model size can be
kept compact by trading off various amounts of accuracy. With
a large training set and without capping model size, an accuracy
of more than 97% can be reached.

Our approach is generic and can be applied to other prob-
lems in Bengali or to other languages without major modifica-
tions. As the input feature set looks only at grapheme context,
it is very general and can be used to specifically target other
problems in pronunciation modeling. For example, we trained
a neural classifier with our setup to predict the realization of ⟨a⟩
as /ɔ/ or /o/ with an accuracy of 92.5%. Another examples for
such problems would be to predict the dental or alveolar articu-
lation of the grapheme ⟨n⟩ in Malayalam, or to predict raising
of mid vowels in Bengali.

Another avenue for exploration is multi-lingual training.
Our approach makes it possible to train a single schwa deletion
model on Bengali and e.g. Hindi data, using the target language
as an input column. The hypothesis is that a large Bengali train-
ing set would allow us to achieve high accuracy on Hindi while
requiring much fewer Hindi-specific training examples.

6. Acknowledgements
We thank Alexander Gutkin and Brian Roark for their helpful
comments.

262



7. References
[1] P. T. Daniels and W. Bright, The World’s Writing Systems. Oxford

University Press, 1996.

[2] S. Nag and C. A. Perfetti, “Reading and writing: Insights from the
alphasyllabaries of South and Southeast Asia,” Writing Systems
Research, vol. 6, no. 1, pp. 1–9, 2014.

[3] B. Narasimhan, R. Sproat, and G. Kiraz, “Schwa-deletion in Hindi
text-to-speech synthesis,” International Journal of Speech Tech-
nology, vol. 7, no. 4, pp. 319–333, 2004.

[4] N. R. Tyson and I. Nagar, “Prosodic rules for schwa-deletion in
Hindi text-to-speech synthesis,” International Journal of Speech
Technology, vol. 12, no. 1, pp. 15–25, 2009.

[5] P. Singh and G. S. Lehal, “Punjabi text-to-speech synthesis sys-
tem,” in Proceedings of COLING 2012: Demonstration Papers,
2012, pp. 409–416.

[6] S. N. Kayte, M. Mundada, C. N. Kayte, and B. Gawali,
“Grapheme-to-phoneme tools for the Marathi speech synthesis,”
Int. Journal of Engineering Research and Applications, vol. 5,
no. 11, pp. 87–92, 2015.

[7] V. Ravishankar, “Finite-state back-transliteration for Marathi,”
The Prague Bulletin of Mathematical Linguistics, vol. 108, pp.
319–329, 2017.

[8] M. Choudhury, A. Basu, and S. Sarkar, “A diachronic approach
for schwa deletion in Indo Aryan languages,” in Proceedings of
the 7th Meeting of the ACL Special Interest Group in Computa-
tional Phonology, 2004, pp. 20–26.

[9] International Standard ISO 15919: Transliteration of Devanagari
and related Indic scripts into Latin characters, 1st ed., 2001.

[10] A. Wasala, R. Weerasinghe, and K. Gamage, “Sinhala grapheme-
to-phoneme conversion and rules for schwa epenthesis,” in Pro-
ceedings of the COLING/ACL 2006 Main Conference Poster Ses-
sions, 2006, pp. 890–897.

[11] A. Gutkin, L. Ha, M. Jansche, O. Kjartansson, K. Pipatsrisawat,
and R. Sproat, “Building statistical parametric multi-speaker syn-
thesis for Bangladeshi Bangla,” in 5th Workshop on Spoken Lan-
guage Technologies for Under-Resourced Languages (SLTU ’16),
2016, pp. 194–200.

[12] D. R. Mortensen, S. Dalmia, and P. Littell, “Epitran: Precision
G2P for many languages,” in Proceedings of the Eleventh Interna-
tional Conference on Language Resources and Evaluation (LREC
2018), 2018.

[13] M. Jansche, “Computer-aided quality assurance of an Icelandic
pronunciation dictionary,” in Proceedings of the Ninth Interna-
tional Conference on Language Resources and Evaluation (LREC

’14), 2014, pp. 2111–2114.

[14] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean,
M. Devin, S. Ghemawat, G. Irving, M. Isard et al., “TensorFlow:
A system for large-scale machine learning,” in Proceedings of the
12th USENIX Symposium on Operating Systems Design and Im-
plementation (OSDI ’16), 2016, pp. 265–283.

[15] D. Golovin, B. Solnik, S. Moitra, G. Kochanski, J. Karro, and
D. Sculley, “Google Vizier: A service for black-box optimiza-
tion,” in Proceedings of the 23rd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, 2017, pp.
1487–1495.

263


