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Abstract

It is well known that the initialization of weights in deep neural networks can have
a dramatic impact on learning speed. For example, ensuring the mean squared
singular value of a network’s input-output Jacobian isO(1) is essential for avoiding
the exponential vanishing or explosion of gradients. The stronger condition that all
singular values of the Jacobian concentrate near 1 is a property known as dynamical
isometry. For deep linear networks, dynamical isometry can be achieved through
orthogonal weight initialization and has been shown to dramatically speed up learn-
ing; however, it has remained unclear how to extend these results to the nonlinear
setting. We address this question by employing powerful tools from free probabil-
ity theory to compute analytically the entire singular value distribution of a deep
network’s input-output Jacobian. We explore the dependence of the singular value
distribution on the depth of the network, the weight initialization, and the choice of
nonlinearity. Intriguingly, we find that ReLU networks are incapable of dynamical
isometry. On the other hand, sigmoidal networks can achieve isometry, but only
with orthogonal weight initialization. Moreover, we demonstrate empirically that
deep nonlinear networks achieving dynamical isometry learn orders of magnitude
faster than networks that do not. Indeed, we show that properly-initialized deep
sigmoidal networks consistently outperform deep ReLU networks. Overall, our
analysis reveals that controlling the entire distribution of Jacobian singular values
is an important design consideration in deep learning.

1 Introduction

Deep learning has achieved state-of-the-art performance in many domains, including computer
vision [1], machine translation [2], human games [3], education [4], and neurobiological modeling [5,
6]. A major determinant of success in training deep networks lies in appropriately choosing the
initial weights. Indeed the very genesis of deep learning rested upon the initial observation that
unsupervised pre-training provides a good set of initial weights for subsequent fine-tuning through
backpropagation [7]. Moreover, seminal work in deep learning suggested that appropriately-scaled
Gaussian weights can prevent gradients from exploding or vanishing exponentially [8], a condition
that has been found to be necessary to achieve reasonable learning speeds [9].

These random weight initializations were primarily driven by the principle that the mean squared
singular value of a deep network’s Jacobian from input to output should remain close to 1. This
condition implies that on average, a randomly chosen error vector will preserve its norm under
backpropagation; however, it provides no guarantees on the worst case growth or shrinkage of an error
vector. A stronger requirement one might demand is that every Jacobian singular value remain close
to 1. Under this stronger requirement, every single error vector will approximately preserve its norm,
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and moreover all angles between different error vectors will be preserved. Since error information
backpropagates faithfully and isometrically through the network, this stronger requirement is called
dynamical isometry [10].

A theoretical analysis of exact solutions to the nonlinear dynamics of learning in deep linear networks
[10] revealed that weight initializations satisfying dynamical isometry yield a dramatic increase in
learning speed compared to initializations that do not. For such linear networks, orthogonal weight
initializations achieve dynamical isometry, and, remarkably, their learning time, measured in number
of learning epochs, becomes independent of depth. In contrast, random Gaussian initializations do
not achieve dynamical isometry, nor do they achieve depth-independent training times.

It remains unclear, however, how these results carry over to deep nonlinear networks. Indeed,
empirically, a simple change from Gaussian to orthogonal initializations in nonlinear networks has
yielded mixed results [11], raising important theoretical and practical questions. First, how does the
entire distribution of singular values of a deep network’s input-output Jacobian depend upon the depth,
the statistics of random initial weights, and the shape of the nonlinearity? Second, what combinations
of these ingredients can achieve dynamical isometry? And third, among the nonlinear networks
that have neither vanishing nor exploding gradients, do those that in addition achieve dynamical
isometry also achieve much faster learning compared to those that do not? Here we answer these
three questions, and we provide a detailed summary of our results in the discussion.

2 Theoretical Results

In this section we derive expressions for the entire singular value density of the input-output Jacobian
for a variety of nonlinear networks in the large-width limit. We compute the mean squared singular
value of J (or, equivalently, the mean eigenvalue of JJT ), and deduce a rescaling that sets it equal
to 1. We then examine two metrics that help quantify the conditioning of the Jacobian: smax, the
maximum singular value of J (or, equivalently, λmax, the maximum eigenvalue of JJT ); and σ2

JJT ,
the variance of the eigenvalue distribution of JJT . If λmax � 1 and σ2

JJT � 1 then the Jacobian is
ill-conditioned and we expect the learning dynamics to be slow.

2.1 Problem setup

Consider an L-layer feed-forward neural network of width N with synaptic weight matrices Wl ∈
RN×N , bias vectors bl, pre-activations hl and post-activations xl, with l = 1, . . . , L. The feed-
forward dynamics of the network are governed by,

xl = φ(hl) , hl = Wlxl−1 + bl , (1)

where φ : R → R is a pointwise nonlinearity and the input is h0 ∈ RN . Now consider the
input-output Jacobian J ∈ RN×N given by

J =
∂xL

∂h0
=

L∏
l=1

DlWl. (2)

Here Dl is a diagonal matrix with entries Dl
ij = φ′(hli) δij . The input-output Jacobian J is closely

related to the backpropagation operator mapping output errors to weight matrices at a given layer; if
the former is well conditioned, then the latter tends to be well-conditioned for all weight layers. We
therefore wish to understand the entire singular value spectrum of J for deep networks with randomly
initialized weights and biases.

In particular, we will take the biases bli to be drawn i.i.d. from a zero mean Gaussian with standard
deviation σb. For the weights, we will consider two random matrix ensembles: (1) random Gaussian
weights in which each W l

ij is drawn i.i.d from a Gaussian with variance σ2
w/N , and (2) random

orthogonal weights, drawn from a uniform distribution over scaled orthogonal matrices obeying
(Wl)TWl = σ2

w I.

2.2 Review of signal propagation

The random matrices Dl in eqn. (2) depend on the empirical distribution of pre-activations hl entering
the nonlinearity φ in eqn. (1). The propagation of this empirical distribution through different layers l
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was studied in [12]. There, it was shown that in the large-N limit this empirical distribution converges
to a Gaussian with zero mean and variance ql, where ql obeys a recursion relation induced by the
dynamics in eqn. (1),

ql = σ2
w

∫
Dhφ

(√
ql−1h

)2
+ σ2

b , (3)

with initial condition q0 = 1
N

∑N
i=1(h

0
i )

2, and where Dh = dh√
2π

exp (−h
2

2 ) denotes the standard
Gaussian measure. This recursion has a fixed point obeying,

q∗ = σ2
w

∫
Dhφ

(√
q∗h
)2

+ σ2
b . (4)

If the input h0 is chosen so that q0 = q∗, then we start at the fixed point, and the distribution of Dl

becomes independent of l. Also, if we do not start at the fixed point, in many scenarios we rapidly
approach it in a few layers (see [12]), so for large L, assuming ql = q∗ at all depths l is a good
approximation in computing the spectrum of J.

Another important quantity governing signal propagation through deep networks [12, 13] is

χ =
1

N

〈
Tr (DW)TDW

〉
= σ2

w

∫
Dh
[
φ′
(√
q∗h
)]2

, (5)

where φ′ is the derivative of φ. Here χ is the mean of the distribution of squared singular values of
the matrix DW, when the pre-activations are at their fixed point distribution with variance q∗. As
shown in [12, 13] and Fig. 1, χ(σw, σb) separates the (σw, σb) plane into two phases, chaotic and
ordered, in which gradients exponentially explode or vanish respectively. Indeed, the mean squared
singular value of J was shown simply to be χL in [12, 13], so χ = 1 is a critical line of initializations
with neither vanishing nor exploding gradients.

Ordered

Chaotic

�(�w, �b) < 1

�(�w, �b) > 1

Vanishing Gradients

Exploding Gradients

q⇤ = 1.5

0.0

0.5

1.0

1.5

Figure 1: Order-chaos transition when φ(h) = tanh(h). The
critical line χ(σw, σb) = 1 determines the boundary between
two phases [12, 13]: (a) a chaotic phase when χ > 1, where
forward signal propagation expands and folds space in a
chaotic manner and back-propagated gradients exponentially
explode, and (b) an ordered phase when χ < 1, where for-
ward signal propagation contracts space in an ordered manner
and back-propagated gradients exponentially vanish. The
value of q∗ along the critical line separating the two phases
is shown as a heatmap.

2.3 Free probability, random matrix theory and deep networks.

While the previous section revealed that the mean squared singular value of J is χL, we would like to
obtain more detailed information about the entire singular value distribution of J, especially when
χ = 1. Since eqn. (2) consists of a product of random matrices, free probability [14, 15, 16] becomes
relevant to deep learning as a powerful tool to compute the spectrum of J, as we now review.

In general, given a random matrix X, its limiting spectral density is defined as

ρX(λ) ≡

〈
1

N

N∑
i=1

δ(λ− λi)

〉
X

, (6)

where 〈·〉X denotes the mean with respect to the distribution of the random matrix X. Also,

GX(z) ≡
∫
R

ρX(t)

z − t
dt , z ∈ C \ R , (7)

is the definition of the Stieltjes transform of ρX , which can be inverted using,

ρX(λ) = − 1

π
lim
ε→0+

ImGX(λ+ iε) . (8)
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Figure 2: Examples of deep spectra at criticality for different nonlinearities at different depths.
Excellent agreement is observed between empirical simulations of networks of width 1000 (dashed
lines) and theoretical predictions (solid lines). ReLU and hard tanh are with orthogonal weights,
and linear is with Gaussian weights. Gaussian linear and orthogonal ReLU have similarly-shaped
distributions, especially for large depths, where poor conditioning and many large singular values are
observed. On the other hand, orthogonal hard tanh is much better conditioned.

The Stieltjes transform GX is related to the moment generating function MX ,

MX(z) ≡ zGX(z)− 1 =

∞∑
k=1

mk

zk
, (9)

where the mk is the kth moment of the distribution ρX , mk =
∫
dλ ρX(λ)λk = 1

N 〈trX
k〉X . In turn,

we denote the functional inverse of MX by M−1X , which by definition satisfies MX(M−1X (z)) =

M−1X (MX(z)) = z. Finally, the S-transform [14, 15] is defined as,

SX(z) =
1 + z

zM−1X (z)
. (10)

The utility of the S-transform arises from its behavior under multiplication. Specifically, if A and
B are two freely-independent random matrices, then the S-transform of the product random matrix
ensemble AB is simply the product of their S-transforms,

SAB(z) = SA(z)SB(z) . (11)

Our first main result will be to use eqn. (11) to write down an implicit definition of the spectral density
of JJT . To do this we first note that (see Result 1 of the supplementary material),

SJJT =

L∏
l=1

SWlWT
l
SD2

l
= SLWWT S

L
D2 , (12)

where we have used the identical distribution of the weights to define SWWT = SWlWT
l

for all l, and
we have also used the fact the pre-activations are distributed independently of depth as hl ∼ N (0, q∗),
which implies that SD2

l
= SD2 for all l.

Eqn. (12) provides a method to compute the spectrum ρJJT (λ). Starting from ρWTW (λ) and ρD2(λ),
we compute their respective S-transforms through the sequence of equations eqns. (7), (9), and (10),
take the product in eqn. (12), and then reverse the sequence of steps to go from SJJT to ρJJT (λ)
through the inverses of eqns. (10), (9), and (8). Thus we must calculate the S-transforms of WWT

and D2, which we attack next for specific nonlinearities and weight ensembles in the following
sections. In principle, this procedure can be carried out numerically for an arbitrary choice of
nonlinearity, but we postpone this investigation to future work.

2.4 Linear networks

As a warm-up, we first consider a linear network in which J =
∏L
l=1 W

l. Since criticality (χ = 1
in eqn. (5)) implies σ2

w = 1 and eqn. (4) reduces to q∗ = σ2
wq
∗ + σ2

b , the only critical point is
(σw, σb) = (1, 0). The case of orthogonal weights is simple: J is also orthogonal, and all its singular
values are 1, thereby achieving perfect dynamic isometry. Gaussian weights behave very differently.
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The squared singular values s2i of J equal the eigenvalues λi of JJT , which is a product Wishart
matrix, whose spectral density was recently computed in [17]. The resulting singular value density of
J is given by,

ρ(s(φ)) =
2

π

√
sin3(φ) sinL−2(Lφ)

sinL−1((L+ 1)φ)
, s(φ) =

√
sinL+1((L+ 1)φ)

sinφ sinL(Lφ)
. (13)

Fig. 2(a) demonstrates a match between this theoretical density and the empirical density obtained
from numerical simulations of random linear networks. As the depth increases, this density becomes
highly anisotropic, both concentrating about zero and developing an extended tail.

Note that φ = π/(L + 1) corresponds to the minimum singular value smin = 0, while φ = 0
corresponds to the maximum eigenvalue, λmax = s2max = L−L(L+ 1)L+1, which, for large L scales
as λmax ∼ eL. Both eqn. (13) and the methods of Section 2.5 yield the variance of the eigenvalue
distribution of JJT to be σ2

JJT = L. Thus for linear Gaussian networks, both smax and σ2
JJT grow

linearly with depth, signaling poor conditioning and the breakdown of dynamical isometry.

2.5 ReLU and hard-tanh networks

We first discuss the criticality conditions (finite q∗ in eqn. (4) and χ = 1 in eqn. (5)) in these
two nonlinear networks. For both networks, since the slope of the nonlinearity φ′(h) only takes
the values 0 and 1, χ in eqn. (5) reduces to χ = σ2

wp(q
∗) where p(q∗) is the probability that

a given neuron is in the linear regime with φ′(h) = 1. As discussed above, we take the large-
width limit in which the distribution of the pre-activations h is a zero mean Gaussian with variance
q∗. We therefore find that for ReLU, p(q∗) = 1

2 is independent of q∗, whereas for hard-tanh,

p(q∗) =
∫ 1

−1 dh
e−h2/2q∗
√
2πq∗

= erf(1/
√
2q∗) depends on q∗. In particular, it approaches 1 as q∗ → 0.

Thus for ReLU, χ = 1 if and only if σ2
w = 2, in which case eqn. (4) reduces to q∗ = 1

2σ
2
wq
∗ + σ2

b ,
implying that the only critical point is (σw, σb) = (2, 0). For hard-tanh, in contrast, χ = σ2

wp(q
∗),

where p(q∗) itself depends on σw and σb through eqn. (4), and so the criticality condition χ = 1
yields a curve in the (σw, σb) plane similar to that shown for the tanh network in Fig. 1. As one moves
along this curve in the direction of decreasing σw, the curve approaches the point (σw, σb) = (1, 0)
with q∗ monotonically decreasing towards 0, i.e. q∗ → 0 as σw → 1.

The critical ReLU network and the one parameter family of critical hard-tanh networks have neither
vanishing nor exploding gradients, due to χ = 1. Nevertheless, the entire singular value spectrum
of J of these networks can behave very differently. From eqn. (12), this spectrum depends on
the non-linearity φ(h) through SD2 in eqn. (10), which in turn only depends on the distribution
of eigenvalues of D2, or equivalently, the distribution of squared derivatives φ′(h)2. As we have
seen, this distribution is a Bernoulli distribution with parameter p(q∗): ρD2(z) = (1− p(q∗)) δ(z) +
p(q∗) δ(z − 1). Inserting this distribution into the sequence eqn. (7), eqn. (9), eqn. (10) then yields

GD2(z) =
1− p(q∗)

z
+
p(q∗)
z − 1

, MD2(z) =
p(q∗)
z − 1

, SD2(z) =
z + 1

z + p(q∗)
. (14)

To complete the calculation of SJJT in eqn. (12), we must also compute SWWT . We do this for
Gaussian and orthogonal weights in the next two subsections.

2.5.1 Gaussian weights

We re-derive the well-known expression for the S-transform of products of random Gaussian matrices
with variance σ2

w in Example 3 of the supplementary material. The result is SWWT = σ−2w (1+ z)−1,
which, when combined with eqn. (14) for SD2 , eqn. (12) for SJJT , and eqn. (10) for M−1X (z), yields

SJJT (z) = σ−2Lw (z + p(q∗))−L, M−1
JJT (z) =

z + 1

z

(
z + p(q∗)

)L
σ2L
w . (15)

Using eqn. (15) and eqn. (9), we can define a polynomial that the Stieltjes transform G satisfies,

σ2L
w G(Gz + p(q∗)− 1)L − (Gz − 1) = 0 . (16)

The correct root of this equation is the one for which G ∼ 1/z as z →∞ [16]. From eqn. (8), the
spectral density is obtained from the imaginary part of G(λ+ iε) as ε→ 0+.
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Figure 3: The max singular value smax of J versus L and q∗ for Gaussian (a,c) and orthogonal (b,d)
weights, with ReLU (dashed) and hard-tanh (solid) networks. For Gaussian weights and for both
ReLU and hard-tanh, smax grows with L for all q∗ (see a,c) as predicted in eqn. (17) . In contrast, for
orthogonal hard-tanh, but not orthogonal ReLU, at small enough q∗, smax can remain O(1) even at
large L (see b,d) as predicted in eqn. (22). In essence, at fixed small q∗, if p(q∗) is the large fraction
of neurons in the linear regime, smax only grows with L after L > p/(1 − p) (see d). As q∗ → 0,
p(q∗) → 1 and the hard-tanh networks look linear. Thus the lowest curve in (a) corresponds to
the prediction of linear Gaussian networks in eqn. (13), while the lowest curve in (b) is simply 1,
corresponding to linear orthogonal networks.

The positions of the spectral edges, namely locations of the minimum and maximum eigenvalues
of JJT , can be deduced from the values of z for which the imaginary part of the root of eqn. (16)
vanishes, i.e. when the discriminant of the polynomial in eqn. (16) vanishes. After a detailed but
unenlightening calculation, we find, for large L,

λmax = s2max =
(
σ2
wp(q

∗)
)L( e

p(q∗)
L+O(1)

)
. (17)

Recalling that χ = σ2
wp(q

∗), we find exponential growth in λmax if χ > 1 and exponential decay if
χ < 1. Moreover, even at criticality when χ = 1, λmax still grows linearly with depth.

Next, we obtain the variance σ2
JJT of the eigenvalue density of JJT by computing its first two

moments m1 and m2. We employ the Lagrange inversion theorem [18],

MJJT (z) =
m1

z
+
m2

z2
+ · · · , M−1

JJT (z) =
m1

z
+
m2

m1
+ · · · , (18)

which relates the expansions of the moment generating function MJJT (z) and its functional inverse
M−1
JJT (z). Substituting this expansion for M−1

JJT (z) into eqn. (15), expanding the right hand side,
and equating the coefficients of z, we find,

m1 = (σ2
wp(q

∗))L , m2 = (σ2
wp(q

∗))2L
(
L+ p(q∗)

)
/p(q∗) . (19)

Both moments generically either exponentially grow or vanish. However even at criticality, when
χ = σ2

wp(q
∗) = 1, the variance σ2

JJT = m2 −m2
1 = L

p(q∗) still exhibits linear growth with depth.

Note that p(q∗) is the fraction of neurons operating in the linear regime, which is always less than 1.
Thus for both ReLU and hard-tanh networks, no choice of Gaussian initialization can ever prevent
this linear growth, both in σ2

JJT and λmax, implying that even critical Gaussian initializations will
always lead to a failure of dynamical isometry at large depth for these networks.

2.5.2 Orthogonal weights

For orthogonal W, we have WWT = I , and the S-transform is SI = 1 (see Example 2 of
the supplementary material). After scaling by σw, we have SWWT = Sσ2

wI
= σ−2w SI = σ−2w .

Combining this with eqn. (14) and eqn. (12) yields SJJT (z) and, through eqn. (10), yields M−1
JJT :

SJJT (z) = σ−2Lw

(
z + 1

z + p(q∗)

)L
, M−1

JJT =
z + 1

z

(
z + 1

z + p(q∗)

)−L
σ2L
w . (20)

Now, combining eqn. (20) and eqn. (9), we obtain a polynomial that the Stieltjes transformG satisfies:

g2LG(Gz + p(g)− 1)L − (zG)L(Gz − 1) = 0 . (21)
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SGD Momentum ADAM RMSProp

Figure 4: Learning dynamics, measured by generalization performance on a test set, for networks
of depth 200 and width 400 trained on CIFAR-10 with different optimizers. Blue is tanh with
σ2
w = 1.05, red is tanh with σ2

w = 2, and black is ReLU with σ2
w = 2. Solid lines are orthogonal

and dashed lines are Gaussian initialization. The relative ordering of curves robustly persists across
optimizers, and is strongly correlated with the degree to which dynamical isometry is present at
initialization, as measured by smax in Fig. 3. Networks with smax closer to 1 learn faster, even though
all networks are initialized critically with χ = 1. The most isometric orthogonal tanh with small σ2

w
trains several orders of magnitude faster than the least isometric ReLU network.

From this we can extract the eigenvalue and singular value density of JJT and J, respectively, through
eqn. (8). Figs. 2(b) and 2(c) demonstrate an excellent match between our theoretical predictions and
numerical simulations of random networks. We find that at modest depths, the singular values are
peaked near λmax, but at larger depths, the distribution both accumulates mass at 0 and spreads out,
developing a growing tail. Thus at fixed critical values of σw and σb, both deep ReLU and hard-tanh
networks have ill-conditioned Jacobians, even with orthogonal weight matrices.

As above, we can obtain the maximum eigenvalue of JJT by determining the values of z for which
the discriminant of the polynomial in eqn. (21) vanishes. This calculation yields,

λmax = s2max =
(
σ2
wp(q

∗)
)L 1− p(q∗)

p(q∗)
LL

(L− 1)L−1
. (22)

For large L, λmax either exponentially explodes or decays, except at criticality when χ = σ2
wp(q

∗) =

1, where it behaves as λmax = 1−p(q∗)
p(q∗)

(
eL− e

2

)
+ O(L−1). Also, as above, we can compute the

variance σ2
JJT by expanding M−1

JJT in eqn. (20) and applying eqn. (18). At criticality, we find
σ2
JJT = 1−p(q∗)

p(q∗) L for large L. Now the large L asymptotic behavior of both λmax and σ2
JJT depends

crucially on p(q∗), the fraction of neurons in the linear regime.

For ReLU networks, p(q∗) = 1/2, and we see that λmax and σ2
JJT grow linearly with depth and

dynamical isometry is unachievable in ReLU networks, even for critical orthogonal weights. In
contrast, for hard tanh networks, p(q∗) = erf(1/

√
2q∗). Therefore, one can always move along the

critical line in the (σw, σb) plane towards the point (1, 0), thereby reducing q∗, increasing p(q∗), and
decreasing, to an arbitrarily small value, the prefactor 1−p(q∗)

p(q∗) controlling the linear growth of both
λmax and σ2

JJT . So unlike either ReLU networks, or Gaussian networks, one can achieve dynamical
isometry up to depth L by choosing q∗ small enough so that p(q∗) ≈ 1− 1

L . In essence, this strategy
increases the fraction of neurons operating in the linear regime, enabling orthogonal hard-tanh nets to
mimic the successful dynamical isometry achieved by orthogonal linear nets. However, this strategy
is unavailable for orthogonal ReLU networks. A demonstration of these results is shown in Fig. 3.

3 Experiments

Having established a theory of the entire singular value distribution of J, and in particular of when
dynamical isometry is present or not, we now provide empirical evidence that the presence or absence
of this isometry can have a large impact on training speed. In our first experiment, summarized in
Fig. 4, we compare three different classes of critical neural networks: (1) tanh with small σ2

w = 1.05
and σ2

b = 2.01× 10−5; (2) tanh with large σ2
w = 2 and σ2

b = 0.104; and (3) ReLU with σ2
w = 2 and

σ2
b = 2.01× 10−5. In each case σb is chosen appropriately to achieve critical initial conditions at the
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(a) (b) (c) (d)L = 10 q⇤ = 64

q⇤ = 1/64

L = 300

Figure 5: Empirical measurements of SGD training time τ , defined as number of steps to reach
p ≈ 0.25 accuracy, for orthogonal tanh networks. In (a), curves reflect different depths L at fixed
small q∗ = 0.025. Intriguingly, they all collapse onto a single universal curve when the learning
rate η is rescaled by L and τ is rescaled by 1/

√
L. This implies the optimal learning rate is O(1/L),

and remarkably, the optimal learning time τ grows only as O(
√
L). (b) Now different curves reflect

different q∗ at fixed L = 200, revealing that smaller q∗, associated with increased dynamical isometry
in J, enables faster training times by allowing a larger optimal learning rate η. (c) τ as a function of
L for a few values of q∗. (d) τ as a function of q∗ for a few values of L. We see qualitative agreement
of (c,d) with Fig. 3(b,d), suggesting a strong connection between τ and smax.

boundary between order and chaos [12, 13], with χ = 1. All three of these networks have a mean
squared singular value of 1 with neither vanishing nor exploding gradients in the infinite width limit.
These experiments therefore probe the specific effect of dynamical isometry, or the entire shape of
the spectrum of J, on learning. We also explore the degree to which more sophisticated optimizers
can overcome poor initializations. We compare SGD, Momentum, RMSProp [19], and ADAM [20].

We train networks of depth L = 200 and width N = 400 for 105 steps with a batch size of 103. We
additionally average our results over 30 different instantiations of the network to reduce noise. For
each nonlinearity, initialization, and optimizer, we obtain the optimal learning rate through grid search.
For SGD and SGD+Momentum we consider logarithmically spaced rates between [10−4, 10−1] in
steps 100.1; for ADAM and RMSProp we explore the range [10−7, 10−4] at the same step size. To
choose the optimal learning rate we select a threshold accuracy p and measure the first step when
performance exceeds p. Our qualitative conclusions are fairly independent of p. Here we report
results on a version of CIFAR-101.

Based on our theory, we expect the performance advantage of orthogonal over Gaussian initializations
to be significant in case (1) and somewhat negligible in cases (2) and (3). This prediction is verified
in Fig. 4 (blue solid and dashed learning curves are well-separated, compared to red and black cases).
Furthermore, the extent of dynamical isometry at initialization strongly predicts the speed of learning.
The effect is large, with the most isometric case (orthogonal tanh with small σ2

w) learning faster
than the least isometric case (ReLU networks) by several orders of magnitude. Moreover, these
conclusions robustly persist across all optimizers. Intriguingly, in the case where dynamical isometry
helps the most (tanh with small σ2

w), the effect of initialization (orthogonal versus Gaussian) has a
much larger impact on learning speed than the choice of optimizer.

These insights suggest a more quantitative analysis of the relation between dynamical isometry and
learning speed for orthogonal tanh networks, summarized in Fig. 5. We focus on SGD, given the lack
of a strong dependence on optimizer. Intriguingly, Fig. 5(a) demonstrates the optimal training time
is O(

√
L) and so grows sublinearly with depth L. Also Fig. 5(b) reveals that increased dynamical

isometry enables faster training by making available larger (i.e. faster) learning rates. Finally,
Fig. 5(c,d) and their similarity to Fig. 3(b,d) suggest a strong positive correlation between training
time and max singular value of J. Overall, these results suggest that dynamical isometry is correlated
with learning speed, and controlling the entire distribution of Jacobian singular values may be an
important design consideration in deep learning.

In Fig. 6, we explore the relationship between dynamical isometry and performance going beyond
initialization by studying the evolution of singular values throughout training. We find that if
dynamical isometry is present at initialization, it persists for some time into training. Intriguingly,

1We use the standard CIFAR-10 dataset augmented with random flips and crops, and random saturation,
brightness, and contrast perturbations
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(a) (b) (c) (d)

t = 0101102

103

q⇤ = 1/64

q⇤ = 32

Figure 6: Singular value evolution of J for orthogonal tanh networks during SGD training. (a) The
average distribution, over 30 networks with q∗ = 1/64, at different SGD steps. (b) A measure of
eigenvalue ill-conditioning of JJT (〈λ〉2/〈λ2〉 ≤ 1 with equality if and only if ρ(λ) = δ(λ− λ0))
over number of SGD steps for different initial q∗. Interestingly, the optimal q∗ that best maintains
dynamical isometry in later stages of training is not simply the smallest q∗. (c) Test accuracy as a
function of SGD step for those q∗ considered in (b). (d) Generalization accuracy as a function of
initial q∗. Together (b,c,d) reveal that the optimal nonzero q∗, that best maintains dynamical isometry
into training, also yields the fastest learning and best generalization accuracy.

perfect dynamical isometry at initialization (q∗ = 0) is not the best choice for preserving isometry
throughout training; instead, some small but nonzero value of q∗ appears optimal. Moreover, both
learning speed and generalization accuracy peak at this nonzero value. These results bolster the
relationship between dynamical isometry and performance beyond simply the initialization.

4 Discussion
In summary, we have employed free probability theory to analytically compute the entire distribution
of Jacobian singular values as a function of depth, random initialization, and nonlinearity shape.
This analytic computation yielded several insights into which combinations of these ingredients
enable nonlinear deep networks to achieve dynamical isometry. In particular, deep linear Gaussian
networks cannot; the maximum Jacobian singular value grows linearly with depth even if the second
moment remains 1. The same is true for both orthogonal and Gaussian ReLU networks. Thus
the ReLU nonlinearity destroys the dynamical isometry of orthogonal linear networks. In contrast,
orthogonal, but not Gaussian, sigmoidal networks can achieve dynamical isometry; as the depth
increases, the max singular value can remain O(1) in the former case but grows linearly in the latter.
Thus orthogonal sigmoidal networks rescue the failure of dynamical isometry in ReLU networks.

Correspondingly, we demonstrate, on CIFAR-10, that orthogonal sigmoidal networks can learn orders
of magnitude faster than ReLU networks. This performance advantage is robust to the choice of a
variety of optimizers, including SGD, momentum, RMSProp and ADAM. Orthogonal sigmoidal
networks moreover have sublinear learning times with depth. While not as fast as orthogonal
linear networks, which have depth independent training times [10], orthogonal sigmoidal networks
have training times growing as the square root of depth. Finally, dynamical isometry, if present at
initialization, persists for a large amount of time during training. Moreover, isometric initializations
with longer persistence times yield both faster learning and better generalization.

Overall, these results yield the insight that the shape of the entire distribution of a deep network’s
Jacobian singular values can have a dramatic effect on learning speed; only controlling the second
moment, to avoid exponentially vanishing and exploding gradients, can leave significant performance
advantages on the table. Moreover, by pursuing the design principle of tightly concentrating the entire
distribution around 1, we reveal that very deep feedfoward networks, with sigmoidal nonlinearities,
can actually outperform ReLU networks, the most popular type of nonlinear deep network used today.

In future work, it would be interesting to extend our methods to other types of networks, including for
example skip connections, or convolutional architectures. More generally, the performance advantage
in learning that accompanies dynamical isometry suggests it may be interesting to explicitly optimize
this property in reinforcement learning based searches over architectures [21].
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Supplemental Material
Resurrecting the sigmoid in deep learning through

dynamical isometry: theory and practice

1 Theoretical results

Result 1. The S-transform for JJT is given by,

SJJT = SL
WWT

L∏
l=1

SD2
l
. (S1)

Proof. First notice that, by eqn. (9), M(z) and thus S(z) depend only on the moments of the distribution. The
moments, in turn, can be defined in terms of traces, which are invariant to cyclic permutations, i.e.,

tr(A1A2 · · ·Am)k = tr(A2 · · ·AmA1)
k . (S2)

Therefore the S-transform is invariant to cyclic permutations. Define matrices Q and Q̃,

QL ≡ JJT = (DLWL · · ·D1W1)(DLWL · · ·D1W1)
T (S3)

Q̃L ≡ (WT
LD

T
LDLWL)(DL−1WL−1 · · ·D1W1)(DL−1WL−1 · · ·D1W1)

T (S4)

= (WT
LD

T
LDLWL)QL−1 , (S5)

which are related by a cyclic permutation. Therefore the above argument shows that their S-transforms are equal,
i.e. SQL = SQ̃L

. Then eqn. (11) implies that,

SJJT = SQL = SWT
L

DT
L
DLWL

SQL−1 (S6)

= SDT
L
DLWLWT

L
SQL−1 (S7)

= SD2
L
SWLWT

L
SQL−1 (S8)

=

L∏
l=1

SD2
l
SWlW

T
l

(S9)

= SL
WWT

L∏
l=1

SD2
l
, (S10)

where the last line follows since each weight matrix is identically distributed.

Example 1. Products of Gaussian random matrices with variance σ2
w have the S transform,

SWWT (z) =
1

σ2
w(1 + z)

. (S11)

Proof. It is well-known (see, e.g. [16]) that the moments of a Wishart are proportional to the Catalan numbers,
i.e.,

mk(WWT ) = σ2k
w

1

k + 1

(
2k

k

)
, (S12)

whose generating function is

MWWT (z) =
1

2

(
−2 +

z

σ2
w

−

√
z

σ2
w

(
z

σ2
w

− 4

))
. (S13)

It is straightforward to invert this function,

M−1
WWT (z) = σ2

w
(1 + z)2

z
, (S14)

so that, using eqn. (10),

SWWT (z) =
1

σ2
w(1 + z)

(S15)

as hypothesized.

Example 2. The S-transform of the identity is given by SI = 1.
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Proof. The moments of the identity are all equal to one, so we have,

MI(z) =

∞∑
k=1

1

zk
=

1

z − 1
, (S16)

whose inverse is,

M−1
I (z) =

1 + z

z
, (S17)

so that,
SI = 1 . (S18)
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