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Abstract: Hamiltonian Monte Carlo is a popular sampling technique for
smooth target densities. The scale lengths of the target have long been
known to influence integration error and sampling efficiency. However, quan-
titative measures intrinsic to the target have been lacking. In this paper, we
restrict attention to the multivariate Gaussian and the leapfrog integrator,
and obtain a condition number corresponding to sampling efficiency. This
number, based on the spectral and Schatten norms, quantifies the number
of leapfrog steps needed to efficiently sample. We demonstrate its utility by
using this condition number to analyze HMC preconditioning techniques.
We also find the condition number of large inverse Wishart matrices, from
which we derive burn-in heuristics.
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1. Introduction

Hamiltonian Monte Carlo (HMC) is a technique for sampling random variables
X ∈ RN , possessing smooth densities p(x). A a core step is the numerical
integration of Hamilton’s equations for time T , in ` discrete steps, each of size
h. Tools are available to adjust h and ` so as to maximize sampling efficiency
for particular problems [20, 10, 2]. Lacking has been a measure of difficulty,
intrinsic to the density p(x), rather than sub-optimal choices of h and `.

It has long been recognized that disparate covariance scales in X tend to
make sampling difficult [6]. This motivates techniques to “flatten” X through
transformations. These transformations can be as basic as scaling components
of X by their standard deviation, or as complex as application of a diffeomor-
phism built with polynomials or a neural network [25, 16]. Despite some success,
there is limited understanding as to exactly how much better or worse different
covariance scales are.

Our main contribution is to show that, in the multivariate Gaussian case, one
particular condition number governs the number of leapfrog integration steps
needed to efficiently sample in every direction. This number, κ (see (3.6)), differs
from the common spectral condition number (ratio of largest to smallest singular
values) since it takes into account all eigenvalues of the covariance matrix. This
is needed, since all eigenvalues contribute to integration error.

1

mailto:ianlangmore@gmail.com


I. Langmore et al./A Condition Number for HMC 2

Using κ we are able to analyze and develop preconditioning techniques. We
find the law of κ when preconditioning with the sample covariance. The law
turns out to be the condition number of the inverse Wishart ensemble. An
asymptotic expression for this law is then derived, leading to a set of precondi-
tioning heuristics. We next show that the popular component-wise standardiza-
tion can be better or worse than preconditioning with a diagonal transformation
trained via variational inference. Each of these in turn can be better or worse
than doing nothing at all. Just as importantly, insight is given into what sort
of spectra are antithetical to efficient HMC. These “bad” spectra have only a
few large eigenvalues, and many small ones. We demonstrate the virtue of a low
rank update preconditioner for this situation.

We limit analysis to Gaussian targets, despite the fact that sampling from
them does not even require HMC. Our hope is that, by providing explicit formu-
las and precise analysis, these results will be helpful in more general situations.
For example, the original motivation for this work was to determine if reverse
or forward KL preconditioning was strictly superior (the answer is “No”). Ad-
ditionally, a pleasant consequence of a condition number formulation is the con-
nection to random matrix theory. We hope to expand on this line of thinking in
future work.

Our result relating step size to integration error (theorem 3.1) is similar to
the analysis of [5, 7], which derive scaling laws for (non-Gaussian) densities
with repeated components. Our restriction to Gaussian densities allows for an
explicit relationship between scales of the random variable X and the necessary
step size/number of integration steps, and removes the repeated components
requirement. A condition number is used for selecting preconditioners in [4].
Their number shows some promise for non-Gaussian systems, but does not have
a precise relation to sampling efficiency (our κ does).

In section 2 we briefly review the HMC method. Section 3 goes over our main
results surrounding our condition number κ. Section 4 derives an asymptotic
result on κ for the inverse Wishart ensemble. Section 5 demonstrates using κ
to derive and analyze different preconditioning techniques. Proofs of the main
results are in section 6.

2. The Hamiltonian Monte Carlo Method

Here we quickly review the basics of HMC for purposes of establishing notation.
A comprehensive introduction can be found in [24].

The Hamiltonian Monte Carlo (HMC) method was introduced in 1987 as
“Hybrid Monte Carlo” for use in lattice field theory simulations [12]. Since then,
it has been recognized as an efficient alternative to random walk Metropolis,
well suited for higher dimensional problems. Implementations are available for
a variety of languages [10].

HMC defines a way to sample from smooth densities p(x) for X ∈ RN by
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augmenting state space with a momentum ξ ∈ RN , and defining the joint density

p(x, ξ) = exp {−H(x, ξ)} , where H(x, ξ) := − log p(x) +
‖ξ‖2

2
,

where ‖ξ‖ is the Euclidean norm. Alternative norms may be used, although these
are less popular in practice [14]. Moreover, a fixed norm generated through
the inner product 〈LLT ξ, ξ〉 is shown in [24] to be equivalent to the linear
preconditioning X 7→ LX (which we do consider here).

In the physics setting, the Hamiltonian H, is total energy, whereas − log p(x),
‖ξ‖2/2 are potential and kinetic energies. Sampling proceeds by (a numerical
approximation to) the following iteration from point (xj , ξj).

1. Draw ξ̃ ∼ N (0, IN ).
2. Let (x(t), ξ(t)) be the time t solution to the ODE ẋ = ξ, ξ̇ = ∇ log p(x),

with initial condition (xj , ξ̃).
3. Set (xj+1, ξj+1) = (x(T ),−ξ(T )), for integration time T .

In practice, the ODE must be solved numerically over ` steps with step-size
h. Denote this solution by Ψ`. The integration error means we can no longer
just accept the move in step 3, which is replaced by a Metropolis correction:

(xj+1, ξj+1) = Ψ`, with probability a(xj , ξj → Ψ`),

and

(xj+1, ξj+1) = (xj , ξj), with probability 1− a(xj , ξj → Ψ`),

for acceptance probability

a(xj , ξj → Ψ`) : = min
(
1, exp

{
H(xj , ξj)−H(Ψ`)

})
. (2.1)

Since Hamilton’s equations of motion preserve the Hamiltonian, if numerical
integration was perfect, H(xj , ξj) = H(Ψ`) and every step would be accepted.
In practice, finite step size leads to some rejections and wasted effort.

The numerical integration is usually done with ` steps of the Störmer-Verlet
or leapfrog integrator, each step progressing (x, ξ) to (xh, ξh) via

1. Set ξh/2 = ξ + h
2∇ log p(x)

2. Set xh = x+ hξh/2
3. Set ξh = ξh/2 + h

2∇ log p(xh)

Figure 1 shows that integration errors remain small, even if h ≈ σ. Just as
importantly, trajectories do not diverge, but instead follow paths of a modified
Hamiltonian due to the fact that the leapfrog integrator is symplectic [24, 21].

The number of leapfrog steps ` is often chosen to be a fixed (but highly
influential) constant. To avoid unlucky (or difficult to analyze) circumstances,
we use a random integration time T , then set ` = dT/he. This randomness
is often introduced to ensure ergodicity. See section 3.2 of [24] as well as [22].
Inspection of our proofs show (see e.g. (6.7)), without this regularizing effect the
spectrum could conspire to make the leading term vanish. Additionally, with a
fixed integration length and dense enough spectrum, near resonances can occur,
whereby samples nearly repeat the same trajectory.
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Fig 1. Leapfrog Integration Error. Left: Integrating trajectories (x(t), ξ(t)) with different
step size h. h = σ/100 is nearly perfect. Even with larger h, deviation of trajectories from the
perfect line are barely perceptible. Right: Values of the Hamiltonian, H(x(t), ξ(t)), along the
trajectories. For larger h, the error is greater, but does not diverge.

3. κ and Computational Effort in HMC

Important results relating computational effort and step size has been estab-
lished by previous work: Being a second order integrator, leapfrog results in
error in the Hamiltonian, bounded at each step by O(h3). Thus, over ` = T/h
steps, error is bounded by O(Th2) [24, 21]. In expectation the situation is bet-
ter: [5, 7] show that asymptotically, the integration error is Normal with scale
O(h2), with T contributing only to higher order terms.

In this section, we establish a relationship between the covariance spectrum,
and the number of leapfrog steps needed to effectively sample. This is rigorously
analyzed as dimension N → ∞. Before submersing into the world of limits,
consider fixed dimension and covariance spectrum σ2

1 ≥ σ2
2 ≥ · · · ≥ σ2

N > 0.
Our results are motivated by a practitioner who adjusts the step size h and
number of leapfrog steps ` to achieve the following

Desiderata 3.1. (i) The average acceptance probability E
{
a(X, ξ → Ψ`)

}
= ā,

for desired ā ∈ (0, 1). (ii) The number of integration steps ` = dσ1T/he, for
integration time T ∼ π, where π is some probability density.

To motivate (i), consider results in [5, 7], where computational cost is shown
to be (asymptotically in dimension) optimal when the average acceptance prob-
ability approaches a limit (approximately 0.68). In addition to being asymptoti-
cally optimal, tuning h to achieve desired ā is often convenient [2, 10]. Condition
(ii) states that each trajectory travels a distance h` that scales with the largest
scale length, σ1. This prevents HMC from reverting to a random walk in the
direction corresponding to σ1.

Condition (ii) does imply ` could be quite large, but this turns out not to be
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Fig 2. Spectra and κ. Spectra were generated using f from (3.4), and κ was computed. Left:
Holding the maximal eigenvalue (σ1) at one, smaller tails of the spectrum increase κ. Right:
Holding σ1/σN constant, the worst case is to have one large eigenvalue, and many small
ones.

an issue. The reason, is that the dominant error term depends on integration
length only through an average of sin2(·), which is close to being constant (see
the proof of theorem 3.1 in section 6.2). Therefore, the acceptance rate depends
strongly on h but only weakly on `. Thus, the user can often adjust ` after
setting h, so that h` ∝ σ1 as desired.

Define

κ :=

(
N∑
n=1

(
σ1

σn

)4
)1/4

, ν : =

(
N∑
n=1

(
1

σn

)4
)1/4

. (3.1)

Corollary 3.2 shows that if σn does not decay too fast, one may meet desiderata
3.1 (ii) using a step size

h̄ ≈ 1

ν
27/4

√
Φ−1

(
1− ā

2

)
, (3.2)

where Φ is the normal cumulative distribution function. The number of leapfrog
steps is then proportional to σ1/h ∝ σ1ν = κ. Thus κ is a measure of work in a
tuned HMC setup.

Since κ involves a ratio of eigenvalues, it is the shape (as opposed to overall
scale) of the spectrum that determines the conditioning. As with the spectral
condition number, σ1/σN , κ is minimal when the spectrum is flat, i.e., σ2

1 =
· · · = σ2

N . Unlike the spectral condition number, κ is worst when there are
many small eigenvalues and at least one large one (see figure 2).
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3.1. Numerical estimation of κ and demonstration of main results.

A straightforward estimate of κ may be obtained by plugging the sample covari-
ance into (3.1). We did this, and it led to a very inaccurate estimate (see figure
3 “Sample κ”). The reason being, accurate estimation of a covariance matrix
requires many samples (see e.g., discussion of the Wishart case in section 5.1).

We obtained a more accurate estimate by re-writing (3.2) as

κ : = σ1ν ≈
σ1

h̄
27/4

√
Φ−1

(
1− ā

2

)
. (3.3)

Thus, κ can be estimated by drawing samples with step size h, observing the
acceptance probability â, estimating σ̂1 ≈ σ1 from the sample covariance, then
plugging into (3.3) (figure 3 “Inferred κ”). In experiments, where we know σ1

ahead of time, this relation can be used to check theorem 3.1 (figure 3 “Inferred
κ (known σ1)”).

To generate random spectra for these numerical tests, we use the set valued
function

f(Y; m,M, c, β) : =

{
g(y)−miny∈Y{g(y)}

maxy∈Y{g(y)} −miny∈Y{g(y)}
· (M −m) +m : y ∈ Y

}
,

g(y) : = 1/
(
1 + |y/c|β

)
.

(3.4)

We repeatedly drew {σn} ∼ f(Y; m,M, c, β), for random sets Y of size
N = 32, 64, 128, 256, 512, each sampled from U(0, 1), with minval m = 1, maxval
M ∈ {5, 20}, cutoff c ∈ {0.25, 0.75}, and power β ∈ {2, 6}. This means σn are
values of the function g(y) re-scaled to the interval [m,M ]. See e.g., figure 2
for examples. Since the performance of HMC for Gaussian targets is invariant
under isometries (see section 4 of [24]), it suffices to use these spectra in a
Multivariate normal with covariance C = Diag(σ2

1 , . . . , σ
2
N ). For each spectrum,

we adjust step size h until the acceptance probability is close to either 0.8 or
0.95. HMC (implemented in TensorFlow Probability [20]) is then used to
draw S samples, with the oversampling ratio S/N ∈ {4, 6, 8, 12, 16, 32}. A total
of 4790 random spectra were generated.

3.2. κ is a condition number on scale matrices

Condition numbers provide worst-case bounds on solutions to linear systems.
For HMC, κ also provides a worst-case result of sorts; the work needed to sam-
ple from the most difficult direction corresponding to σ1. Our usage of κ is
close to the stiffness ratio of a linear ODE, which is just the spectral condition
number. The stiffness ratio can determine the number of time steps needed for
convergence to steady state.
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Fig 3. Estimation of κ and validation of main result. Random spectra were generated
using f(Y,m,M, β, c) from (3.4), and the relationship between estimated and actual κ is
plotted. The coefficient of determination R2 of estimated vs. actual is shown, as is R2 of the
best fit line. Top Left: Estimating κ directly from the sample covariance matrix resulted in
over-estimation. Top Right: Using (3.3) with estimated σ̂1 gives a fairly accurate estimate of
κ. It tends to over-estimate, due to over-estimation of σ1. Bottom Left: When σ1 is known,
R2 ≈ 1. This validates theorem 3.1 in the finite N case. Bottom Right: R2 vs. N when σ1
is known. R2 appears set to converge to 1, validating theorem 3.1.
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Recall the vector norm ‖·‖2 and the induced matrix norm (the spectral norm):

‖x‖2 : =

(
N∑
n=1

x2
n

)1/2

, ‖A‖2 := sup
x

‖Ax‖2
‖x‖2

.

A condition number quantifies worst case sensitivity of solutions to Ax = b
with respect to perturbations of b. For example, consider the perturbed system
A(x+ δx) = b+ δb for nonsingular A. Elementary steps show that

‖δb‖2
‖b‖2

≤ ‖A‖2‖A−1‖2
‖δx‖2
‖x‖2

.

Hence A 7→ ‖A‖2‖A−1‖2 is a condition number.
A class of matrix norms of interest to us are the Schatten Norms [18]. For

r ∈ [1,∞], the rth Schatten norm of matrix A, ‖A‖Sr , is the vector r norm
applied to the singular values of A. For example, with {σ1, . . . , σN} the N
singular values of A ∈ RN×N ,

‖A‖Sr : =

(
N∑
n=1

σrn

)1/r

.

Since ‖A‖2 = maxn {σn}, we have ‖A‖2 ≤ ‖A‖Sr . Therefore

‖δb‖2
‖b‖2

≤ ‖A‖2‖A−1‖S4

‖δx‖2
‖x‖2

, (3.5)

and A 7→ ‖A‖2‖A−1‖S4 is a condition number w.r.t. ‖ · ‖2. As compared with
‖A‖2‖A−1‖2, it is inferior since it provides a looser bound. The interest for us
is that it is equal to κ. Indeed, suppose the covariance matrix is AAT . Then it’s
eigenvalues σ2

1 ≥ · · · ≥ σ2
N > 0 are by definition the squared singular values of

A, and

κ : =

(
N∑
n=1

(
σ1

σn

)4
)1/4

= ‖A‖2‖A−1‖S4 =
√
‖AAT ‖2‖(AAT )−1‖S2 . (3.6)

The first equality shows κ is a condition number on the scale matrix A. The
second writes κ in terms of the covariance matrix AAT , which is often more
convenient.

3.3. Additional properties of κ

By definition, the set of covariance matrices for multivariate normals is the
set of symmetric positive definite (SPD) matrices. Viewing κ as a function of
covariance, we have

κ(C) : =
√
‖C‖2‖C−1‖S2 . (3.7)
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Lemma 3.1. κ : SPD → (0,∞) satisfies

(i) κ(C)2 = limk→∞
k
√

Trace {Ck} ·
√

Trace {C−2}
(ii) Suppose A,B are non-singular, then κ(ABBTAT ) = κ(BTATAB)

(iii) Suppose U is orthogonal and C is SPD, then κ(UCUT ) = κ(C)

Proof. If C is SPD, its eigenvalues are its singular values σ2
1 ≥ · · · ≥ σ2

N > 0,

and then Trace
{
Ck
}

=
∑N
n=1 σ

2k
n . Taking the limit, we have (i). To show (ii),

use (i) along with the cyclic permutation property of the trace. (iii) follows from
(ii) with C = BBT .

3.4. Sequences of spectra

To study convergence, we must establish a way of taking dimension to in-
finity. We draw inspiration from the discretization of a continuous linear op-
erator. Here, we expect the N point discretization to have singular values
(σN1, . . . , σNN ) that are close to singular values of the continuous operator
[15]. This arises e.g., in linear inverse problems [19]. Another example is the dis-
cretization of a linear filter in signal processing. By contrast, [5, 7, 24] consider a
fixed set of (possibly non-Gaussian, correlated) random variables, then let p(x)
be the law of N i.i.d. groups of these fixed variables. This simplification allows
them to ignore problems associated with vanishing eigenvalues, but would be
unnatural in our setting.

3.5. Acceptance probabilities for sequences of spectra

Here we use a random integration time TN := σN1T , where T ∼ π. Let

π̂(ω) :=

∫
e−iωtπ(t) dt.

The bound |π̂| ≤ π̂(0) = 1 is trivial. In addition, we impose the regularity
condition

|π̂(ω)| ≤ Cπ < 1, for all |ω| ≥ 2. (3.8)

This condition is satisfied e.g., if π is a uniform density on any interval. This
ensures each integral appearing in (3.9) is uniformly (in n) bounded below, and
allows derivation of (3.10).

For α > 0, N ∈ N, define the step sizes

hN : =

(
1

α

N∑
n=1

1

(2σN,n)4

∫
sin2

(
t

σNn

)
π(t/σN1)

σN1
dt

)−1/4

,

h̄N : =

(
1

α

N∑
n=1

1

(2σN,n)4

1

2

)−1/4

.

(3.9)
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Note that h̄N is, up to a constant, the inverse of ν from (3.1).
One can show (see section 6.1) that

(1 + Cπ)−1/4 h̄N ≤ hN ≤ (1− Cπ)−1/4h̄N , (3.10)

so the step sizes differ by at most a constant, and may sometimes be equal
(corollary 3.1). Moreover, the proof of theorem 3.1 shows the chain is stable as
soon as hN < 2σNN . Then, since (see (6.2) in section 6.1) hN/σNN → 0, the
chain is stable for large enough N .

We assume the spectra do not decay too rapidly in the sense that

lim
N→∞

σN1

(
N∑
n=1

1

σ7
Nn

)(
N∑
n=1

1

σ4
Nn

)−3/2

= 0. (3.11)

One can check that (3.11) holds for any polynomial decrease σN,n ∼ n−k, but
not for exponential σN,n ∼ e−n. Note also that (3.11) provides uniform control
over the spectra, e.g., it implies hN/σNn → 0 uniformly in n (see (6.2)). This
allows convergence despite {σNn} otherwise being unrelated at different N .

Our (standard) choice of momentum term, ‖ξ‖2/2, means leapfrog integra-
tion is invariant under isometry (see section 4 of [24]). Applying a rotation
aligning the axis with eigenvectors of the covariance matrix, the Hamiltonian is
diagonalized, and integration error may be studied one component at a time.
Integration error in component n, after ` leapfrog steps is

δN,n : = H(Ψ`
N,n)−H(Ψ0

N,n).

The total integration error is then

∆N : =

N∑
n=1

δN,n.

Theorem 3.1. Given step size hN from (3.9), integration time TN = σN1T
with T ∼ π satisfying (3.8), and sequences of spectra satisfying (3.11), we have
convergence in distribution for the HMC (leapfrog) integration error

∆N → N
(α

2
, α
)
,

for chains in equilibrium.

Theorem 3.1 is not surprising. Indeed, since ∆N is a sum of N independent
random variables, one expects a central limit theorem to hold, provided the
scaling given by hN is correct, and many terms contribute to the sum (as opposed
to it being dominated by a few terms). See e.g. the CLT for triangular arrays
in [13]. The meat of the proof is establishing this scaling (see section 6.2). Once
that is done, assumption (3.11) ensures many terms contribute to the sum.

The inclusion of the integral
∫

sin2(·) dt in hN is ugly. Unfortunately, it is
necessary to handle the case where the spectrum contains significant terms close
to σ2

N1, for which the averaging of sin2(·) does not happen. One simple case
where it does is
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Corollary 3.1. Assume there exists δ, C > 0 such that |π̂(ω)| ≤ C|ω|−δ. Sup-
pose further σNK/σN1 < rK , where rK is a sequence → 0 as K →∞. Then as
N →∞,

h̄N
hN
→ 1.

Corollary 3.2 shows the free parameter α may be chosen to achieve desired
acceptance rate ā ∈ (0, 1).

Corollary 3.2. Given the hypothesis of theorem 3.1, choose (with Φ the normal
distribution function)

α : = 4
(

Φ−1
(

1− ā

2

))2

,

for use in hN . We then have

lim
N→∞

E
{
aN (xj , ξj → Ψ`

Nn)
}

= ā.

Given hypothesis of corollary 3.1, the same result holds with h̄N in place of hN .

Proof. Designate the distributional limit of ∆N by ∆∞ ∼ N (α/2, α). As in the
proof of theorem 3.6 in [5], the boundedness of u 7→ 1 ∧ eu implies

E
{
aN (xj , ξj → Ψ`

Nn)
}
→ E

{
1 ∧ e−∆∞

}
.

This expectation can be found analytically, and is 2Φ (−
√
α/2). The result then

follows by inverting the relation and applying the continuous mapping theorem
[13].

4. κ for Large Inverse Wishart Matrices

TheWishart(N,S) ensemble is that ofN×N random matrices (1/S)
∑S
s=1(Xs)(Xs)T ,

where eachXs ∼ N (0, IN ). C ∼ InverseWishart(N,S) if C−1 ∼Wishart(N,S).
Wishart matrices arise naturally as the S-sample covariance matrix of N -variate
random normals. Inverse Wishart matrices can result from preconditioning (lemma
5.1).

If N →∞ with the oversampling ratio S/N → ω ∈ (1,∞), then the smallest
and largest eigenvalues of a Wishart matrix approach a := (1 − ω−1/2)2 and
b := (1 + ω−1/2)2 almost surely [28]. The limiting spectral density is given by
the Marc̆enko-Pastur law[23].

f(x) : =

{
ω

2πx

√
(b− x)(x− a), a ≤ x ≤ b,

0 otherwise.
(4.1)

See also figure 5.
The following proposition gives an asymptotic expression for κ in the inverse

Wishart case. Figure 4 shows good agreement between this expression and sam-
pled κ.
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Proposition 4.1. If C ∼ InverseWishart(N,S), and N → ∞ with S/N →
ω ∈ (1,∞), then

κ(C)

N1/4
→ (1 + ω−1)1/4

1− ω−1/2

almost surely.

Proof. Let λ2
1 ≥ · · · ≥ λ2

N > 0 be the eigenvalues of C−1 ∼ Wishart(N,S).
Then,

κ(C)4

N
=

1

N

N∑
n=1

λ−4
N

λ−4
n

= λ−4
N

1

N

N∑
n=1

λ4
n.

Now, as shown in [28] (main result) and [9] (remark 5) we have almost sure
convergence,

λ2
N → (1− ω−1/2)2 and

1

N

N∑
n=1

λ4
n → Ef

{
X2
}
.

Therefore, almost surely,

κ(C)4

N
→ 1

(1− ω−1/2)4
Ef
{
X2
}
.

The result then follows from

Ef
{
X2
}

=

∫ b

a

ω

2πx

√
(b− x)(x− a)x2 dx = 1 + ω−1,

which is a straightforward computation involving integrals of the Beta function.

Convergence of the normalized trace to the moment is a result of remark 5
in [9], which gives a.s. convergence of the empirical spectral density function.
Convergence of this type holds for broad class of matrices [3], [8].

5. Preconditioning HMC

The results of section 3 show a clear sampling advantage for problems where
the spectrum is as close to “flat” as possible. Here we consider techniques where
a diffeomorphism F transforms the random variable X into Z := F−1(X),
with a hope that Z is easier to sample from. This is not a new idea. Linear
transformations have been considered as far back as [24]. Trainable nonlinear
mappings seem to have been introduced by [25], where variational inference is
used to find F . It has since been developed further in [26], which considers
mappings based on low-fidelity approximations to the posterior, and [16], where
the preconditioner is a neural network.
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Fig 4. Density and asymptotic κ(C), C ∼ InverseWishart(N,S). Top Left: Density
plots when dimension N = 64. Large S/N means κ is closer to N1/4, and for S/N & 3,
κ concentrates near its mean, so point estimates will be useful. Top Right: Estimate vs.
samples of κ when dimension N = 64 and S varies. Here “asymptotic” means the large N
formula implied by proposition 4.1. Agreement is very good, except for small S/N . Bottom
Left: When N = 8, the densities overlap quite a bit, so point estimates will be misleading.
Bottom Right: When N = 8, samples of κ vary significantly from the asymptotic κ.
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To formalize this procedure, let us start with X ∼ pX(x), and a diffeomor-
phism F , which transforms X 7→ Z = F−1(X). Equivalently, the density pX is
transformed by the pushforward

pZ(z) = F−1
# pX(z) := pX(F (z))|det(DF (z))|. (5.1)

Above, DF is the matrix of partial derivatives, (DF )ij = ∂Fj/∂zi. Using HMC,
we sample from the density pZ , producing Z1, . . . , ZK . Transforming back,
Xk := F (Zk), and we have samples from pX as desired.

In the Gaussian case, pX ∼ N (0, AAT ), the linear preconditioner induced by
a matrix F transforms the covariance and κ as follows:

AAT 7→ (F−1A)(F−1A)T = (F−1)AAT (F−1)T

κ(AAT ) 7→ ‖F−1A‖2‖(F−1A)−1‖S4 .
(5.2)

5.1. How Many Samples are Enough?

The preconditioning techniques we will consider have an upfront cost: Either in
obtaining some number of preliminary samples (which should be thrown away),
or in solving an optimization problem. It’s fair to ask whether the subsequent
speed-up is worth it. That depends on how many final samples are needed. Here
we present two cases where the ratio of samples to dimension, or oversampling
ratio, ω := S/N , is required to be 10 or more.

First, the estimation of component means and variance is done with summa-
tions of the form (1/S)

∑S
s=1 Y

s, resulting in relative error on each component

of O(1/
√
S). Thus, relative error of size ε requires S ∼ O(ε−2). This is indepen-

dent of dimension N , but for moderate N ≈ 100, and reasonable ε ≈ 0.025, we
will need S ≈ 1600, which implies ω := S/N ≈ 16 is required.

Second, consider the error in reconstructing the covariance spectrum from the
sample covariance matrix Ĉ := (1/S)

∑S
s=1(Xs)(Xs)T . If Xs ∼i.i.d. N (0, IN ),

we have Ĉ ∼Wishart(S,N), and for the bulk of the spectrum to be within ε of
the correct values (which are all one), we must have (1 + ω−1/2) < 1 + ε, which
implies ω > 4/ε2 (see section 4).

5.2. Preconditioning with Sample Covariance

Here we consider a choice to be made by a practitioner who has gathered S ≥ N
burn-in samples (X1, . . . , XS). They could continue gathering samples until a
goal of Sf > S “final” are obtained. Alternatively, they could form the sample

covariance Ĉ := (1/S)
∑S
s=1(Xs)(Xs)T , precondition with its Cholesky factor

L̂, throw away the first S samples, then gather Sf final samples.
Abusing notation, we let κ0 be the initial condition number, and κ(S) be the

condition number after preconditioning with S samples. Assuming the sampling
rate is proportional to 1/κ, then the total time τ to obtain Sf samples is

τ ∝ Sκ0 + Sfκ(S),
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which has extremal points dτ/ dS = 0 at S∗ whenever

dκ

dS
(S∗) = − κ0

Sf
. (5.3)

This suggests continuing to draw burn-in samples until dκ/dS ≤ −κ0/Sf ,
at which time updates may stop and Sf samples can be drawn. The speedup is

Sfκ0

Sκ0 + Sfκ(S)
. (5.4)

Assuming the burn-in samples are i.i.d., we will obtain an approximate ex-
pression for the value of S/N at which (5.3) is met. First however, we must
establish

Lemma 5.1. Suppose (X1, . . . , XS) are i.i.d., and HMC sampling of X ∼
N (0, C) is preconditioned with the S-sample Cholesky factor L̂. Then the pre-
conditioned κ follows the law of κ(C), for C ∼ InverseWishart(S,N).

Proof. The preconditioned covariance is L̂−1CL̂−T . Due to lemma 3.1, κ(L̂−1CL̂−T ) =
κ(LT Ĉ−1L). Since

LT Ĉ−1L =

(
1

S

S∑
s=1

(L−1Xs)(L−1Xs)T

)−1

,

and L−1Xs ∼ N (0, IN ), we see that LT Ĉ−1L ∼ InverseWishart(S,N), which
completes the proof.

To check (5.3) we will use lemma 5.1, and proposition 4.1. That is, we start
with the approximation

κ(S) ≈ gN (S) := N1/4

(
1 + N

S

)1/4
1−

√
N
S

. (5.5)

Then, (5.3) is approximately satisfied when κ′(S) ≈ g′N (S) = −κ0/Sf , which is
equivalent to finding S/N such that

U

(
S

N

)
=
N1/4

κ0

Sf
N
, where U(ω) :=

4(ω1/2 − 1)2(ω2 + ω)3/4

2ω + ω1/2 + 1
. (5.6)

This expresses an optimality condition on the burn-in oversampling ratio S/N
in terms of the final oversampling ratio Sf/N and the rescaled initial condition
number κ0/N

1/4.
These steps are put together in figure 5. For example, suppose N = 50,

κ0/N
1/4 = 10, and uncertainty in sample covariance needs to be less than 25%.

Then, the “Marcenko-Pastur Density” plot shows Sf/N ≈ 40 is required, the
“Optimal Burn-In Size S” plot shows S/N ≈ 4 should be used, and finally, the
“Speedup” plot shows our expected speedup is 3.
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Fig 5. Sample Covariance Preconditioning: Charts to help decide how many samples S
to use for burn-in. Top Left: Approximation of κ(S), from proposition 4.1. As always, κ
is (approximately) inversely proportional to the sampling rate for HMC. We conclude larger
burn-in size S leads to faster sampling rate. Top Right: Limiting spectral density for Wishart
ensemble, (4.1), for three different S/N values. The spectrum has a fair bit of spread, even
with 40x oversampling. Bottom Left: The optimal burn-in oversampling ratio S/N , as a
function of the final desired oversampling ratio Sf/N for different values of κ0/N1/4. This

is the graph
{

(U(ω)κ0/N1/4, ω) : ω ∈ (0, 5)
}

, with U(ω) defined in (5.6). Bottom Right:
Speedup, as defined by (5.4), with κ(S) approximated by (5.5).
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Fig 6. Sample Covariance Preconditioning : Theory vs. Numerics. Random spectra were
generated using f(Y;m,M, β, c) from (3.4), and the relationship between theoretical and actual
κ is plotted. The coefficient of determination R2 of estimated vs. actual is shown, as is
R2 of the best fit line. Left: κ after preconditioning with S i.i.d. samples in dimension N
(various S and N) is close to κ obtained via samples from InverseWishart(N,S), as lemma
5.1 dictates. The scatter plots of course don’t match perfectly, since samples are random.
Center: The function gN (S) (with S equal to the mean effective sample size) from (5.5),
which approximates κ, is compared with the actual κ obtained by preconditioning with S
effective samples from a NUTS chain. Agreement is good. Right: Same as Center, but using
an HMC chain without NUTS. Agreement is not so good.

To enact these steps in practice, one needs both an estimate of κ0, and S
i.i.d. samples. The estimate of κ0 can be obtained using the steps in section 3.1.
However, i.i.d. samples are presumably impossible to come by, else we would
just use them. As a supplement, we suggest gathering S HMC samples, then
using the effective sample size (ESS) in place of S in (5.6) [27]. Our experiments
found ESS to be a good substitute, but only if the original samples were obtained
using the No-U-Turn Sampler (NUTS) [17]. See figure 6. This is unfortunate,
since the nice estimate of κ0 (as per section 3.1) falls apart with NUTS, due to
its non-trivial acceptance criteria. Our suggested remedy is to obtain a small
number of additional non-NUTS samples, and use these to estimate κ0. This
is possible, since estimation of κ0 only requires an estimate of the acceptance
probability.

5.3. Preconditioning by way of Variational Inference

In variational inference, parameters θ are tuned to minimize a loss function
involving a parameterized distribution q(·; θ) and the target p. For example, the
reverse KL divergence is

KL[q || p] =

∫
log

[
q(x; θ)

p(x)

]
q(x; θ) dx. (5.7)

We will always choose q to be a pushforward (see (5.1)) of the standard normal.
That is, q = F#φ, for φ ∼ N (0, IN ). It follows that

KL[q || p] = KL[F#φ || p] = KL[φ || (F#)−1(p)], (5.8)
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which leads to the approximation

KL[q || p] ≈ 1

K

K∑
k=1

log

[
φ(zk)

p(F (zk))|DF (z)|

]
=

1

K

K∑
k=1

log

[
q(F (zk))

p(F (zk))

]
, zk ∼ φ.

(5.9)

If F is smooth and θ 7→ KL[q || p] is convex, (5.7) may be minimized by stochastic
gradient descent using (5.9). This is an example of sample path optimization [1].
Since the summands are log probabilities, (5.9) is usually found to be stable.

The “reverse” moniker is attached to (5.7) to differentiate it from forward
KL divergence,

KL[p || q] =

∫
log

[
p(x)

q(x; θ)

]
p(x) dx. (5.10)

Since presumably p(x) is not easy to sample from, a stable “log space” formula
analogous to (5.9) cannot be used to approximate (5.10).

Equation (5.8) shows that, if our minimization results in small KL divergence,
then (F#)−1p is close to the well-conditioned unit Gaussian, in the sense of KL
divergence. Unfortunately, this does not imply (F#)−1p has well-conditioned co-
variance. Indeed, if p is Gaussian, then, with λ2

n the eigenvalues of the precondi-
tioned covariance WWT , one can check that, up to additive and multiplicative
constants,

KL[p || q] ∝ ‖W‖2F − log |det(WWT )| =
N∑
n=1

(
λ2
n − log(λ2

n)
)
,

KL[q || p] ∝ ‖W−1‖2F − log |det((WWT )−1)| =
N∑
n=1

(
λ−2
n − log(λ−2

n )
)
.

(5.11)

Clearly, minimizing forward or reverse KL is different than minimizing κ.

5.3.1. Diagonal preconditioning

Here we consider preconditioning a Gaussian N (0, C) with a diagonal matrix
D. The covariance and κ transform as in (5.2).

Minimizing reverse KL over the set of diagonal matrices (see (5.11)) gives us

D2
ii = 1/(C−1)ii, (5.12)

while minimizing forward KL gives us

D2
ii = Cii, (5.13)

which is just a diagonal matrix with the component-wise variances. In this case,
preconditioning is equivalent to re-scaling the axis so that X has unit standard
deviation.

As diagonal preconditioners, both forward and reverse KL exhibit a scale
invariance, the proof of which follows directly from (5.12) and (5.13).
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Fig 7. Forward and reverse KL, preconditioner and preconditioned. The target p(x) ∼
N (0, Cn), with Cn from (5.14) and (ρ = 0.9). The variational distribution q(z) ∼ N (0, D2

n),
where Dn is diagonal. Both forward and reverse KL were minimized to find Dn. Left: The
one standard deviation iso-line of q(z) is plotted. Both are circular due to symmetry, but
forward KL chooses a larger sphere (of radius 1). Right: Iso-lines after preconditioning by
Dn (which yields ∼ N (0, D−1

n CnD
−1
n )). Reverse KL results in a much larger preconditioned

spectrum.

Lemma 5.2. Suppose forward/reverse KL preconditioning of X ∼ N (0, C)
results in preconditioned covariance Ω. Then, for any positive diagonal matrix
D̃, forward/reverse KL diagonal preconditioning of X ∼ N (0, D̃CD̃) also leads
to preconditioned covariance Ω.

Consider the following choices:

(i) Do not precondition, and sample directly from the target p(x).
(ii) Precondition with D−1, where D is obtained by minimizing KL[q || p], (i.e.,

reverse KL), for q(x) ∼ N (µ,D2).
(iii) Precondition with D−1, where D is obtained by minimizing KL[p || q], (i.e.,

forward KL), for q(x) ∼ N (µ,D2).

In the proceeding sections, we will show realistic scenarios where each method
is better than the other two. Before proceeding, we point out some practical
considerations. Since forward KL is often unstable and cannot be minimized
directly, (iii) is done by estimation of the component-wise standard deviation.
If this must be done by sampling, then it somewhat defeats the purpose of
preconditioning. Regarding (ii), setting up a variational problem is not too hard
once the target p(x) is built, and software packages exist to make this easier [11].
This does however incur a one time development cost that may be too great for
the problem at hand.
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5.3.2. Diagonal preconditioning of correlated diagonal blocks

A simple covariance comprised of 2x2 blocks provides a demonstration of cases
where forward KL preconditions better than reverse KL, which, depending on
the blocks, performs better or worse than doing nothing. We also see that neither
forward nor reverse KL is optimal.

For ρn ∈ (0, 1), let covariance be given by the block-diagonal matrix

C = C1 ⊕ C2 ⊕ · · · ⊕ CN , Cn :=

(
1 ρn
ρn 1

)
, (5.14)

which has eigenvalues {1± ρn : n = 1, . . . , N}. By symmetry, the optimal pre-
conditioner D, for forward or reverse KL, will be partitioned as

D = D1 ⊕ · · · ⊕DN , Dn :=

(
dn 0
0 dn

)
.

This leads to the preconditioned covariance

D−1CD−1 = d−2
1 C1 ⊕ · · · ⊕ d−2

N CN ,

with spectrum

Λ :=

{
1 + ρ1

d2
1

,
1− ρ1

d2
1

, · · · , 1 + ρN
d2
N

,
1− ρN
d2
N

,

}
.

Thus, each pair of eigenvalues, {1± ρn} is moved up and down together by the
preconditioner. As seen below and in in figure 8, the optimal preconditioner
moves the larger of the two from every block to the same level. Reverse KL
to some extent does the opposite, moving the smaller of each pair to a similar
level. This is expected, since as illustrated in figure 7, the scale of the reverse
KL variational solution is mostly determined by the smallest scale of the target.

In the forward KL, reverse KL, and the optimal choices of dn that follow,
(1 + ρ1)/d2

1 ≥ (1 ± ρn)/d2
n, for n = 2, . . . , N . Therefore, all three choices will

have

κ(Λ)4 =

N∑
n=1

(
d2
n

d2
1

)2
[(

1 + ρ1

1 + ρn

)2

+

(
1 + ρ1

1− ρn

)2
]
. (5.15)

Referring to (5.12), (5.13), the minimizing d2
n for forward KL will be identically

1, and for reverse KL will be 1− ρ2
n. Thus

κ(Λrev)
4 =

N∑
n=1

(
1− ρ2

n

1− ρ2
1

)2
[(

1 + ρ1

1 + ρn

)2

+

(
1 + ρ1

1− ρn

)2
]

κ(Λfwd)
4 =

N∑
n=1

[(
1 + ρ1

1 + ρn

)2

+

(
1 + ρ1

1− ρn

)2
]
,
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Fig 8. Preconditioned spectra in the case of 5 correlated 2x2 blocks. Preconditioner
choices (OPTIMAL vs. REV KL.) are plotted against the target, which is the same as FWD
KL preconditioning. The spectrum comes in pairs of eigenvalues, which are scaled together
by the preconditioners. Left: The optimal preconditioner pushes the larger member of each
pair to 1. Right: Reverse KL (almost) pushes the smaller of each pair to 1.

and therefore κ(Λfwd) ≤ κ(Λrev).
Minimizing κ over all dn we find d2

n ∝ 1 + ρn, so that

κ(ΛOPT )4 =

N∑
n=1

[
1 +

(
1 + ρn
1− ρn

)2
]
.

Since reverse KL is a practical method, it is disappointing to see that doing
nothing (forward KL had D = I) performs better. In practice however, the
situation is often closer to

Cn : = γ2
n

(
1 ρn
ρn 1

)
,

for γ2
1 ≥ · · · ≥ γ2

N > 0. The results for forward and reverse KL will be the same
as if γn ≡ 1 due to the scale invariance lemma 5.2, but “doing nothing” yields
a baseline of (with β := maxn

{
γ2
n(1 + ρn)

}
)

κ4 : =

[
β2

γ4
n(1 + ρn)2

+
β2

γ4
n(1− ρn)2

]
≥

N∑
n=1

γ4
1

γ4
n

[(
1 + ρ1

1 + ρn

)2

+

(
1 + ρ1

1− ρn

)2
]
.

So if γ1 � γn is large enough, preconditioning with reverse KL does improve
upon doing nothing. Forward KL would still be superior.

5.3.3. Diagonal preconditioning of random matrices

Here we compare preconditioner options (Forward or Reverse KL, or “Do Noth-
ing”) applied to 100x100 random matrices of different types. Each option is best
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some fraction of the time.
The Wishart random matrices are constructed by (i) letting A ∈ R100×200

be composed of i.i.d. unit normal entries, then (ii) setting C := AAT . The
inverse Wishart matrices are constructed by inverting a Wishart matrix. The
rotated scale matrices are constructed by (i) making the scale matrix Λ :=
Diag(σ2

1 , . . . , σ
2
100), where {σ1, . . . , σ100} = f({1, . . . , 100},m = 1,M = 5, β =

4, c = cutoff) from (3.4), then (ii) rotating with a random orthogonal matrix
generated with scipy.stats.ortho group, i.e. C := UΛUT [29]. Three varieties
of rotated scale matrix were constructed by choosing cutoff = 0.05, 0.1, 0.2,
which means the scales have approximately 5%, 10%, or 20% of the values near
the maximum (of 5), and the remainder near the minimum (of 1). For each
of the 5 matrix types, 1000 different random matrices were generated, and the
fraction of the time each preconditioner type leads to lower κ is shown in table
1.

The Wishart/inverse Wishart matrices have a fairly regular structure, and
forward KL is the “winner” more and more often as N increases. The results for
rotated scale matrices varied considerably as the dimension or the parameters
(M,β) were changed. We warn the reader not to draw broad conclusions or
trends from table 1.

Wishart InvWishart RS (5%) RS (10%) RS (20%)

Do Nothing 3% 0% 0% 20% 100%
Fwd KL 91% 100% 88% 1% 0%
Rev KL 6% 0% 12% 78% 0%

Table 1
For Wishart, inverse Wishart, and rotated scale (RS) random 100x100 matrices, the
percentage of the time each preconditioning method had the lowest κ is tabulated. The

magnitude of the differences was small, about 10% at most.

5.3.4. Diagonal plus low-rank preconditioning

As demonstrated in figure 2, having a few large eigenvalues and many small
ones is especially bad for κ. To mitigate these situations, we consider a low-
rank update to a diagonal preconditioner. Specifically, we choose variational
distribution q ∼ N (0, FFT ), where F = D + UUT , D ∈ RN×N is diagonal,
and U ∈ RN×K . Both D and U were trained to minimize KL[q || p], where
p ∼ N (0, LLT ) and L is circulant. This provides some correlation that cannot
be matched with a diagonal preconditioner. The spectrum of L was chosen using
(3.4) so that it was a low pass filter with some cutoff. As expected, when the
rank of U was larger than the cutoff, preconditioning worked. When the rank of
U was less than the cutoff, large eigenvalues remained and κ was barely reduced
by preconditioning. See figure 9.

A word of caution: We also found that when the circulant matrix L had very
small eigenvalues, the corresponding extreme correlations in X ∼ p(x) were too
much for the optimization procedure to handle, and instabilities arose.
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Fig 9. Preconditioning with a low-rank update. Normalized covariance spectra of the Target
p ∼ N (0, LLT ), variational model q ∼ N (0, D + UUT ), and the preconditioned target. Left:
LLT had 10 large eigenvalues, and U was a rank 20 update. The trained preconditioner
D + UUT had about 10 large eigenvalues, which were used to reduce the largest eigenvalues
in the preconditioned matrix. Right: Here LLT had about 40 large eigenvalues, and the rank
20 update could not reduce the size of them all.

6. Proof of Convergence Results

In this section we prove theorem 3.1 and corollary 3.1.
Denote by πN the density of TN := σN1T (recall T ∼ π). That is,

πN (t) : = π

(
t

σN1

)
· 1

σN1
.

6.1. Two relations involving step size and scales

First, we show (3.10). To that end, the distinction between hN and h̄N is the
replacement of

∫
sin2(·) dt by its average, 1/2. Let

RNn : =
1

2
−
∫

sin2

(
t

σNn

)
πN (t) dt =

1

4

[
π̂

(
2
σN1

σNn

)
+ π̂

(
−2

σN1

σNn

)]
,

which, due to (3.8), satisfies

|RNn| ≤
Cπ
2
<

1

2
. (6.1)

This means ∣∣h̄−4
N − h

−4
N

∣∣ ≤ Cπh̄−4
N ,
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and therefore

(1 + Cπ)−1/4 h̄N ≤ hN ≤ (1− Cπ)−1/4h̄N ,

which is exactly (3.10).
Second, we show the uniform limit

lim
N→∞

hN
σNn

≤ lim
N→∞

hN
σNN

= 0. (6.2)

To that end, since σNN ≤ σNn, we have(
hN
σNn

)6

≤
(
hN
σNN

)6

≤ σN1

σNN

h6
N

σ6
NN

= σN1h
6
N

1

σ7
NN

≤ σN1h
6
N

N∑
n=1

1

σ7
Nn

.

Due to (3.10), we may replace hN by h̄N , and suffer only a constant depending on

α and Cπ. From the definition of h̄N , we may replace h̄N with
(∑N

n=1 σ
−4
Nn

)−1/4

and suffer only a constant depending on α. We therefore have (with C ′ depending
only on α and Cπ)

σN1h
6
N

N∑
n=1

1

σ7
Nn

≤ C ′σN1

(
N∑
n=1

1

σ7
Nn

)(
N∑
n=1

1

σ4
Nn

)−3/2

,

which tends to zero due to our assumption (3.11), and so too then does hN/σNn.

6.2. The normal limit

Proof of theorem 3.1. Since, in equilibrium, the performance of HMC with mo-
mentum term ‖ξ‖2/2 is invariant under isometries (see section 4 of [24]), we
may assume without loss of generality that our distribution is a centered di-
agonal Gaussian with covariance Diag(σ2

N1, . . . , σ
2
NN ). Leapfrog integration will

act independently on each component. Moreover, in equilibrium, position and
momentum samples from each component are independent.

We first consider the case of one component with variance σ2, and hide the
dependence on N . Each leapfrog step is an iteration of the matrix

Uh : =

(
1− h2

2σ2 h

−
(
h
σ2 − h3

4σ4

)
1− h2

2σ2

)
,

which has eigenvalues and eigenvectors

λ± : = 1− h2

2σ2
± ih

σ

√
1− h2

4σ2
, v± :=

(
1,± i

σ

√
1− h2

4

)
.
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If h/(2σ) < 1, the eigenvalues have modulus 1 and the iteration is stable. Then,
by diagonalizing, one can show

U `h =

(
cos(`θ) γ−1 sin(`θ)
−γ sin(`θ) cos(`θ)

)
,

where

γ : =

√
1

σ2
− h2

4σ2
, θ := cos−1

(
1− h2

2σ2

)
.

To compute the Hamiltonian after ` steps, we apply U `h to the starting point
(x0, ξ0), then plug into H(x, ξ) = x2/(2σ2) + ξ2/2 to get

H(U `h(x0, ξ0)) = cos2(`θ)

(
x2

0

2σ2
+
ξ2
0

2

)
+ sin2(`θ)

(
γ2σ2 x

2
0

2σ2
+

1

γ2σ2

ξ2
0

2

)
+ cos(`θ) sin(`θ)

(
1

γσ
− γσ

)
x0ξ0
σ

.

(6.3)

Define

χ : =

(
h

2σ

)4

· 1

1−
(
h
2σ

)2 ,
then using the relations

γ2σ2 +
1

γ2σ2
= 2 + χ, γσ − 1

γσ
=
√
χ,

and the fact that the initial Hamiltonian is x2
0/(2σ

2) + ξ2
0/2, we find

δ` : =
sin2(`θ)

2

(
h

2σ

)2(
ξ2
0 −

x2
0

σ2

)
+ sin2(`θ)χ

ξ2
0

2
+ cos(`θ) sin(`θ)

√
χ
x0ξ0
σ

.

(6.4)

This has the bound

|δ`| ≤ h2

8σ2

(
ξ2
0 −

x2
0

σ2

)
+ χ

ξ2
0

2
+
√
χ
|x0ξ0|
σ

. (6.5)

To compute moments, use the fact that, in equilibrium, x0 ∼ N (0, σ2), and
ξ0 ∼ N (0, 1) are independent.

E
{
δ`
}

=
sin2(`θ)

2

(
h

2σ

)4

+R1(δ`)

(
h

2σ

)6

,

Var
{
δ`
}

= 2E
{
δ`
}

+R2(δ`)

(
h

2σ

)6

,
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where there exists a constant C < ∞, uniform in (σ, `, θ) (so long as h < 2σ),
such that |Rj | ≤ C.

Re-introducing dependence on N , n, and setting ` = T/hN for random inte-
gration time T ∼ πN (we assume ` is an integer, if not minor adjustments are
needed), we have

E {∆N} =
1

2

N∑
n=1

(
hN

2σNn

)4 ∫
sin2

(
t

hN
cos−1

(
1− h2

N

2σ2
N,n

))
πN (t) dt

+
1

2

N∑
n=1

(
hN

2σNn

)6 ∫
R1(δ`N,n)πN (t) dt.

(6.6)

The second term is bounded in absolute value by a constant times(
hN
σNN

)2

h4
N

N∑
n=1

1

σ4
Nn

,

which tends to zero due to (6.2) and (3.10). As for the first term, upon solving
1− ε = cos(y) we have the relation cos−1(1− ε) =

√
2ε+O(ε3/2). This means

sin2

(
t

hN
cos−1

(
1− h2

N

2σ2
N,n

))
= sin2

(
t

hN

[
hN
σNn

+O

((
hN
σNn

)3
)])

= sin2

(
t

σNn

)
+ t ·O

(
h2
N

σ3
Nn

)
,

where O
(
h2
N/σ

3
Nn

)
is a term bounded (uniformly in N , and n) by a constant

times h2
N/σ

3
Nn. Since

∫
t · πN (t) dt = σN1E {T}, we have

lim
N→∞

E {∆N} = lim
N→∞

1

2

N∑
n=1

(
hN

2σNn

)4 ∫
sin2

(
t

hN
cos−1

(
1− h2

N

2σ2
N,n

))
πN (t) dt

= lim
N→∞

1

2

N∑
n=1

(
hN

2σNn

)4{∫
sin2

(
t

hN

)
πN (t) dt+O

(
σN1h

2
N

σ3
Nn

)
.

}

=
α

2
+

N∑
n=1

O

(
σN1h

6
N

σ7
Nn

)
.

(6.7)

The first term is the desired limit. The second term tends to zero upon re-
placement of hN by

∑N
n=1 σ

−4
Nn (as in section 6.1) and the use of assumption

(3.11).
The steps for variance are similar, and yield

lim
N→∞

Var {∆N} = α.
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The normal limit follows after verifying the Lindeberg condition [13]: For all
ε > 0,

lim
N→∞

N∑
n=1

Var
{
δ`Nn : |δ`Nn − E

{
δ`Nn

}
| > ε

}
= 0. (6.8)

One can check that δ`Nn−E
{
δ`Nn

}
is bounded by a term similar to (6.5) which

tends uniformly to zero, so (6.8) follows.

6.3. The simple step size

Proof of corollary 3.1. The simpler step size amounts to replacing the integrals∫
sin2(t/σNn)πN (t) dt in (6.7) with 1/2. This will be implied by sufficient decay

of the remainder RNn in (6.1). Indeed, |π̂(ω)| ≤ C|ω|−δ implies

|RNn| ≤ C
(
σNn
σN1

)δ
,

This means (with . denoting ≤ up to a constant depending only on α, Cπ),∣∣∣∣ h̄4
N

h4
N

− 1

∣∣∣∣ = h̄4
N

∣∣h̄−4
N − h

−4
N

∣∣ . h̄4
N

N∑
n=1

1

σ4
Nn

(
σNn
σN1

)δ
.

For any given K,

h̄4
N

N∑
n=1

1

σ4
Nn

(
σNn
σN1

)δ
= h̄4

N

K∑
n=1

1

σ4
Nn

(
σNn
σN1

)δ
+ h̄4

N

N∑
n=K+1

1

σ4
Nn

(
σNn
σN1

)δ

≤ h̄4
N

K∑
n=1

1

σ4
Nn

+

(
σNK
σN1

)δ
h̄4
N

N∑
n=K+1

1

σ4
Nn

. K
h̄4
N

σ4
NK

+

(
σNK
σN1

)δ
.

As N →∞, the first term tends to zero due to (6.2). The second is bounded by
rK by our hypothesis. Therefore,

lim
N→∞

∣∣∣∣ h̄4
N

h4
N

− 1

∣∣∣∣ . rK .

Since K was arbitrary, and rK → 0, we have shown h̄4
N/hN → 0.
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