
BabyWalk: Going Farther in Vision-and-Language Navigation
by Taking Baby Steps

Wang Zhu∗ 1 Hexiang Hu∗ 2 Jiacheng Chen2 Zhiwei Deng3

Vihan Jain4 Eugene Ie4 Fei Sha† 2,4

1Simon Fraser University 2University of Southern California 3Princeton University
4Google Research

Abstract
Learning to follow instructions is of funda-
mental importance to autonomous agents for
vision-and-language navigation (VLN). In this
paper, we study how an agent can navigate
long paths when learning from a corpus that
consists of shorter ones. We show that existing
state-of-the-art agents do not generalize well.
To this end, we propose BabyWalk, a new
VLN agent that is learned to navigate by de-
composing long instructions into shorter ones
(BabySteps) and completing them sequentially.
A special design memory buffer is used by
the agent to turn its past experiences into con-
texts for future steps. The learning process is
composed of two phases. In the first phase,
the agent uses imitation learning from demon-
stration to accomplish BabySteps. In the sec-
ond phase, the agent uses curriculum-based
reinforcement learning to maximize rewards
on navigation tasks with increasingly longer
instructions. We create two new benchmark
datasets (of long navigation tasks) and use
them in conjunction with existing ones to ex-
amine BabyWalk’s generalization ability. Em-
pirical results show that BabyWalk achieves
state-of-the-art results on several metrics, in
particular, is able to follow long instructions
better. The codes and the datasets are released
on our project page https://github.com/

Sha-Lab/babywalk.

1 Introduction

Autonomous agents such as household robots need
to interact with the physical world in multiple
modalities. As an example, in vision-and-language
navigation (VLN) (Anderson et al., 2018), the
agent moves around in a photo-realistic simulated
environment (Chang et al., 2017) by following a
sequence of natural language instructions. To in-
fer its whereabouts so as to decide its moves, the

∗Author contributed equally
†On leave from University of Southern California

agent infuses its visual perception, its trajectory
and the instructions (Fried et al., 2018; Anderson
et al., 2018; Wang et al., 2019; Ma et al., 2019a,b).

Arguably, the ability to understand and follow
the instructions is one of the most crucial skills
to acquire by VLN agents. Jain et al. (2019)
shows that the VLN agents trained on the orig-
inally proposed dataset ROOM2ROOM (i.e. R2R

thereafter) do not follow the instructions, despite
having achieved high success rates of reaching the
navigation goals. They proposed two remedies: a
new dataset ROOM4ROOM (or R4R) that doubles
the path lengths in the R2R, and a new evaluation
metric Coverage weighted by Length Score (CLS)
that measures more closely whether the ground-
truth paths are followed. They showed optimizing
the fidelity of following instructions leads to agents
with desirable behavior. Moreover, the long lengths
in R4R are informative in identifying agents who
score higher in such fidelity measure.

In this paper, we investigate another crucial as-
pect of following the instructions: can a VLN agent
generalize to following longer instructions by learn-
ing from shorter ones? This aspect has important
implication to real-world applications as collect-
ing annotated long sequences of instructions and
training on them can be costly. Thus, it is highly de-
sirable to have this generalization ability. After all,
it seems that humans can achieve this effortlessly1.

To this end, we have created several datasets
of longer navigation tasks, inspired by R4R (Jain
et al., 2019). We trained VLN agents on R4R and
use the agents to navigate in ROOM6ROOM (i.e.,
R6R) and ROOM8ROOM (i.e., R8R). We contrast to
the performance of the agents which are trained on
those datasets directly (“in-domain”). The results

1Anecdotally, we do not have to learn from long navigation
experiences. Instead, we extrapolate from our experiences of
learning to navigate in shorter distances or smaller spaces
(perhaps a skill we learn when we were babies or kids).

ar
X

iv
:2

00
5.

04
62

5v
1

 [
cs

.A
I]

 1
0

M
ay

 2
02

0

https://github.com/Sha-Lab/babywalk
https://github.com/Sha-Lab/babywalk

Figure 1: Performance of various VLN agents on gen-
eralizing from shorter navigation tasks to longer ones.
The vertical axis is the newly proposed path-following
metric SDTW (Magalhaes et al., 2019), the higher the
better. BABYWALK generalizes better than other ap-
proaches across different lengths of navigation tasks.
Sometimes, it even outperforms in-domain agents (the
dashed line). See texts for details.

are shown in Fig. 1.
Our findings are that the agents trained on R4R

(denoted by the purple and the pink solid lines) per-
form significantly worse than the in-domain agents
(denoted the light blue dashed line). Also inter-
estingly, when such out-of-domain agents are ap-
plied to the dataset R2R with shorter navigation
tasks, they also perform significantly worse than
the corresponding in-domain agent despite R4R

containing many navigation paths from R2R. Note
that the agent trained to optimize the aforemen-
tioned fidelity measure (RCM(fidelity)) performs
better than the agent trained to reach the goal only
(RCM(goal)), supporting the claim by Jain et al.
(2019) that following instructions is a more mean-
ingful objective than merely goal-reaching. Yet,
the fidelity measure itself is not enough to enable
the agent to transfer well to longer navigation tasks.

To address these deficiencies, we propose a new
approach for VLN. The agent follows a long navi-
gation instruction by decomposing the instruction
into shorter ones (“micro-instructions”, i.e., BABY-
STEPs), each of which corresponds to an interme-
diate goal/task to be executed sequentially. To
this end, the agent has three components: (a) a
memory buffer that summarizes the agent’s expe-
riences so that the agent can use them to provide
the context for executing the next BABY-STEP. (b)
the agent first learns from human experts in “bite-
size”. Instead of trying to imitate to achieve the
ground-truth paths as a whole, the agent is given
the pairs of a BABY-STEP and the corresponding
human expert path so that it can learn policies of

actions from shorter instructions. (c) In the second
stage of learning, the agent refines the policies by
curriculum-based reinforcement learning, where
the agent is given increasingly longer navigation
tasks to achieve. In particular, this curriculum de-
sign reflects our desiderata that the agent optimized
on shorter tasks should generalize well to slightly
longer tasks and then much longer ones.

While we do not claim that our approach faith-
fully simulates human learning of navigation, the
design is loosely inspired by it. We name our ap-
proach BABYWALK and refer to the intermediate
navigation goals in (b) as BABY-STEPs. Fig. 1
shows that BABYWALK (the red solid line) signif-
icantly outperforms other approaches and despite
being out-of-domain, it even exceeds the perfor-
mance of in-domain agents on R6R and R8R.

The effectiveness of BABYWALK also leads to
an interesting twist. As mentioned before, one
of the most important observations by Jain et al.
(2019) is that the original VLN dataset R2R fails
to reveal the difference between optimizing goal-
reaching (thus ignoring the instructions) and op-
timizing the fidelity (thus adhering to the instruc-
tions). Yet, leaving details to section 5, we have
also shown that applying BABYWALK to R2R can
lead to equally strong performance on generalizing
from shorter instructions (i.e., R2R) to longer ones.

In summary, in this paper, we have demonstrated
empirically that the current VLN agents are inef-
fective in generalizing from learning on shorter
navigation tasks to longer ones. We propose a new
approach in addressing this important problem. We
validate the approach with extensive benchmarks,
including ablation studies to identify the effective-
ness of various components in our approach.

2 Related Work

Vision-and-Language Navigation (VLN) Re-
cent works (Anderson et al., 2018; Thomason
et al., 2019; Jain et al., 2019; Chen et al., 2019;
Nguyen and Daumé III, 2019) extend the early
works of instruction based navigation (Chen and
Mooney, 2011; Kim and Mooney, 2013; Mei et al.,
2016) to photo-realistic simulated environments.
For instance, Anderson et al. (2018) proposed to
learn a multi-modal Sequence-to-Sequence agent
(Seq2Seq) by imitating expert demonstration. Fried
et al. (2018) developed a method that augments the
paired instruction and demonstration data using
a learned speaker model, to teach the navigation

agent to better understand instructions. Wang et al.
(2019) further applies reinforcement learning (RL)
and self-imitation learning to improve navigation
agents. Ma et al. (2019a,b) designed models that
track the execution progress for a sequence of in-
structions using soft-attention.

Different from them, we focus on transferring
an agent’s performances on shorter tasks to longer
ones. This leads to designs and learning schemes
that improve generalization across datasets. We use
a memory buffer to prevent mistakes in the distant
past from exerting strong influence on the present.
In imitation learning stage, we solve fine-grained
subtasks (BABY-STEPs) instead of asking the agent
to learn the navigation trajectory as a whole. We
then use curriculum-based reinforcement learning
by asking the agent to follow increasingly longer
instructions.

Transfer and Cross-domain Adaptation There
have been a large body of works in transfer learn-
ing and generalization across tasks and environ-
ments in both computer vision and reinforcement
learning (Andreas et al., 2017; Oh et al., 2017;
Zhu et al., 2017a,b; Sohn et al., 2018; Hu et al.,
2018). Of particular relevance is the recent work
on adapting VLN agents to changes in visual en-
vironments (Huang et al., 2019; Tan et al., 2019).
To our best knowledge, this work is the first to
focus on adapting to a simple aspect of language
variability — the length of the instructions.

Curriculum Learning Since proposed in (Ben-
gio et al., 2009), curriculum learning was success-
fully used in a range of tasks: training robots for
goal reaching (Florensa et al., 2017), visual ques-
tion answering (Mao et al., 2019), image genera-
tion (Karras et al., 2018). To our best knowledge,
this work is the first to apply the idea to learning in
VLN.

3 Notation and the Setup of VLN

In the VLN task, the agent receives a natural lan-
guage instruction X composed of a sequence of
sentences. We model the agent with an Markov De-
cision Process (MDP) which is defined as a tuple
of a state space S , an action spaceA, an initial state
s1, a stationary transition dynamics ρ : S×A → S ,
a reward function r : S×A → R, and the discount
factor γ for weighting future rewards. The agent
acts according to a policy π : S × A → 0 ∪ R+.
The state and action spaces are defined the same as

in (Fried et al., 2018) (cf. § 4.4 for details).
For each X, the sequence of the pairs (s,a) is

called a trajectory Y =
{
s1,a1, . . . , s|Y|,a|Y|

}
where |·| denotes the length of the sequence or the
size of a set. We use â to denote an action taken by
the agent according to its policy. Hence, Ŷ denotes
the agent’s trajectory, while Y (or a) denotes the
human expert’s trajectory (or action). The agent is
given training examples of (X,Y) to optimize its
policy to maximize its expected rewards.

In our work, we introduce additional notations
in the following. We will segment a (long) in-
struction X into multiple shorter sequences of sen-
tences {xm,m = 1, 2, · · · ,M}, to which we refer
as BABY-STEPs. Each xm is interpreted as a micro-
instruction that corresponds to a trajectory by the
agent ŷm and is aligned with a part of the human
expert’s trajectory, denoted as ym. While the align-
ment is not available in existing datasets for VLN,
we will describe how to obtain them in a later sec-
tion (§ 4.3). Throughout the paper, we also freely
interexchange the term “following the mth micro-
instruction”, “executing the BABY-STEP xm”, or
“complete the mth subtask”.

We use t ∈ [1, |Y|] to denote the (discrete) time
steps the agent takes actions. Additionally, when
the agent follows xm, for convenience, we some-
times use tm ∈ [1, |ŷm|] to index the time steps,
instead of the “global time” t = tm +

∑m−1
i=1 |ŷi|.

4 Approach

We describe in detail the 3 key elements in the de-
sign of our navigation agent: (i) a memory buffer
for storing and recalling past experiences to pro-
vide contexts for the current navigation instruction
(§ 4.1); (ii) an imitation-learning stage of navigat-
ing with short instructions to accomplish a single
BABY-STEP (§ 4.2.1); (iii) a curriculum-based re-
inforcement learning phase where the agent learns
with increasingly longer instructions (i.e. multiple
BABY-STEPs) (§ 4.2.2). We describe new bench-
marks created for learning and evaluation and key
implementation details in § 4.3 and § 4.4 (with
more details in the Suppl. Material).

4.1 The BABYWALK Agent

The basic operating model of our navigation agent
BABYWALK is to follow a “micro instruction” xm

(i.e., a short sequence of instructions, to which we
also refer as BABY-STEP), conditioning on the con-
text ẑm and to output a trajectory ŷm. A schematic

Env

⋮
"#$

%$
'̂(

)*(+(

Memory Buffer

ΧInstruction
segmentation

(-th BABY-STEP)

+)*

+)*

+)*

(

(

(

,)

,)

,)

123((456

7 8 BABYWALK
Policy 9

- 1− - 1−

1 1

2 2

Figure 2: The BABYWALK agent has a memory buffer
storing its past experiences of instructions xm, and its
trajectory ŷm. When a new BABY-STEP xm is pre-
sented, the agent retrieves from the memory a summary
of its experiences as the history context. It takes actions
conditioning on the context (as well as its state st and
the previous action ât). Upon finishing following the
instruction. the trajectory ŷm is then sent to the mem-
ory to be remembered.

diagram is shown in Fig. 2. Of particularly differ-
ent from previous approaches is the introduction
of a novel memory module. We assume the BABY-
STEPs are given in the training and inference time
– § 4.3 explains how to obtain them if not given a
prior (Readers can directly move to that section
and return to this part afterwards). The left of the
Fig. 3 gives an example of those micro-instructions.

Context The context is a summary of the past
experiences of the agent, namely the previous (m−
1) mini-instructions and trajectories:

ẑm = g
(
fSUMMARY(x1, · · · ,xm−1),

fSUMMARY(ŷ1, · · · , ŷm−1)
)

(1)

where the function g is implemented with a multi-
layer perceptron. The summary function fSUMMARY

is explained in below.

Summary To map variable-length sequences
(such as the trajectory and the instructions) to a
single vector, we can use various mechanisms such
as LSTM. We reported an ablation study on this in
§ 5.3. In the following, we describe the “forgetting”
one that weighs more heavily towards the most re-
cent experiences and performs the best empirically.

fSUMMARY(x1, · · · ,xm−1) =

m−1∑
i=1

αi · u(xi) (2)

fSUMMARY(ŷ1, · · · , ŷm−1) =

m−1∑
i=1

αi · v(ŷi) (3)

where the weights are normalized to 1 and inverse
proportional to how far i is from m,

αi ∝ exp
(
− γ · ω(m− 1− i)

)
(4)

γ is a hyper-parameter (we set to 1/2) and ω(·) is
a monotonically nondecreasing function and we
simply choose the identity function.

Note that, we summarize over representations
of “micro-instructions” (xm) and experiences of
executing those micro-instructions ŷm. The two
encoders u(·) and v(·) are described in § 4.4. They
are essentially the summaries of “low-level” details,
i.e., representations of a sequence of words, or
a sequence of states and actions. While existing
work often directly summarizes all the low-level
details, we have found that the current form of
“hierarchical” summarizing (i.e., first summarizing
each BABY-STEP, then summarizing all previous
BABY-STEPs) performs better.

Policy The agent takes actions, conditioning on
the context ẑm, and the current instruction xm:

ât ∼ π (·|st, ât−1;u(xm), ẑm) (5)

where the policy is implemented with a LSTM
with the same cross-modal attention between visual
states and languages as in (Fried et al., 2018).

4.2 Learning of the BABYWALK Agent
The agent learns in two phases. In the first one,
imitation learning is used where the agent learns
to execute BABY-STEPs accurately. In the second
one, the agent learns to execute successively longer
tasks from a designed curriculum.

4.2.1 Imitation Learning
BABY-STEPs are shorter navigation tasks. With the
mth instruction xm, the agent is asked to follow the
instruction so that its trajectory matches the human
expert’s ym. To assist the learning, the context
is computed from the human expert trajectory up
to the mth BABY-STEP (i.e., in eq. (1), ŷs are
replaced with ys). We maximize the objective

` =

M∑
m=1

|ym|∑
tm=1

logπ (atm |stm ,atm−1;u(xm), zm)

We emphasize here each BABY-STEP is treated in-
dependently of the others in this learning regime.
Each time a BABY-STEP is to be executed, we
“preset” the agent in the human expert’s context
and the last visited state. We follow existing lit-
erature (Anderson et al., 2018; Fried et al., 2018)
and use student-forcing based imitation learning,
which uses agent’s predicted action instead of the
expert action for the trajectory rollout.

Instruction
of sub-tasks

Warmup: IL
Clone expert’s
behavior to complete
single sub-tasks

RL curriculum

Lecture #1

No expert demo, learn
from external rewards

1 sub-task given
history context

⋮
Lecture #t
t consecutive sub-tasks
given history context

⋮
Lecture #T
The whole task

exit the room then go
straight and turn left.

go straight until you
pass an eye chart
picture frame on the
left wall then wait
there.

go straight. pass the
bar with the stools.

walk straight until
you get to a table
with chairs then
stop.

𝑥#

𝑥$

𝑥%

𝑥&

𝑦&

𝑦%

𝑦$ 𝑦#

Lecture #1

Reward
𝑥#

,𝑥& 𝑦&

𝑥% 𝑦%

𝑥$ 𝑦$

)𝑦#

�̂�#

,

,

Baby
Walk

Reward

)𝑦$

)𝑦$

)𝑦#

Lecture #2

𝑥& 𝑦&

𝑥% 𝑦%

𝑥$

,

,

, 𝑥#

�̂�#

𝑥$

𝑥& 𝑦&

𝑥% 𝑦%

,

,

�̂�$
Baby
Walk

Baby
Walk

Decomposition of a navigation task RL curriculum designPipeline

𝑢(𝑥#)

𝑢(𝑥#)

𝑢(𝑥$)

Figure 3: Two-phase learning by BABYWALK. (Left) An example instruction-trajectory pair from the R4R
dataset is shown. The long instruction is segmented into four BABY-STEP instructions. We use those BABY-
STEPs for imitation learning (§ 4.2.1) (Right) Curriculum-based RL. The BABYWALK agent warm-starts from the
imitation learning policy, and incrementally learns to handle longer tasks by executing consecutive BABY-STEPs
and getting feedback from external rewards (c.f . § 4.2.2). We illustrate two initial RL lectures using the left
example.

4.2.2 Curriculum Reinforcement Learning

We want the agent to be able to execute multiple
consecutive BABY-STEPs and optimize its perfor-
mance on following longer navigation instructions
(instead of the cross-entropy losses from the imita-
tion learning). However, there is a discrepancy be-
tween our goal of training the agent to cope with the
uncertainty in a long instruction and the imitation
learning agent’s ability in accomplishing shorter
tasks given the human annotated history. Thus it
is challenging to directly optimize the agent with a
typical RL learning procedure, even the imitation
learning might have provided a good initialization
for the policy, see our ablation study in § 5.3.

Inspired by the curriculum learning strat-
egy (Bengio et al., 2009), we design an incremen-
tal learning process that the agent is presented
with a curriculum of increasingly longer naviga-
tion tasks. Fig. 3 illustrates this idea with two “lec-
tures”. Given a long navigation instruction X with
M BABY-STEPs, for the kth lecture, the agent is
given all the human expert’s trajectory up to but not
including the (M− k + 1)th BABY-STEP, as well
as the history context zM−k+1. The agent is then
asked to execute the kth micro-instructions from
xM−k+1 to xM using reinforcement learning to
produce its trajectory that optimizes a task related
metric, for instance the fidelity metric measuring
how faithful the agent follows the instructions.

As we increase k from 1 to M, the agent faces
the challenge of navigating longer and longer tasks
with reinforcement learning. However, the agent

R2R R4R R6R R8R

Train seen instr. 14,039 233,532 89,632 94,731
Val unseen instr. 2,349 45,234 35,777 43,273
Avg instr. length 29.4 58.4 91.2 121.6

Avg # BABY-STEPs 1.8 3.6 5.6 7.4

Table 1: Datasets used for VLN learning and evaluation

10 20 30 40 50 60 70 80 90 10
0

11
0

12
0

13
0

14
0

15
0

16
0

17
0

18
0

19
0

20
0

Instruction Length (words)
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

R
at

io

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

Ground-truth Path Length (steps)

R2R R4R R6R R8R

Figure 4: The distribution of lengths of instructions and
ground-truth trajectories in our datasets.

only needs to improve its skills from its prior expo-
sure to shorter ones. Our ablation studies show this
is indeed a highly effective strategy.

4.3 New Datasets for Evaluation & Learning
To our best knowledge, this is the first work study-
ing how well VLN agents generalize to long navi-
gation tasks. To this end, we create the following
datasets in the same style as in (Jain et al., 2019).

ROOM6ROOM and ROOM8ROOM We con-
catenate the trajectories in the training as well as
the validation unseen split of the ROOM2ROOM

dataset for 3 times and 4 times respectively, thus
extending the lengths of navigation tasks to 6 rooms
and 8 rooms. To join, the end of the former trajec-

tory must be within 0.5 meter with the beginning
of the later trajectory. Table 1 and Fig. 4 contrast
the different datasets in the # of instructions, the
average length (in words) of instructions and how
the distributions vary.

Table 1 summarizes the descriptive statistics of
BABY-STEPs across all datasets used in this paper.
The datasets and the segmentation/alignments are
made publically available2.

4.4 Key Implementation Details
In the following, we describe key information for
research reproducibility, while the complete details
are in the Suppl. Material.

States and Actions We follow (Fried et al.,
2018) to set up the states as the visual features
(i.e. ResNet-152 features (He et al., 2016)) from
the agent-centric panoramic views in 12 headings
× 3 elevations with 30 degree intervals. Likewise,
we use the same panoramic action space.

Identifying BABY-STEPs Our learning ap-
proach requires an agent to follow micro-
instructions (i.e., the BABY-STEPs). Existing
datasets (Anderson et al., 2018; Jain et al., 2019;
Chen et al., 2019) do not provide fine-grained seg-
mentations of long instructions. Therefore, we use
a template matching approach to aggregate consec-
utive sentences into BABY-STEPs. First, we extract
the noun phrase using POS tagging. Then, we em-
ploys heuristic rules to chunk a long instruction
into shorter segments according to punctuation and
landmark phrase (i.e., words for concrete objects).
We document the details in the Suppl. Material.

Aligning BABY-STEPs with Expert Trajectory
Without extra annotation, we propose a method
to approximately chunk original expert trajecto-
ries into sub-trajectories that align with the BABY-
STEPs. This is important for imitation learning at
the micro-instruction level (§ 4.2.1). Specifically,
we learn a multi-label visual landmark classifier
to identify concrete objects from the states along
expert trajectories by using the landmark phrases
extracted from the their instructions as weak su-
pervision. For each trajectory-instruction pair, we
then extract the visual landmarks of every state
as well as the landmark phrases in BABY-STEP

instructions. Next, we perform a dynamic pro-
gramming procedure to segment the expert trajec-

2Available at https://github.com/Sha-Lab/
babywalk

tories by aligning the visual landmarks and land-
mark phrases, using the confidence scores of the
multi-label visual landmark classifier to form the
function.

Encoders and Embeddings The encoder u(·)
for the (micro)instructions is a LSTM. The en-
coder for the trajectory y contains two separate
Bi-LSTMs, one for the state st and the other for
the action at. The outputs of the two Bi-LSTMs are
then concatenated to form the embedding function
v(·). The details of the neural network architec-
tures (i.e. configurations as well as an illustrative
figure), optimization hyper-parameters, etc. are in-
cluded in the Suppl. Material.

Learning Policy with Reinforcement Learning
In the second phase of learning, BABYWALK

uses RL to learn a policy that maximizes the
fidelity-oriented rewards (CLS) proposed by Jain
et al. (2019). We use policy gradient as the opti-
mizer (Sutton et al., 2000). Meanwhile, we set the
maximum number of lectures in curriculum RL to
be 4, which is studied in Section 5.3.

5 Experiments

We describe the experimental setup (§ 5.1),fol-
lowed by the main results in § 5.2 where we show
the proposed BABYWALK agent attains competi-
tive results on both the in-domain dataset but also
generalizing to out-of-the-domain datasets with
varying lengths of navigation tasks. We report re-
sults from various ablation studies in § 5.3. While
we primarily focus on the ROOM4ROOM dataset,
we re-analyze the original ROOM2ROOM dataset
in § 5.4 and were surprised to find out the agents
trained on it can generalize.

5.1 Experimental Setups.
Datasets We conduct empirical studies on the ex-
isting datasets ROOM2ROOM and ROOM4ROOM

(Anderson et al., 2018; Jain et al., 2019),
and the two newly created benchmark datasets
ROOM6ROOM and ROOM8ROOM, described in
§ 4.3. Table 1 and Fig. 4 contrast their differences.

Evaluation Metrics We adopt the following met-
rics: Success Rate (SR) that measures the average
rate of the agent stopping within a specified dis-
tance near the goal location (Anderson et al., 2018),
Coverage weighted by Length Score (CLS) (Jain
et al., 2019) that measures the fidelity of the agent’s
path to the reference, weighted by the length score,

https://github.com/Sha-Lab/babywalk
https://github.com/Sha-Lab/babywalk

In-domain Generalization to other datasets
Setting R4R→ R4R R4R→ R2R R4R→ R6R R4R→ R8R Average

Metrics SR↑ CLS↑ SDTW↑ SR↑ CLS↑ SDTW↑ SR↑ CLS↑ SDTW↑ SR↑ CLS↑ SDTW↑ SR↑ CLS↑ SDTW↑

SEQ2SEQ 25.7 20.7 9.0 16.3 27.1 10.6 14.4 17.7 4.6 20.7 15.0 4.7 17.1 19.9 6.6
SF+ 24.9 23.6 9.2 22.5 29.5 14.8 15.5 20.4 5.2 21.6 17.2 5.0 19.9 22.4 8.3
RCM(GOAL)+ 28.7 36.3 13.2 25.9 44.2 20.2 19.3 31.8 7.3 22.8 27.6 5.1 22.7 34.5 10.9
RCM(FIDELITY)+ 24.7 39.2 13.7 29.1 34.3 18.3 20.5 38.3 7.9 20.9 34.6 6.1 23.5 35.7 10.8
REGRETFUL+? 30.1 34.1 13.5 22.8 32.6 13.4 18.0 31.7 7.5 18.7 29.3 5.6 19.8 31.2 8.8
FAST+? 36.2 34.0 15.5 25.1 33.9 14.2 22.1 31.5 7.7 27.7 29.6 6.3 25.0 31.7 9.4

BABYWALK 29.6 47.8 18.1 35.2 48.5 27.2 26.4 44.9 13.1 26.3 44.7 11.5 29.3 46.0 17.3
BABYWALK + 27.3 49.4 17.3 34.1 50.4 27.8 25.5 47.2 13.6 23.1 46.0 11.1 27.6 47.9 17.5

Table 2: VLN agents trained on the R4R dataset and evaluated on the unseen portion of the R4R (in-domain) and
the other 3 out-of-the-domain datasets: R2R, R6R and R8R with different distributions in instruction length. The
Suppl. Material has more comparisons. (+: pre-trained with data augmentation. ?: reimplemented or adapted from
the original authors’ public codes).

and the newly proposed Success rate weighted
normalized Dynamic Time Warping (SDTW) that
measures in more fine-grained details, the spatio-
temporal similarity of the paths by the agent and the
human expert, weighted by the success rate (Maga-
lhaes et al., 2019). Both CLS and SDTW measure
explicitly the agent’s ability to follow instructions
and in particular, it was shown that SDTW corre-
sponds to human preferences the most. We report
results in other metrics in the Suppl. Material.

Agents to Compare to Whenever possible, for
all agents we compare to, we either re-run, reimple-
ment or adapt publicly available codes from their
corresponding authors with their provided instruc-
tions to ensure a fair comparison. We also “sanity
check” by ensuring the results from our implemen-
tation and adaptation replicate and are comparable
to the reported ones in the literature.

We compare our BABYWALK to the following:
(1) the SEQ2SEQ agent (Anderson et al., 2018),
being adapted to the panoramic state and action
space used in this work; (2) the Speaker Follower
(SF) agent (Fried et al., 2018); (3) the Reinforced
Cross-Modal Agent (RCM) (Wang et al., 2019) that
refines the SF agent using reinforcement learning
with either goal-oriented reward (RCM(GOAL)) or
fidelity-oriented reward (RCM(FIDELITY)); (4) the
Regretful Agent (REGRETFUL) (Ma et al., 2019b)
that uses a progress monitor that records visited
path and a regret module that performs backtrack-
ing; (5) the Frontier Aware Search with Backtrack-
ing agent (FAST) (Ke et al., 2019) that incorporates
global and local knowledge to compare partial tra-
jectories in different lengths.

The last 3 agents are reported having state-of-

10 20 30 40 50 60 70 80 90 100 110 120 130 140>=150
Instruction length (words)

0

5

10

15

20

25

30

35

40

SD
TW

 (%
)

5k

10k

15k

20k

25k

30k

of

 D
at

a

Seq2Seq
SF
RCM (FIDELITY)
BabyWalk

Figure 5: Performance by various agents on navigation
tasks in different lengths. See texts for details.

the art results on the benchmark datasets. Except
the SEQ2SEQ agent, all other agents depend on
an additional pre-training stage with data augmen-
tation (Fried et al., 2018), which improves cross-
board. Thus, we train two BABYWALK agents: one
with and the other without the data augmentation.

5.2 Main results

In-domain Generalization This is the standard
evaluation scenario where a trained agent is as-
sessed on the unseen split from the same dataset as
the training data. The leftmost columns in Table 2
reports the results where the training data is from
R4R. The BABYWALK agents outperform all other
agents when evaluated on CLS and SDTW.

When evaluated on SR, FAST performs the best
and the BABYWALK agents do not stand out. This
is expected: agents which are trained to reach
goal do not necessarily lead to better instruction-
following. Note that RCM(FIDELITY) performs
well in path-following.

Setting R4R→ R4R R4R→ others
Metrics SR↑ CLS↑ SDTW ↑ SR↑ CLS↑ SDTW ↑

fSUMMARY =
NULL 18.9 43.1 9.9 17.1 42.3 9.6
LSTM(·) 25.8 44.0 14.4 25.7 42.1 14.3

fSUMMARY =
∑m−1

i=1 αi · (·), i.e., eqs. (2,3)

γ = 5 27.5 46.8 15.8 26.7 44.4 14.9
γ = 0.5 27.3 49.4 17.3 27.6 47.9 17.5
γ = 0.05 27.5 47.7 16.2 26.0 45.5 15.2
γ = 0 26.1 46.6 15.1 25.1 44.3 14.4

Table 3: The memory buffer is beneficial to generaliz-
ing to different tasks from on which the agent is trained.

Out-of-domain Generalization While our pri-
mary goal is to train agents to generalize well to
longer navigation tasks, we are also curious how
the agents perform on shorter navigation tasks too.
The right columns in Table 2 report the compari-
son. The BABYWALK agents outperform all other
agents in all metrics except SR. In particular, on
SDTW, the generalization to R6R and R8R is espe-
cially encouraging, resulting almost twice those of
the second-best agent FAST. Moreover, recalling
from Fig. 1, BABYWALK’s generalization to R6R

and R8R attain even better performance than the
RCM agents that are trained in-domain.

Fig. 5 provides additional evidence on the suc-
cess of BABYWALK, where we have contrasted
to its performance to other agents’ on following
instructions in different lengths across all datasets.
Clearly, the BABYWALK agent is able to improve
very noticeably on longer instructions.

Qualitative Results Fig. 6 contrasts visually sev-
eral agents in executing two (long) navigation tasks.
BABYWALK’s trajectories are similar to what hu-
man experts provide, while other agents’ are not.

5.3 Analysis

Memory Buffer is Beneficial Table 3 illustrates
the importance of having a memory buffer to sum-
marize the agent’s past experiences. Without the
memory (NULL), generalization to longer tasks
is significantly worse. Using LSTM to summa-
rize is worse than using forgetting to summarize
(eqs. (2,3)). Meanwhile, ablating γ of the forgetting
mechanism concludes that γ = 0.5 is the optimal to
our hyperparameter search. Note that when γ = 0,
this mechanism degenerates to taking average of
the memory buffer, and leads to inferior results.

Setting R4R→ R4R R4R→ others
Metrics SR↑ CLS↑ SDTW ↑ SR↑ CLS↑ SDTW ↑

IL 24.7 27.9 11.1 24.2 25.8 10.2
IL+RL 25.0 45.5 13.6 25.0 43.8 14.1

IL+ CRL w/ LECTURE #
1st 24.1 44.8 13.5 24.1 43.1 13.6
2nd 26.7 45.9 15.2 26.2 43.7 14.8
3rd 27.9 47.4 17.0 26.7 45.4 16.3
4th 27.3 49.4 17.3 27.6 47.9 17.5

Table 4: BABYWALK’s performances with curriculum-
based reinforcement learning (CRL), which improves
imitation learning without or with reinforcement learn-
ing (IL+RL).

Eval → R6R → R8R
Training SR↑ CLS↑ SDTW↑ SR↑ CLS↑ SDTW↑

R2R 21.7 49.0 11.2 20.7 48.7 9.8
R4R 25.5 47.2 13.6 23.1 46.0 11.1

Eval → R2R → R4R
Training SR↑ CLS↑ SDTW↑ SR↑ CLS↑ SDTW↑

R2R 43.8 54.4 36.9 21.4 51.0 13.8
R4R 34.1 50.4 27.8 27.3 49.4 17.3

Table 5: (Top) BABYWALK trained on R2R is nearly
as effective as the agent trained on R4R when general-
izing to longer tasks. (Bottom) BABYWALK trained on
R2R adapts to R4R better than the agent trained in the
reverse direction.

Curriculum-based RL (CRL) is Important
Table 4 establishes the value of CRL. While im-
itation learning (IL) provides a good warm-up for
SR, significant improvement on other two metrics
come from the subsequent RL (IL+RL). Further-
more, CRL (with 4 “lectures”) provides clear im-
provements over direct RL on the entire instruction
(i.e., learning to execute all BABY-STEPs at once).
Each lecture improves over the previous one, espe-
cially in terms of the SDTW metric.

5.4 Revisiting ROOM2ROOM

Our experimental study has been focusing on using
R4R as the training dataset as it was established
that as opposed to R2R, R4R distinguishes well an
agent who just learns to reach the goal from an
agent who learns to follow instructions.

Given the encouraging results of generalizing to
longer tasks, a natural question to ask, how well
can an agent trained on R2R generalize?

Results in Table 5 are interesting. Shown in
the top panel, the difference in the averaged per-
formance of generalizing to R6R and R8R is not

HUMAN BABYWALK RCM SF SEQ2SEQ

Figure 6: Trajectories by human experts and VLN agents on two navigation tasks. More are in the Suppl. Material.

significant. The agent trained on R4R has a small
win on R6R presumably because R4R is closer to
R6R than R2R does. But for even longer tasks in
R8R, the win is similar.

In the bottom panel, however, it seems that R2R

→ R4R is stronger (incurring less loss in perfor-
mance when compared to the in-domain setting
R4R→ R4R) than the reverse direction (i.e., com-
paring R4R→ R2R to the in-domain R2R→ R2R).
This might have been caused by the noisier seg-
mentation of long instructions into BABY-STEPs in
R4R. (While R4R is composed of two navigation
paths in R2R, the segmentation algorithm is not
aware of the “natural” boundaries between the two
paths.)

6 Discussion

There are a few future directions to pursue. First,
despite the significant improvement, the gap be-
tween short and long tasks is still large and needs
to be further reduced. Secondly, richer and more
complicated variations between the learning set-
ting and the real physical world need to be tackled.
For instance, developing agents that are robust to
variations in both visual appearance and instruction
descriptions is an important next step.

Acknowledgments We appreciate the feedback from

the reviewers. This work is partially supported by

NSF Awards IIS-1513966/1632803/1833137, CCF-1139148,

DARPA Award#: FA8750-18-2-0117, DARPA-D3M - Award

UCB-00009528, Google Research Awards, gifts from Face-

book and Netflix, and ARO# W911NF-12-1-0241 and

W911NF-15-1-0484.

References
Peter Anderson, Qi Wu, Damien Teney, Jake Bruce,

Mark Johnson, Niko Sünderhauf, Ian Reid, Stephen
Gould, and Anton van den Hengel. 2018. Vision-
and-language navigation: Interpreting visually-
grounded navigation instructions in real environ-
ments. In CVPR.

Jacob Andreas, Dan Klein, and Sergey Levine. 2017.
Modular multitask reinforcement learning with pol-
icy sketches. In ICML.

Yoshua Bengio, Jérôme Louradour, Ronan Collobert,
and Jason Weston. 2009. Curriculum learning. In
ICML.

Angel Chang, Angela Dai, Thomas Funkhouser, Ma-
ciej Halber, Matthias Niessner, Manolis Savva, Shu-
ran Song, Andy Zeng, and Yinda Zhang. 2017. Mat-
terport3D: Learning from RGB-D data in indoor en-
vironments. In 3DV.

David L Chen and Raymond J Mooney. 2011. Learn-
ing to interpret natural language navigation instruc-
tions from observations. In AAAI.

Howard Chen, Alane Suhr, Dipendra Misra, Noah
Snavely, and Yoav Artzi. 2019. Touchdown: Natural
language navigation and spatial reasoning in visual
street environments. In CVPR.

Carlos Florensa, David Held, Markus Wulfmeier,
Michael Zhang, and Pieter Abbeel. 2017. Reverse
curriculum generation for reinforcement learning.
In CoRL.

Daniel Fried, Ronghang Hu, Volkan Cirik, Anna
Rohrbach, Jacob Andreas, Louis-Philippe Morency,
Taylor Berg-Kirkpatrick, Kate Saenko, Dan Klein,
and Trevor Darrell. 2018. Speaker-follower models
for vision-and-language navigation. In NeurIPS.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. 2016. Deep residual learning for image recog-
nition. In CVPR.

Matthew Honnibal and Ines Montani. 2017. spaCy 2:
Natural language understanding with Bloom embed-
dings, convolutional neural networks and incremen-
tal parsing. To appear.

Hexiang Hu, Liyu Chen, Boqing Gong, and Fei Sha.
2018. Synthesized policies for transfer and adapta-
tion across tasks and environments. In NeurIPS.

Haoshuo Huang, Vihan Jain, Harsh Mehta, Alexander
Ku, Gabriel Magalhaes, Jason Baldridge, and Eu-
gene Ie. 2019. Transferable representation learning
in vision-and-language navigation. In ICCV.

Vihan Jain, Gabriel Magalhaes, Alex Ku, Ashish
Vaswani, Eugene Ie, and Jason Baldridge. 2019.
Stay on the path: Instruction fidelity in vision-and-
language navigation. In EMNLP.

Tero Karras, Timo Aila, Samuli Laine, and Jaakko
Lehtinen. 2018. Progressive growing of gans for im-
proved quality, stability, and variation. In ICLR.

Liyiming Ke, Xiujun Li, Yonatan Bisk, Ari Holtz-
man, Zhe Gan, Jingjing Liu, Jianfeng Gao, Yejin
Choi, and Siddhartha Srinivasa. 2019. Tactical
rewind: Self-correction via backtracking in vision-
and-language navigation. In CVPR.

Joohyun Kim and Raymond Mooney. 2013. Adapting
discriminative reranking to grounded language learn-
ing. In ACL.

Chih-Yao Ma, Jiasen Lu, Zuxuan Wu, Ghassan Al-
Regib, Zsolt Kira, Richard Socher, and Caiming
Xiong. 2019a. Self-monitoring navigation agent via
auxiliary progress estimation. In ICLR.

Chih-Yao Ma, Zuxuan Wu, Ghassan AlRegib, Caiming
Xiong, and Zsolt Kira. 2019b. The regretful agent:
Heuristic-aided navigation through progress estima-
tion. In CVPR.

Gabriel Magalhaes, Vihan Jain, Alexander Ku, Eugene
Ie, and Jason Baldridge. 2019. Effective and general
evaluation for instruction conditioned navigation us-
ing dynamic time warping. In NeurIPS ViGIL Work-
shop.

Jiayuan Mao, Chuang Gan, Pushmeet Kohli, Joshua B
Tenenbaum, and Jiajun Wu. 2019. The neuro-
symbolic concept learner: Interpreting scenes,
words, and sentences from natural supervision. In
ICLR.

Hongyuan Mei, Mohit Bansal, and Matthew R Walter.
2016. Listen, attend, and walk: Neural mapping
of navigational instructions to action sequences. In
AAAI.

Khanh Nguyen and Hal Daumé III. 2019. Help,
anna! visual navigation with natural multimodal as-
sistance via retrospective curiosity-encouraging imi-
tation learning. In EMNLP.

Junhyuk Oh, Satinder Singh, Honglak Lee, and Push-
meet Kohli. 2017. Zero-shot task generalization
with multi-task deep reinforcement learning. In
ICML.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. Glove: Global vectors for word rep-
resentation. In Proceedings of the 2014 conference
on empirical methods in natural language process-
ing (EMNLP), pages 1532–1543.

Sungryull Sohn, Junhyuk Oh, and Honglak Lee.
2018. Hierarchical reinforcement learning for zero-
shot generalization with subtask dependencies. In
NeurIPS.

Richard S Sutton, David A McAllester, Satinder P
Singh, and Yishay Mansour. 2000. Policy gradient
methods for reinforcement learning with function ap-
proximation. In NeurIPS.

Hao Tan, Licheng Yu, and Mohit Bansal. 2019. Learn-
ing to navigate unseen environments: Back transla-
tion with environmental dropout. In EMNLP.

Jesse Thomason, Michael Murray, Maya Cakmak, and
Luke Zettlemoyer. 2019. Vision-and-dialog naviga-
tion. In CoRL.

Xin Wang, Qiuyuan Huang, Asli Celikyilmaz, Jian-
feng Gao, Dinghan Shen, Yuan-Fang Wang,
William Yang Wang, and Lei Zhang. 2019. Re-
inforced cross-modal matching and self-supervised
imitation learning for vision-language navigation.
In CVPR.

Yuke Zhu, Daniel Gordon, Eric Kolve, Dieter Fox,
Li Fei-Fei, Abhinav Gupta, Roozbeh Mottaghi, and
Ali Farhadi. 2017a. Visual semantic planning using
deep successor representations. In ICCV.

Yuke Zhu, Roozbeh Mottaghi, Eric Kolve, Joseph J
Lim, Abhinav Gupta, Li Fei-Fei, and Ali Farhadi.
2017b. Target-driven visual navigation in indoor
scenes using deep reinforcement learning. In ICRA.

Supplementary Material
In this supplementary material, we provide details
omitted in the main text. The content is organized
as what follows:

• Section A. Details on identifying BABY-STEP

instructions and aligning BABY-STEPs with ex-
pert trajectories. (§ 4.3 and § 4.4 of the main
text)

• Section B. Implementation details of the navi-
gation agent, reward function used in RL and
optimization hyper-parameters. (§ 4.4 of the
main text)

• Section C. Additional experimental results, in-
cluding in-domain & transfer results of different
dataset trained models, sanity check of our reim-
plementation, and extra analysis of BABYWALK.
(§ 5.1 and § 5.2 of the main text)

A Details on BABY-STEP Identification
and Trajectory Alignments

In this section, we describe the details of how
BABY-STEPs are identified in the annotated nat-
ural language instructions and how expert trajec-
tory data are segmented to align with BABY-STEP

instructions.

A.1 Identify BABY-STEPs
We identify the navigable BABY-STEPs from the
natural language instructions of R2R, R4R, R6R

and R8R, based on the following 6 steps:

1. Split sentence and chunk phrases. We split
the instructions by periods. For each sentence,
we perform POS tagging using the SpaCy (Hon-
nibal and Montani, 2017) package to locate
and chunk all plausible noun phrases and verb
phrases.

2. Curate noun phrases. We curate noun phrases
by removing the stop words (i.e., the, for, from
etc.) and isolated punctuations among them and
lemmatizing each word of them. The purpose is
to collect a concentrated set of semantic noun
phrases that contain potential visual objects.

3. Identify “landmark words”. Next, given the
set of candidate visual object words, we filter
out a blacklist of words that either do not cor-
respond to any visual counterpart or are mis-
classified by the SpaCy package. The word
blacklist includes:

end, 18 inch, head, inside,
forward, position, ground,
home, face, walk, feet, way,
walking, bit, veer, ’ve,
next, stop, towards, right,
direction, thing, facing,
side, turn, middle, one, out,
piece, left, destination,
straight, enter, wait, don’t,
stand, back, round

We use the remaining noun phrases as the “land-
mark words” of the sentences. Note that this
step identifies the “landmark words” for the later
procedure which aligns BABY-STEPs and expert
trajectories.

4. Identifying verb phrases. Similarly, we use a
verb blacklist to filter out verbs that require no
navigational actions of the agent. The blacklist
includes: make, turn, face, facing,
veer.

5. Merge non-actionable sentences. We merge
the sentence without landmarks and verbs into
the next sentence, as it is likely not actionable.

6. Merge stop sentences. There are sentences that
only describe the stop condition of a navigation
action, which include verb-noun compositions
indicating the stop condition. We detect the sen-
tences starting with wait, stop, there,
remain, you will see as the sentences
that only describe the stop condition and merge
them to the previous sentence. Similarly, we de-
tect sentences starting with with, facing
and merge them to the next sentence.

After applying the above 6 heuristic rules to
the language instruction, we obtain chunks of sen-
tences that describes the navigable BABY-STEPs
of the whole task (i.e., a sequence of navigational
sub-goals.).

A.2 Align Expert Trajectories with identified
BABY-STEPs

In the previous section, we describe the algorithm
for identifying BABY-STEP instructions from the
original natural language instructions of the dataset.
Now we are going to describe the procedure of
aligning BABY-STEPs with the expert trajectories,
which segments the expert trajectories according to
the BABY-STEPs to create the training data for the
learning pipeline of our BABYWALK agent. Note

that during the training, our BABYWALK does not
rely on the existence of ground-truth alignments
between the (micro)instructions and BABY-STEPs
trajectories.

Main Idea The main idea here is to: 1) perform
visual landmark classification to produce confi-
dence scores of landmarks for each visual state s
along expert trajectories; 2) use the predicted land-
mark scores and the “landmark words” in BABY-
STEPs to guide the alignment between the expert
trajectory and BABY-STEPs. To achieve this, we
train a visual landmark classifier with weak super-
vision — trajectory-wise existence of landmark
objects. Next, based on the predicted landmark
confidence scores, we use dynamic programming
(DP) to chunk the expert trajectory into segments
and assign the segments to the BABY-STEPs.

Weakly Supervised Learning of the Landmark
Classifier Given the pairs of aligned instruction
and trajectories (X,Y) from the original dataset,
we train a landmark classifier to detect landmarks
mentioned in the instructions. We formulate it as a
multi-label classification problem that asks a classi-
fier f LDMK (st;O) to predict all the landmarks OX

of the instruction X given the corresponding trajec-
tory Y. Here, we denotes all possible landmarks
from the entire dataset to be O, and the landmarks
of a specific instruction X to beOX. Concretely, we
first train a convolutional neural network (CNN)
based on the visual state features st to indepen-
dently predict the existence of landmarks at every
time step, then we aggregate the predictions across
all time steps to get trajectory-wise logits ψ via
max-pooling over all states of the trajectory.

ψ = max {f LDMK (st;O) | t = 1, . . . , |Y|}

Here f LDMK denotes the independent state-wise
landmark classifier, and ψ is the logits before nor-
malization for computing the landmark probability.
For the specific details of f LDMK, we input the 6×6
panorama visual feature (i.e. ResNet-152 feature)
into a two-layer CNN (with kernel size of 3, hid-
den dimension of 128 and ReLU as non-linearity
layer) to produce feature activation with spatial ex-
tents, followed by a global averaging operator over
spatial dimensions and a multi-layer perceptron
(2-layer with hidden dimension of 512 and ReLU
as non-linearity layer) that outputs the state-wise
logits for all visual landmarks O. We then max
pool all the state-wise logits along the trajectory

and compute the loss using a trajectory-wise binary
cross-entropy between the ground-truth landmark
label (of existence) and the prediction.

Aligning BABY-STEPs and Trajectories with
Visual Landmarks Now, sppose we have a
sequence of BABY-STEP instructions X =
{xm, m = 1, . . . ,M}, and its expert trajectory
Y = {st, t = 1, . . . , |Y|}, we can compute the
averaged landmark score for the landmarks Oxm

that exists in this sub-task instruction xm on a sin-
gle state st:

Ψ (t,m) =
1 [om ∈ Oxm]> f LDMK (st;O)

|Oxm |

Here 1 [om ∈ O] represents the one-hot encoding
of the landmarks that exists in the BABY-STEP xm,
and |Oxm | is the total number of existed landmarks.
We then apply dynamic programming (DP) to solve
the trajectory segmentation specified by the follow-
ing Bellman equation (in a recursive form).

Φ (t,m) =

Ψ(t,m), if t = 1

Ψ(t,m) +

max
i∈{1,...,t−1}

{
Φ(i, m− 1)

}
, otherwise

Here, Φ (t,m) represents the maximum potential
of choosing the state st as the end point of the
BABY-STEP instruction xm. Solving this DP leads
to a set of correspondingly segmented trajectories
Y = {ym, m = 1, . . . ,M}, with ym being the m-
th BABY-STEP sub-trajectory.

B Implementation details

B.1 Navigation Agent Configurations

Figure 7 gives an overview of the unrolled version
of our full navigation agent.

Panoramic State-Action Space (Fried et al.,
2018) We set up the states st as the stacked vi-
sual feature of agent-centric panoramic views in
12 headings × 3 elevations with 30 degree inter-
vals. The visual feature of each view is a con-
catenation of the ResNet-152 feature vector of
size 2048 and the orientation feature vector of
size 128 (The 4-dimensional orientation feature
[sin(φ); cos(φ); sin(ω); cos(ω)] are tiled 32 times).
We use similar single-view visual feature of size
2176 as our action embeddings.

Instruction EncoderMemory Buffer

𝑢(𝑥𝑖)

Trajectory Encoder

Bi-LSTM

Bi-LSTM
𝑠𝑡𝑖

𝑎𝑡𝑖

Vision
Attention

𝑣(ො𝑦𝑖)

𝑢(𝑥𝑚)

Word
Embedding

𝑥𝑚

BabyWalk Policy

Ƹ𝑧𝑚

MLP

Concat

ℎ𝑡+1

𝑎𝑡Softmax

Dot Product 𝐀𝒔𝒕

ℎ𝑡

Concat

𝑠𝑡

𝑎𝑡−1

Vision
Attention

LSTM

Text
Attention

LSTM

,𝑥𝑖 ො𝑦𝑖

,𝑥1 ො𝑦1

,𝑥 ො𝑦
⋮

⋮

MLP

m-1 m-1

Figure 7: Our network architecture at the m-th BABY-STEP sub-task. Red line represents the procedure of en-
coding context variable zm via summarizing the BABY-STEP trajectory fSUMMARY(v(ŷ1), . . . , v(ŷm−1)) and the
corresponding (micro)instruction fSUMMARY(u(x1), . . . , u(xm−1)) in the memory buffer. Blue line represents the
procedure of encoding the (micro)instruction u(xm) of the current BABY-STEP. Purple line represents the de-
tailed decision making process of our BABYWALK policy (Ast is denoted as the set of navigable directions at st
as defined by Fried et al. (2018))

Encoders Instruction encoder u(·) for the in-
structions is a single directional LSTM with hidden
size 512 and a word embedding layer of size 300
(initialized with GloVE embedding (Pennington
et al., 2014)). We use the same encoder for encod-
ing the past experienced and the current executing
instruction. Trajectory encoder v(·) contains two
separate bidirectional LSTMs (Bi-LSTM), both
with hidden size 512. The first Bi-LSTM encodes
ati and outputs a hidden state for each time step ti.
Then we attends the hidden state to the panoramic
view sti to get a state feature of size 2176 for each
time step. The second Bi-LSTM encoders the state
feature. We use the trajectory encoder just for en-
coding the past experienced trajectories.

BABYWALK Policy The BABYWALK policy
network consists of one LSTM with two attention
layers and an action predictor. First we attend the
hidden state to the panoramic view st to get state
feature of size 2176. The state feature is concate-
nated with the previous action embedding as a vari-
able to update the hidden state using a LSTM with
hidden size 512. The updated hidden state is then
attended to the context variables (output of u(·)).
For the action predictor module, we concatenate the
output of text attention layer with the summarized
past context ẑm in order to get an action prediction
variable. We then get the action prediction variable
through a 2-layer MLP and make a dot product
with the navigable action embeddings to retrieve

the probability of the next action.

Model Inference During the inference time, the
BABYWALK policy only requires running the
heuristic BABY-STEP identification on the test-time
instruction. No need for oracle BABY-STEP trajec-
tory during this time as the BABYWALK agent is
going to roll out for each BABY-STEP by itself.

B.2 Details of Reward Shaping for RL

As mentioned in the main text, we learn policy via
optimizing the Fidelity-oriented reward (Jain et al.,
2019). Now we give the complete details of this
reward function. Suppose the total number of roll
out steps is T =

∑M
i=1 |ŷi|, we would have the

following form of reward function:

r(st,at) =

{
0, if t < T

SR(Y, Ŷ) + CLS(Y, Ŷ), if t = T

Here, Ŷ = ŷ1 ⊕ . . .⊕ ŷM represents the concate-
nation of BABY-STEP trajectories produced by the
navigation agent (and we note ⊕ as the concatena-
tion operation).

B.3 Optimization Hyper-parameters

For each BABY-STEP task, we set the maximal
number of steps to be 10, and truncate the cor-
responding BABY-STEP instruction length to be
100. During both the imitation learning and the
curriculum reinforcement learning procedures, we
fix the learning rate to be 1e-4. In the imitation

learning, the mini-batch size is set to be 100. In
the curriculum learning, we reduce the mini-batch
size as curriculum increases to save memory con-
sumption. For the 1st, 2nd, 3rd and 4th curriculum,
the mini-batch size is set to be 50, 32, 20, and 20
respectively. During the learning, we pre-train our
BABYWALK model for 50000 iterations using the
imitation learning as a warm-up stage. Next, in
each lecture (up to 4) of the reinforcement learn-
ing (RL), we train the BABYWALK agent for an
additional 10000 iterations, and select the best per-
forming model in terms of SDTW to resume the
next lecture. For executing each instruction dur-
ing the RL, we sample 8 navigation episodes be-
fore performing any back-propagation. For each
learning stage, we use separate Adam optimizers
to optimize for all the parameters. Meanwhile, we
use the L2 weight decay as the regularizer with its
coefficient set to be 0.0005. In the reinforcement
learning, the discounted factor γ is set to be 0.95.

C Additional Experimental Results

In this section, we describe a comprehensive set of
evaluation metrics and then show transfer results
of models trained on each dataset, with all met-
rics. We provide additional analysis studying the
effectiveness of template based BABY-STEP identi-
fication. Finally we present additional qualitative
results.

Complete set of Evaluation Metrics. We adopt
the following set of metrics:

• Path Length (PL) is the length of the agent’s
navigation path.

• Navigation Error (NE) measures the distance
between the goal location and final location of
the agent’s path.

• Success Rate (SR) that measures the average rate
of the agent stopping within a specified distance
near the goal location (Anderson et al., 2018)

• Success weighted by Path Length (SPL) (An-
derson et al., 2018) measures the success rate
weighted by the inverse trajectory length, to pe-
nalize very long successful trajectory.

• Coverage weighted by Length Score (CLS) (Jain
et al., 2019) that measures the fidelity of the
agent’s path to the reference, weighted by the
length score, and the newly proposed

• Normalized Dynamic Time Warping (NDTW) that
measures in more fine-grained details, the spatio-
temporal similarity of the paths by the agent and
the human expert (Magalhaes et al., 2019).

• Success rate weighted normalized Dynamic Time
Warping (SDTW) that further measures the spatio-
temporal similarity of the paths weighted by
the success rate (Magalhaes et al., 2019). CLS,
NDTW and SDTW measure explicitly the agent’s
ability to follow instructions and in particular,
it was shown that SDTW corresponds to human
preferences the most.

C.1 Sanity Check between Prior Methods
and Our Re-implementation

Data Splits R2R Validation Unseen
Perf. Measures PL NE↓ SR↑ SPL

Reported Results
SEQ2SEQ (Fried et al., 2018) - 7.07 31.2 -
SF+ (Fried et al., 2018) - 6.62 35.5 -
RCM+ (Wang et al., 2019) 14.84 5.88 42.5 -
REGRETFUL+? (Ma et al., 2019b) - 5.32 50.0 41.0
FAST+? (Ke et al., 2019) 21.17 4.97 56.0 43.0

Re-implemented Version
SEQ2SEQ 15.76 6.71 33.6 25.5
SF+ 15.55 6.52 35.8 27.6
RCM+ 11.15 6.18 42.4 38.6
REGRETFUL+? 13.74 5.38 48.7 39.7
FAST+? 20.45 4.97 56.6 43.7

Table 6: Sanity check of model trained on R2R and
evaluated on its validation unseen split (+: pre-trained
with data augmentation; ?:reimplemented or readapted
from the original authors’ released code).

As mentioned in the main text, we compare our
re-implementation and originally reported results
of baseline methods on the R2R datasets, as Table 6.
We found that the results are mostly very similar,
indicating that our re-implementation are reliable.

C.2 Complete Curriculum Learning Results
We present the curriculum learning results with all
evaluation metrics in Table 7.

C.3 Results of BABY-STEP Identification
We present an additional analysis comparing differ-
ent BABY-STEP identification methods. We com-
pare our template-based BABY-STEP identification
with a simple method that treat each sentence as
an BABY-STEP (referred as sentence-wise), both
using the complete BABYWALK model with the
same training routine. The results are shown in the

IL+ CRL w/ LECTURE #

D
at

as
et

s

M
et

ric
s

IL

IL
+R

L

1s
t

2n
d

3r
d

4t
h

R
2R

PL 22.4 12.0 11.6 13.2 10.6 9.6
NE↓ 6.8 7.1 6.8 6.8 6.7 6.6
SR↑ 28.1 29.8 29.9 33.2 32.2 34.1
SPL↑ 15.7 24.3 24.9 26.6 27.5 30.2
CLS↑ 28.9 46.2 46.6 47.2 48.1 50.4
NDTW↑ 30.6 43.8 42.5 41.0 47.7 50.0
SDTW↑ 16.5 23.2 23.1 24.3 25.7 27.8

R
4R

PL 43.4 22.8 23.9 25.5 21.4 19.0
NE↓ 8.4 8.6 8.5 8.4 8.0 8.2
SR↑ 24.7 25.0 24.1 26.7 27.9 27.3
SPL↑ 8.2 11.2 11.0 12.3 13.7 14.7
CLS↑ 27.9 45.5 44.8 45.9 47.4 49.4
NDTW↑ 24.3 34.4 32.8 33.7 38.4 39.6
SDTW↑ 11.1 13.6 13.5 15.2 17.0 17.3

R
6R

PL 68.8 35.3 37.0 40.6 33.2 28.7
NE↓ 9.4 9.5 9.4 9.4 8.9 9.2
SR↑ 22.7 23.7 21.9 23.4 24.7 25.5
SPL↑ 4.2 7.2 6.4 6.8 8.1 9.2
CLS↑ 24.4 43.0 41.8 42.3 44.2 47.2
NDTW↑ 17.8 28.1 26.0 26.9 30.9 32.7
SDTW↑ 7.7 10.8 9.7 11.0 12.7 13.6

R
8R

PL 93.1 47.5 50.0 55.3 45.2 39.9
NE↓ 10.0 10.2 10.2 10.1 9.3 10.1
SR↑ 21.9 21.4 20.4 22.1 23.1 23.1
SPL↑ 4.3 6.1 5.5 6.1 6.8 7.4
CLS↑ 24.1 42.1 41.0 41.5 43.9 46.0
NDTW↑ 15.5 24.6 22.9 23.8 27.7 28.2
SDTW↑ 6.4 8.3 7.9 9.2 10.5 11.1

A
ve

ra
ge

PL 51.8 26.8 27.9 30.6 25.1 22.1
NE↓ 8.5 8.7 8.5 8.5 8.1 8.3
SR↑ 24.7 25.5 24.6 27.0 27.5 28.1
SPL↑ 8.6 13.1 12.9 13.9 15.1 16.5
CLS↑ 26.6 44.5 43.9 44.6 46.2 48.6
NDTW↑ 23.0 33.9 32.2 32.4 37.4 39.0
SDTW↑ 11.0 14.8 14.4 15.7 17.3 18.4

Table 7: Ablation on BABYWALK after each learning
stage (trained on R4R).

Table 8. Generally speaking, the template based
BABY-STEP identification provides a better perfor-
mance.

C.4 In-domain Results of Models Trained on
Instructions with Different lengths

As mentioned in the main text, we display all the in-
domain results of navigation agents trained on R2R,
R4R, R6R, R8R, respectively. The complete results
of all different metrics are included in the Table 9.
We note that our BABYWALK agent consistently
outperforms baseline methods on each dataset. It
is worth noting that on R4R, R6R and R8R datasets,
RCM(GOAL)+ achieves better results in SPL. This
is due to the aforementioned fact that they often

Datasets Metrics Sentence-wise Template based

R2R

PL 10.3 9.6
NE↓ 6.8 6.6
SR↑ 28.7 34.1
SPL↑ 24.9 30.2
CLS↑ 48.3 50.4
NDTW↑ 43.6 50.0
SDTW↑ 22.4 27.8

R4R

PL 20.9 19.0
NE↓ 8.2 8.2
SR↑ 26.3 27.3
SPL↑ 12.7 14.7
CLS↑ 46.4 49.4
NDTW↑ 35.5 39.6
SDTW↑ 15.9 17.3

R6R

PL 32.1 28.7
NE↓ 9.0 9.2
SR↑ 22.5 25.5
SPL↑ 7.5 9.2
CLS↑ 44.2 47.2
NDTW↑ 29.3 32.7
SDTW↑ 11.1 13.6

R8R

PL 42.9 39.9
NE↓ 9.8 10.1
SR↑ 21.2 23.1
SPL↑ 6.3 7.4
CLS↑ 43.2 46.0
NDTW↑ 25.5 28.2
SDTW↑ 9.3 11.1

Average

PL 24.2 22.1
NE↓ 8.3 8.3
SR↑ 25.2 28.1
SPL↑ 13.8 16.5
CLS↑ 45.9 48.6
NDTW↑ 34.6 39.0
SDTW↑ 15.4 18.4

Table 8: BABYWALK Agent performances between dif-
ferent segmentation rules (trained on R4R). Refer to
text for more details.

take short-cuts to directly reach the goal, with a
significantly short trajectory. As a consequence,
the success rate weighted by inverse path length is
high.

C.5 Transfer Results of Models Trained on
Instructions with Different lengths

For completeness, we also include all the transfer
results of navigation agents trained on R2R, R4R,
R6R, R8R, respectfully. The complete results of all
different metrics are included in the Table 10. Ac-
cording to this table, we note that models trained on
R8R can achieve the best overall transfer learning
performances. This could because of the fact that
R8R trained model only needs to deal with interpo-

D
at

as
et

s

M
et

ric
s

SE
Q

2S
E

Q

SF
+

R
C

M
(G

O
A

L
)+

R
C

M
(F

ID
E

L
IT

Y
)+

B
A

B
Y

W
A

L
K

B
A

B
Y

W
A

L
K

+

R
2R
→

R
2R

PL 15.8 15.6 11.1 10.2 10.7 10.2
NE↓ 6.7 6.5 6.2 6.2 6.2 5.9
SR↑ 33.6 35.8 42.4 42.1 42.6 43.8
SPL↑ 25.5 27.6 38.6 38.6 38.3 39.6
CLS↑ 38.5 39.8 52.7 52.6 52.9 54.4
NDTW↑ 39.2 41.0 51.0 50.8 53.4 55.3
SDTW↑ 24.9 27.2 33.5 34.4 35.7 36.9

R
4R
→

R
4R

PL 28.5 26.1 12.3 26.4 23.8 19.0
NE↓ 8.5 8.3 7.9 8.4 7.9 8.2
SR↑ 25.7 24.9 28.7 24.7 29.6 27.3
SPL↑ 14.1 16.0 22.1 11.6 14.0 14.7
CLS↑ 20.7 23.6 36.3 39.2 47.8 49.4
NDTW↑ 20.6 22.7 31.3 31.3 38.1 39.6
SDTW↑ 9.0 9.2 13.2 13.7 18.1 17.3

R
6R
→

R
6R

PL 34.1 43.4 11.8 28.0 28.4 27.2
NE↓ 9.5 9.6 9.2 9.4 9.4 9.3
SR↑ 18.1 17.8 18.2 20.5 21.7 22.0
SPL↑ 9.6 7.9 14.8 7.4 7.8 8.1
CLS↑ 23.4 20.3 31.6 39.0 47.1 47.4
NDTW↑ 19.3 17.8 25.9 25.8 32.6 33.4
SDTW↑ 6.5 5.9 7.6 9.5 11.5 11.8

R
8R
→

R
8R

PL 40.0 53.0 12.4 42.3 35.6 39.1
NE↓ 9.9 10.1 10.2 10.7 9.6 9.9
SR↑ 20.2 18.6 19.7 18.2 22.3 22.0
SPL↑ 12.4 9.8 15.4 5.3 7.3 7.0
CLS↑ 19.8 16.3 25.7 37.2 46.4 46.4
NDTW↑ 15.8 13.5 19.4 21.6 29.6 28.3
SDTW↑ 5.1 4.4 5.8 7.6 10.4 10.1

Table 9: Indomain results. Each model is trained on
the training set of R2R, R4R, R6R and R8R datasets,
and evaluated on the corresponding unseen validation
set (+: pre-trained with data augmentation).

lating to shorter ones, rather than extrapolating to
longer instructions, which is intuitively an easier
direction.

C.6 Additional Qualitative Results
We present more qualitative result of various VLN
agents as Fig 8. It seems that BABYWALK can pro-
duce trajectories that align better with the human
expert trajectories.

D
at

as
et

s

M
et

ric
s

SE
Q

2S
E

Q

SF
+

R
C

M
(G

O
A

L
)+

R
C

M
(F

ID
E

L
IT

Y
)+

R
E

G
R

E
T

FU
L
+
?

FA
ST

+
?

B
A

B
Y

W
A

L
K

B
A

B
Y

W
A

L
K

+

R
2R
→

R
4R

PL 28.6 28.9 13.2 14.1 15.5 29.7 19.5 17.9
NE↓ 9.1 9.0 9.2 9.3 8.4 9.1 8.9 8.9
SR↑ 18.3 16.7 14.7 15.2 19.2 13.3 22.5 21.4
SPL↑ 7.9 7.4 8.9 8.9 10.1 7.7 12.6 11.9
CLS↑ 29.8 30.0 42.5 41.2 46.4 41.8 50.3 51.0
NDTW↑ 25.1 25.3 33.3 32.4 31.6 33.5 38.9 40.3
SDTW↑ 7.1 6.7 7.3 7.2 9.8 7.2 14.5 13.8

R
2R
→

R
6R

PL 39.4 41.4 14.2 15.7 15.9 32.0 29.1 25.9
NE↓ 9.6 9.8 9.7 9.8 8.8 9.0 10.1 9.8
SR↑ 20.7 17.9 22.4 22.7 24.2 26.0 21.4 21.7
SPL↑ 11.0 9.1 17.7 18.3 16.6 16.5 7.9 8.8
CLS↑ 25.9 26.2 37.1 36.4 40.9 37.7 48.4 49.0
NDTW↑ 20.5 20.8 26.6 26.1 16.2 21.9 30.8 32.6
SDTW↑ 7.7 7.2 8.2 8.4 6.8 8.5 11.2 11.2

R
2R
→

R
8R

PL 52.3 52.2 15.3 16.9 16.6 34.9 38.3 34.0
NE↓ 10.5 10.5 11.0 11.1 10.0 10.6 11.1 10.5
SR↑ 16.9 13.8 12.4 12.6 16.3 11.1 19.6 20.7
SPL↑ 6.1 5.6 7.4 7.5 7.7 6.2 6.9 7.8
CLS↑ 22.5 24.1 32.4 30.9 35.3 33.7 48.1 48.7
NDTW↑ 17.1 18.2 23.9 23.3 8.1 14.5 26.7 29.1
SDTW↑ 4.1 3.8 4.3 4.3 2.4 2.4 9.4 9.8

A
ve

ra
ge

PL 40.1 40.8 14.2 15.6 16.0 32.2 29.0 25.9
NE↓ 9.7 9.8 10.0 10.1 9.1 9.6 10.0 9.7
SR↑ 18.6 16.1 16.5 16.8 19.9 16.8 21.2 21.3
SPL↑ 8.3 7.4 11.3 11.6 11.5 10.1 9.1 9.5
CLS↑ 26.1 26.8 37.3 36.2 40.9 37.7 48.9 49.6
NDTW↑ 20.9 21.4 27.9 27.3 18.6 23.3 32.1 34.0
SDTW↑ 6.3 5.9 6.6 6.6 6.3 6.0 11.7 11.6

D
at

as
et

s

M
et

ric
s

SE
Q

2S
E

Q

SF
+

R
C

M
(G

O
A

L
)+

R
C

M
(F

ID
E

L
IT

Y
)+

R
E

G
R

E
T

FU
L
+
?

FA
ST

+
?

B
A

B
Y

W
A

L
K

B
A

B
Y

W
A

L
K

+

R
4R
→

R
2R

PL 16.2 17.4 10.2 17.7 20.0 26.5 12.1 9.6
NE↓ 7.8 7.3 7.1 6.7 7.5 7.2 6.6 6.6
SR↑ 16.3 22.5 25.9 29.1 22.8 25.1 35.2 34.1
SPL↑ 9.9 14.1 22.5 18.2 14.0 16.3 28.3 30.2
CLS↑ 27.1 29.5 44.2 34.3 32.6 33.9 48.5 50.4
NDTW↑ 29.3 31.8 41.1 33.5 28.5 27.9 46.5 50.0
SDTW↑ 10.6 14.8 20.2 18.3 13.4 14.2 27.2 27.8

R
4R
→

R
6R

PL 40.8 38.5 12.8 33.0 19.9 26.6 37.0 28.7
NE↓ 9.9 9.5 9.2 9.3 9.5 8.9 8.8 9.2
SR↑ 14.4 15.5 19.3 20.5 18.0 22.1 26.4 25.5
SPL↑ 6.8 8.4 15.2 8.5 10.6 13.7 8.1 9.2
CLS↑ 17.7 20.4 31.8 38.3 31.7 31.5 44.9 47.2
NDTW↑ 16.4 18.3 23.5 23.7 23.5 23.0 30.1 32.7
SDTW↑ 4.6 5.2 7.3 7.9 7.5 7.7 13.1 13.6

R
4R
→

R
8R

PL 56.4 50.8 13.9 38.7 20.7 28.2 50.0 39.9
NE↓ 10.1 9.5 9.5 9.9 9.5 9.1 9.3 10.1
SR↑ 20.7 21.6 22.8 20.9 18.7 27.7 26.3 23.1
SPL↑ 10.4 11.8 16.9 9.0 9.2 13.7 7.2 7.4
CLS↑ 15.0 17.2 27.6 34.6 29.3 29.6 44.7 46.0
NDTW↑ 13.4 15.1 19.5 21.7 19.0 17.7 27.1 28.2
SDTW↑ 4.7 5.0 5.1 6.1 5.6 6.9 11.5 11.1

A
ve

ra
ge

PL 37.8 35.6 12.3 29.8 20.2 27.1 33.0 26.1
NE↓ 9.3 8.8 8.6 8.6 8.8 8.4 8.2 8.6
SR↑ 17.1 19.9 22.7 23.5 19.8 25.0 29.3 27.6
SPL↑ 9.0 11.4 18.2 11.9 11.3 14.6 14.5 15.6
CLS↑ 19.9 22.4 34.5 35.7 31.2 31.7 46.0 47.9
NDTW↑ 19.7 21.7 28.0 26.3 23.7 22.9 34.6 37.0
SDTW↑ 6.6 8.3 10.9 10.8 8.8 9.6 17.3 17.5

(a) R2R trained model (b) R4R trained model

D
at

as
et

s

M
et

ric
s

SE
Q

2S
E

Q

SF
+

R
C

M
(G

O
A

L
)+

R
C

M
(F

ID
E

L
IT

Y
)+

B
A

B
Y

W
A

L
K

B
A

B
Y

W
A

L
K

+

R
6R
→

R
2R

PL 14.5 19.4 8.1 15.5 9.4 9.2
NE↓ 7.7 7.1 7.6 7.5 6.8 6.8
SR↑ 19.3 21.9 19.6 22.6 31.3 30.6
SPL↑ 13.3 11.6 17.2 14.1 28.3 27.8
CLS↑ 32.1 26.2 43.2 34.3 49.9 50.0
NDTW↑ 31.9 30.8 39.7 32.4 49.5 49.4
SDTW↑ 13.1 13.3 15.3 14.3 25.9 25.4

R
6R
→

R
4R

PL 25.2 33.0 11.6 25.7 18.1 17.7
NE↓ 8.7 8.6 8.5 8.4 8.4 8.2
SR↑ 24.2 22.4 23.6 25.4 24.3 24.3
SPL↑ 13.7 9.3 17.5 10.6 12.8 12.9
CLS↑ 25.8 21.4 35.8 34.8 48.6 48.6
NDTW↑ 22.9 20.6 29.8 26.5 39.0 39.4
SDTW↑ 9.3 7.5 10.8 11.1 15.1 15.1

R
6R
→

R
8R

PL 43.0 52.8 14.2 29.9 38.3 36.8
NE↓ 9.9 9.9 9.6 9.7 10.2 10.0
SR↑ 20.1 20.3 20.3 22.4 20.8 21.0
SPL↑ 11.2 9.4 14.9 8.1 6.6 6.8
CLS↑ 20.6 18.3 27.7 38.9 45.9 46.3
NDTW↑ 16.3 15.2 21.9 22.2 28.4 29.3
SDTW↑ 5.6 5.0 6.4 6.8 9.6 9.9

A
ve

ra
ge

PL 27.6 35.1 11.3 23.7 21.9 21.2
NE↓ 8.8 8.5 8.6 8.5 8.5 8.3
SR↑ 21.2 21.5 21.2 23.5 25.5 25.3
SPL↑ 12.7 10.1 16.5 10.9 15.9 15.8
CLS↑ 26.2 22.0 35.6 36.0 48.1 48.3
NDTW↑ 23.7 22.2 30.5 27.0 39.0 39.4
SDTW↑ 9.3 8.6 10.8 10.7 16.9 16.8

D
at

as
et

s

M
et

ric
s

SE
Q

2S
E

Q

SF
+

R
C

M
(G

O
A

L
)+

R
C

M
(F

ID
E

L
IT

Y
)+

B
A

B
Y

W
A

L
K

B
A

B
Y

W
A

L
K

+

R
8R
→

R
2R

PL 13.7 19.3 7.8 17.8 9.1 9.8
NE↓ 7.6 7.3 8.0 8.2 6.8 6.7
SR↑ 18.7 23.4 14.8 19.2 30.0 32.1
SPL↑ 13.3 12.9 12.9 10.6 27.0 28.2
CLS↑ 32.7 26.6 37.9 28.9 49.5 49.3
NDTW↑ 32.4 29.9 34.9 25.9 48.9 48.9
SDTW↑ 12.7 14.5 11.1 10.5 24.6 26.2

R
8R
→

R
4R

PL 23.1 31.7 11.1 32.5 17.4 19.0
NE↓ 8.7 8.8 8.7 9.2 8.2 8.5
SR↑ 23.6 21.8 23.2 21.7 24.4 24.4
SPL↑ 15.1 10.5 18.2 7.4 12.6 12.5
CLS↑ 24.9 20.8 32.3 29.4 48.1 48.5
NDTW↑ 22.3 19.7 26.4 20.6 39.1 38.5
SDTW↑ 8.8 7.7 9.3 8.4 14.9 15.2

R
8R
→

R
6R

PL 30.9 42.2 11.9 39.9 26.6 29.2
NE↓ 9.7 9.9 9.9 10.1 9.0 9.3
SR↑ 15.4 14.7 14.8 20.0 22.9 22.9
SPL↑ 8.6 6.7 11.6 5.3 8.4 7.9
CLS↑ 22.2 18.5 29.1 33.5 46.9 46.6
NDTW↑ 18.5 15.9 22.5 20.1 33.3 31.8
SDTW↑ 5.5 4.7 6.0 7.8 12.1 11.8

A
ve

ra
ge

PL 22.6 31.1 10.3 30.1 17.7 19.3
NE↓ 8.7 8.7 8.9 9.2 8.0 8.2
SR↑ 19.2 20.0 17.6 20.3 25.8 26.5
SPL↑ 12.3 10.0 14.2 7.8 16.0 16.2
CLS↑ 26.6 22.0 33.1 30.6 48.2 48.1
NDTW↑ 24.4 21.8 27.9 22.2 40.4 39.7
SDTW↑ 9.0 9.0 8.8 8.9 17.2 17.7

(c) R6R trained model (d) R8R trained model

Table 10: Transfer results of R2R, R4R, R6R, R8R trained model evaluated on their complementary unseen vali-
dation datasets (+: pre-trained with data augmentation; ?: reimplemented or readapted from the original authors’
released code).

HUMAN BABYWALK RCM SF SEQ2SEQ

Figure 8: Additional trajectories by human experts and VLN agents on two navigation tasks.

