
On Buffer Centering for Bittide Synchronization

Sanjay Lall1 Călin Caşcaval2 Martin Izzard2 Tammo Spalink2

Abstract

We discuss distributed reframing control of bittide sys-
tems. In a bittide system, multiple processors synchro-
nize by monitoring communication over the network.
The processors remain in logical synchrony by control-
ling the timing of frame transmissions. The protocol for
doing this relies upon an underlying dynamic control sys-
tem, where each node makes only local observations and
performs no direct coordination with other nodes. In
this paper we develop a control algorithm based on the
idea of reset control, which allows all nodes to maintain
small buffer offsets while also requiring very little state
information at each node. We demonstrate that with
reframing, we can achieve separate control of frequency
and phase, allowing both the frequencies to be syntonized
and the buffers to be moved the desired points, rather
than combining their control via a proportional-integral
controller. This offers the potential for simplified boot
processes and failure handling.

1 Introduction

The Google bittide system is designed to enable syn-
chronous execution at large scale without the need for
a global clock. Synchronous communication and pro-
cessing offers significant benefits for determinism, per-
formance and utilization, and through simplification, ro-
bustness. Synchronous execution is used successfully in
real time systems [3].

In bittide, synchronization is decentralized, as every
node in the system adjusts its frequency based on the
observed communication exchanges with its neighbors.
This mechanism is a distributed dynamic feedback con-
trol system. The bittide system was first proposed in [11].
It defines a synchronous logical clock that is resilient to
variations in physical clock frequencies. In [7, 8] we dis-
cuss a model for the dynamics, the Abstract Frame Model
(AFM) and its implication for controlling node frequen-
cies. This work makes use of the model and ideas devel-
oped in that work. In this paper we focus on one critical
aspect of the design, that is control of the buffers that
bittide links use to smooth out frequency variations.

1S. Lall is with the Department of Electrical Engineering at Stan-
ford University, Stanford, CA 94305, USA, and is a Visiting Re-
searcher at Google. lall@stanford.edu

2Călin Caşcaval, Martin Izzard, and Tammo Spalink are with
Google.

send memory

processor

re
ce

iv
e

b
u

ff
er

midpoint

read ptr

write ptr

node i

send memory

processor

re
ce

iv
e

b
u

ff
er

midpoint

read ptr

write ptr

node j

link i→ j

lin
k
j
→
i

Figure 1: Two nodes showing the receive buffers as part
of the links.

The bittide system relies on buffering frames on the
receiving side of a link to absorb frequency oscillations
in both directions. These buffers have two primary de-
sirable properties. First, the control system must avoid
overflow or underflow. Second, buffer size should be min-
imized, since buffer memory is system overhead. An ini-
tial transient period ensures read and write pointers are
at buffer midpoints, after which their maximum needed
size is determined by how much the control system can
control variation without overflow or underflow.

Processes on bittide coordinate using ahead-of-time
scheduling, and so frame retransmissions are not allowed.
Therefore, the buffers need to ensure that no frames are
lost. Note that this does not imply that links in the sys-
tem cannot fail, simply that failures are dealt with at a
different level. For the purpose of frame delivery, buffers
should be considered reliable.

To satisfy these properties, we design a dynamic con-
trol system that switches modes after the initial transi-
tory period. We trade-off convergence speed by using a
proportional controller that allows buffer occupancy to
stabilize. Buffers use virtual pointers (i.e., frame coun-
ters) to provide the correct input to the controller. Af-
ter the controller converges, the proportional controller
is replaced with a proportional-plus-offset controller to
drive the buffer occupancy to the midpoint, and retain
the same converged frequency.

2 Prior work

Distributed systems have long striven to achieve syn-
chrony at some level. This has been mostly effected
by mechanisms that align local clocks to a global mas-
ter such as a UTC server. The most common are the
NTP [9] and PTP [6] standards. Telecom systems like
SONET [12] and some packet networking equipment us-

1

ar
X

iv
:2

30
3.

11
46

7v
1 

 [
ee

ss
.S

Y
] 

 2
0 

M
ar

 2
02

3



ing SyncE [13] apply a further level of effort to aid syn-
chrony, specifically, they work to syntonize local time-
reference oscillators in hierarchical manner. Syntony here
is used to mean that all reference oscillators in the dis-
tributed system maintain the same frequency on average
over time. There are well-known methods to achieve this,
mostly by clock extraction from upstream communica-
tion links. Having syntonized oscillators eases the task
of aligning local clocks to a master.

The bittide system also uses syntonization, although
there is no inherent need for hierarchy, and instead bit-
tide adds precise phase control at the lowest level. This
phase control is not quite phase alignment across the dis-
tributed system because there will be temporal wobble.
The bittide system uses small elastic buffers to absorb
this wobble. This opens the possibility of very precise
coordination across a bittide distributed system, coor-
dination equivalent to what is possible in a traditional
synchronous system.

A model for the dynamics of a bittide system was de-
veloped in [7, 8]. In this paper we focus on a simplified
linear version of this model. Many similar linear con-
sensus models have been extensively studied; see [5] for
a survey focused on synchronization, and see [10] for a
discussion of stability analysis.

This paper develops an approach to control of bittide
systems we call reframing of a bittide system. This is
related to the idea of reset which has a long history in
control. Before the development of integral control, in
order to ensure that a system achieved a small steady-
state error, the offset (or reset) parameter in a propor-
tional controller was adjusted manually. Integral control
was developed as a way of automatically performing such
resets [1]. Here, we use a variant of the reset idea for a
distributed system, to simultaneously control two quanti-
ties per node, frequency and buffer occupancy. Because
the system being controlled is a computer network, it
has sufficiently ideal properties (such as conservation of
frames [7]) that we can perform a reset exactly once, at
bootup. The idea of reset is attributed [2] to Mason in
the 1930s.

3 Notation and preliminaries

We represent the bittide topology as a directed graph
with n nodes and m edges. Define the source incidence
matrix S ∈ Rn×m by

Sie =

{
1 if node i is the source of edge e

0 otherwise

and the destination incidence matrix D ∈ Rn×m by

Die =

{
1 if node i is the destination of edge e

0 otherwise

The usual incidence matrix of the graph is then B =
S −D. Let 1 be the vector of all ones, then BT1 = 0.

A directed graph is called strongly connected or ir-
reducible if for every i, j there exists directed paths
i → j and j → i. Suppose A ∈ Rn×n is a nonnega-
tive matrix such that Aij > 0 if there is an edge i → j
and Aij = 0 otherwise. The matrix A is called irreducible
if the corresponding graph is irreducible. Note that this
does not depend on the diagonal elements of A.

A matrix Q ∈ Rn×n is called Metzler if Qij ≥ 0 for
all i 6= j. A Metzler matrix Q is called a rate matrix
if its rows sum to zero. If Q is Metzler and irreducible,
then there is a real eigenvalue λmetzler, with positive left
and right eigenvectors. All other eigenvalues λ satisfy
<(λ) < λmetzler.

A Metzler matrix Q has a nonnegative matrix expo-
nential. To see this, let s > 0 be such that sI + Q ≥ 0.
Then eQ = e−sIesI+Q and both terms on the RHS are
elementwise nonnegative. For the special case of a rate
matrix Q, since Q1 = 0 we have directly eQ1 = 1 and so
eQ is a stochastic matrix.

4 The bittide control system

A detailed model of the bittide system, called the ab-
stract frame model is developed in [7]. A simplified finite-
dimensional linear time-invariant model was presented
in [8]. In both papers, we considered the special case
of a system where all links are bidirectional. We now
update the model to include unidirectional links. We fo-
cus on the case where the controller is continuous-time,
latencies are small, and measurements are unquantized.
The effectiveness of this approximation was investigated
in [7], so we do not dwell here on this issue.

The simplified fundamental dynamics of the bittide
system are as follows.

θ̇i(t) = ωi(t) (1)

βj�i(t) = θj(t)− θi(t) + λj�i (2)

ωi(t) = ωu
i + ci(t) (3)

Here i, j ∈ 1, . . . , n index nodes in the graph, and j → i
refers to an edge from j to i. The variable θi is the clock
phase at node i, whose time-derivative ωi(t) is the clock
frequency. The clock frequency is the sum of two terms,
the first is the constant ωu

i , which is the uncontrolled fre-
quency of the clock. It is unknown, and not available to
the bittide control system. The second term is ci, the
frequency correction, which is the control input; it is cho-
sen by the controller at node i. Equation (2) gives βj�i,
the occupancy of the elastic buffer at node i associated
with the edge j → i. The quantity λj�i is a constant
associated with the link.

Control for the bittide system is inherently distributed
and as such, does not have access to global information.

2



At each node i, the controller measures all of the occu-
pancies βj�i for all of the incoming links. It cannot ob-
serve the occupancies at other nodes, nor can it observe t
or θ̇i. Using this limited information, it chooses the fre-
quency correction ci. Dynamic controllers cannot be im-
plemented exactly, since the controller does not know the
time t, and so, for example, the controller cannot exactly
perform any integration or differentiation. The only clock
information available at node i is the clock phase θi, and
in general this varies from one node to the next. This
means that we are desirous of implementing a purely
static controller, such as a proportional (plus-offset) con-
troller. One form, which has been studied in [8], is

ci(t) = k
∑
j|j�i

(βj�i − βoff
i ) + qi(t) (4)

The buffer occupancy βj�i is measured relative to an off-
set βoff

i , corresponding to the desired equilibrium buffer
occupancy. The difference βj�i−βoff

i is called the relative
buffer occupancy. The controller chooses the correction
to be proportional to the sum of the relative buffer occu-
pancies at the node, plus a constant frequency offset qi.
The controller parameter k could in principle depend on
the node i, but for simplicity and scalability we do not
consider that case. As we discuss in this paper, the fre-
quency offset qi(t) may vary with both time and node.

βωu

q

c

w

K

G

Figure 2: Feedback block diagram

The controller interconnection is illustrated in Fig-
ure 2. The system model G maps frequency ω to buffer
occupancy β, and the controller K maps β to correction c
minus the offset q.

4.1 Model

The model for the closed-loop system is described in vec-
tor form as follows:

θ̇ = ωu + c

β = BTθ + λ

c = kD(β − βoff) + q

(5)

Here β, λ ∈ Rm and θ, c, q ∈ Rn. It’s convenient to write
this as

θ̇ = Aθ + ωu + q + r

β = BTθ + λ

c = Aθ + q + r

(6)

where
A = kDBT r = kD(λ− βoff) (7)

Note that the matrix A is not Hurwitz, and so θ does not
converge.

When the system is booted up, the offsets are chosen
to be feasible, that is we set βoff = β(t0) at some time t0.
This has the following consequence.

Lemma 1. Suppose βoff is feasible, that is, there exists
t0 such that

βoff(t0) = BTθ(t0) + λ

Let r be given by equation (7). Then r ∈ range(A).

Proof. This holds because r = kD(λ − βoff) and so
r = −kDBTθ(t0) = −Aθ(t0).

We assume the graph is irreducible. Then the matrix A
is a scaled directed Laplacian matrix for the graph. It is
an irreducible rate matrix. The following result is stan-
dard.

Lemma 2. Suppose A is an irreducible rate matrix, and
let z > 0 be it’s Metzler eigenvector, normalized so that
1Tz = 1. Then

lim
t→∞

eAt = 1zT

Proof. Since A is irreducible, the Metzler eigenvalue,
which is zero, has multiplicity one. Let the eigendecom-
position of A be AT = TD. Then we have

D =

[
0 0
0 Λ

]
T =

[
1 T2

]
T−1 =

[
zT

V T
2

]
for appropriate matrices T2, V2, and Λ. The other eigen-
values of A all have negative real part. Since T−1T = I
we have 1Tz = 1. Then

eAt = T

[
1 0
0 eΛt

]
T−1

Taking the limit gives the result.

We denote by z > 0 the Metzler left-eigenvector of A,
normalized so that 1Tz = 1, and let W = 1zT. The
matrix W is called the spectral projector of the Metzler
eigenvalue. It satisfies W 2 = W and in addition WA =
AW = 0.

5 Approach

There are many important practical requirements that
the controller must meet, which are discussed in [7]. In
this paper, we focus on two critical requirements. The
first is that the controller must ensure that the frequency
of all nodes converges to the same value, that is, for some
ω̄ > 0, we have

lim
t→∞

θ̇i(t) = ω̄ for all i

3



The second requirement is that, after some initial startup
time T , the buffer occupancies remain close to the offset,
that is, |βi(t)− βoff

i | should be small for all i and all
t > T . Both of these requirements are specifications of
allowed steady-state behavior.

One approach to control this system is to use an
approximate proportional-integral (PI) control, as dis-
cussed in [7, 8]. Even in situations where the effects of the
approximation are small, there are potential disadvan-
tages to the PI controller. One is that the PI controller
contains the integral state, which the controller may need
to set carefully when a node starts up and when neigh-
boring nodes fail. In the distributed setting of bittide,
one of the design tenets is to avoid in-band signaling for
controlling synchronization, and thus we have no mech-
anism to exchange such information. Appropriate choice
of the integral gain may be affected by the underlying
network topology, link rates, and link latencies.

Another alternative method to proportional-integral
control is simply using a very large gain k. Very large
gains have negative consequences for feedback system
behavior in several well-known ways. In particular for
bittide, this would adversely affect delay robustness and
response to quantization noise, both of which are impor-
tant in this setting. We therefore develop an alternative
approach in this paper.

Reframing control. We give here for convenience a
brief summary of the technical approach, which is de-
tailed precisely in Section 6. Our approach is to make
use of the offset term q in the proportional-plus-offset
controller. At each node, the local controller sets q = 0
initially. The system frequency ω will then converge, so
that all nodes have the same frequency, a weighted aver-
age of ωu. This is shown in Lemma 4.

The buffer occupancy also converges, as shown in
Lemma 5. Typically the buffer occupancy will not con-
verge to the buffer offset, because a nonzero correction c
given by equation (8) is necessary to maintain frequency
equilibrium, and with q = 0 the controller (4) can only
achieve this with a nonzero relative occupancy β − βoff.

After this initial period of convergence, the correction
has converged to a steady-state value css. The controller
now performs a reframing ; it sets the offset q in the con-
troller to css. The control signal emitted by the controller
is now not an equilibrium solution, and so the system will
need to reconverge to a new equilibrium. The key point
here is that the new equilibrium is at the same frequency,
but a different buffer occupancy. We show in Lemma 7
that, after the reframing, the frequency converges to the
same weighted equilibrium value as before. Furthermore,
Lemma 8 shows that after this second phase, the buffer
occupancy β(t) converges to the midpoint βoff.

By using this two-phase approach, we can therefore
achieve both controller requirements. The steady-state
frequency is exactly the same as that achieved by the

proportional controller, and the final buffer occupancy is
at the desired offset point.

6 Main results

We first analyze simple convergence. The clock phase θ
does not converge, so there is no steady-state value for it.
However, the frequency ω(t) = θ̇(t) does converge. We
will make use of the following simple property.

Lemma 3. Let A be an irreducible rate matrix, and
θ̇(t) = Aθ(t) + v. Let W be the spectral projector cor-
responding to the Metzler eigenvalue. Then

lim
t→∞

Aθ(t) = (W − I)v

for any initial conditions θ(0).

Proof. We have

θ(t) =

∫ t

0

eA(t−s)v ds+ eAtθ(0)

and hence

Aθ(t) = (eAt − I)v +AeAtθ(0)

Taking the limit gives the desired result.

Define for convenience the function F : Rn → Rn by

F (q) = (W − I)ωu +W (q + r)

This function maps the controller offset q to the steady-
state correction, as follows.

Lemma 4. Consider the dynamics of (6). For any ini-
tial θ(0) and any q ∈ Rn we have

lim
t→∞

c(t) = F (q) (8)

Proof. This is a direct consequence of Lemma 3.

The frequency of the system is ω(t) = c(t) + ωu which
gives steady-state frequency

ωss = lim
t→∞

ω(t) = W (q + r + ωu)

Hence, before reframing, the frequency converges. The
frequency that the system converges to meets the first
performance requirement of bittide, since we have W =
1zT and therefore we must have all components of ωss

equal. Since 1Tz = 1 the steady-state frequency is a
convex combination of the entries of q + r + ωu. From
Lemma 1, we have r ∈ range(A). Then

ωss = W (q + ωu)

since WA = 0. Then we can see that a pure proportional
controller (i.e., q = 0) results in all nodes of the bittide

4



system converging to a steady-state frequency equal to
the weighted average zTωu, that is

ωss = Wωu = 1zTωu (9)

The steady-state frequency is affected by q, and so even
though this frequency meets the bittide requirement, af-
ter reframing we will adjust q, and so it appears in prin-
ciple possible that the frequency of the system could
change. We will see below that, although at the time
of reframing the frequency of the system does change, it
nonetheless returns and converges to the same frequency.
An example of this behavior is given in Figure 4. The first
bittide requirement is satisfied; for any positive gain k the
nodes all converge to the same steady-state frequency.
We now turn attention to the second requirement, ensur-
ing that eventually β stays close to the offset βoff. We
first show that, before reframing, the buffer occupancy
converges.

Lemma 5. Consider the dynamics of (6). For any ini-
tial θ(0) and any q ∈ Rn, the buffer occupancy β(t) con-
verges as t→∞.

Proof. Using the same notation as in the proof of
Lemma 2, we have∫ t

0

eA(t−s) ds = T

[
t 0
0 Λ−1(eΛt − I)

]
T−1

Then

β(t) = λ+BTθ(t)

= λ+BTT

[
0 0
0 Λ−1(eΛt − I)

]
T−1(ωu + q + r)

+BTT

[
0 0
0 eΛt

]
T−1θ(t)

where we have used the fact that the first column of T
is 1 and BT1 = 0. Then

lim
t→∞

β(t) = λ− T2Λ−1V T
2 (ωu + q + r)

1

2 3

4

5

6 7

8

1 2

3 4

Figure 3: Graph used to generate the simula-
tions of Figures 4 and 5.

We now turn to the reframing. The controller runs
a proportional controller for some amount of time T1,
long enough to ensure that, in practice, the frequency
and the buffer offsets have converged. After that time,
the controller changes to using a non-zero offset, which
is simply equal to the converged value of the correction.
This controller is stated formally below.

0 250 500 750 1000 1250e6
0.99996

0.99998

1.00000

1.00002

1.00004

1.00006

1.00008

1.00010

1.00012

1

2

3
4

ω

t

Figure 4: Frequency behavior as a function of time.
The reframing occurs at about t = 600ns. Simula-
tions were performed using the Callisto [4] simu-
lator with a detailed frame-accurate model of bit-
tide. Traces on the graph are labeled with the cor-
responding node number.

0 250 500 750 1000 1250e6
-3000

-2000

-1000

0

1000

2000

3000

1

2

3

4

5

6

7

8

β − βoff

t

Figure 5: Relative buffer occupancies β − βoff for
the same simulation as in Figure 4. Traces on
the graph are labeled with the corresponding edge
number.

Definition 6. We define the reframing controller as
follows. For some T1 > 0, let the correction be

c(t) =

{
kD(β(t)− βoff) for t ≤ T1

kD(β(t)− βoff) + kD(β(T1)− βoff) otherwise

Now we show the desired frequency convergence prop-
erty. After reframing, the controller converges to the
same frequency as that before reframing, in equation (9).

Lemma 7. Suppose βoff is feasible. Using the refram-
ing controller, as T1 → ∞ and t → ∞, the frequency
converges

ω(t)→Wωu

Proof. Since we are considering both T1 and t large,
we can evaluate convergence in two phases. In the first

5



phase we have q = 0 and so according to Lemma 4 we
have c(T1)→ F (0). The reframing controller is

c(t) = kD(β(t)− βoff) + c(T1) for t > T1

We can therefore use Lemma 4 again, with q = c(T1), to
give

lim
t→∞

c(t) = F (F (0))

= F
(
(W − I)ωu +Wr

)
= (W − I)ωu +W (r + (W − I)ωu +Wr)

= (W − I)ωu + 2Wr

= (W − I)ωu

where the last line holds since βoff is feasible. Then since
ω(t) = c(t) + ωu we have

lim
t→∞

ω(t) = Wωu

as desired.

Finally, we turn to the critical requirement for bit-
tide, that the buffer occupancies be kept close to the
offset. The following result shows that, after the refram-
ing, buffer occupancies return to the midpoint. This is
illustrated by the simulation in Figure 5.

Lemma 8. Suppose βoff is feasible. Using the reframing
controller, as T1 → ∞ and t → ∞, the buffer occupancy
converges

β(t)→ βoff

Proof. Denote βss = limt→∞ β(t). With the reframing
controller, we have

lim
t→∞

c(t) = kD(βss − βoff) + c(T1)

The proof of Lemma 7 shows that limt→∞ c(t) = c(T1)
and therefore

D(βss − βoff) = 0 (10)

Now, since r = 0, we have βoff = BTθ(t0) + λ, and so

β(t)− βoff = BT(θ(t)− θ(t0))

hence for all t we have β(t) − βoff ∈ range(BT). Hence
βss − βoff = BTx for some x, and so (10) means that
DBTx = 0. Since DBT is an irreducible rate matrix,
this means x = γ1 for some γ, and hence BTx = 0, from
which we have βss − βoff = 0 as desired.

Lemmas 7 and 8 show that the reframing methodol-
ogy achieves the requirements. In practice, this works
because, before reframing, the buffers can overflow. This
occurs during system startup, when the network frames
do not contain any data, and so the system does not need
to store the actual frames, and instead can use counters
or pointers to keep track of how many frames would be
in the buffer. After the reframing, and subsequent con-
vergence, the bittide system can begin executing code,
at which time it is essential that frames not be dropped.
At this point, the buffer occupancies have returned to a
stable equilibrium at the midpoint.

7 Conclusions

We proved that we can satisfy the requirements for con-
trolling a bittide system and satisfy the desirable proper-
ties for buffer occupancy by developing a dynamic control
system that resets after convergence. The initial propor-
tional controller drives frequency convergence, and the
proportional plus offset controller ensures that buffer oc-
cupancies are driven toward the desirable midpoint.

8 Acknowledgments

We thank Robert O’Callahan, Pouya Dormiani, Chase
Hensel, and Chris Pearce for all of their work on this
project, and for much collaboration and helpful discus-
sion.

References

[1] K. J. Åström and R. M. Murray. Feedback systems: an
introduction for scientists and engineers. Princeton uni-
versity press, 2021.

[2] D. M. Auslander. Evolutions in automatic control.
Transactions of the ASME, pages 4–9, March 1971.

[3] A. Benveniste, P. Caspi, S. Edwards, N. Halbwachs,
P. Le Guernic, and R. de Simone. The synchronous lan-
guages 12 years later. Proceedings of the IEEE, 91(1):64–
83, Jan. 2003.

[4] The Callisto simulator for bittide networks.
https://github.com/bittide/Callisto.jl.

[5] F. Dorfler and F. Bullo. Synchronization in complex
networks of phase oscillators: A survey. Automatica,
50(6):1539–1564, 2014.

[6] Precision clock synchronization protocol for networked
measurement and control systems. IEEE standard
2021.9456762.

[7] S. Lall, C. Caşcaval, M. Izzard, and T. Spalink. Modeling
and control of bittide synchronization. In Proceedings
of the American Control Conference, pages 5185–5192,
2022.

[8] S. Lall, C. Caşcaval, M. Izzard, and T. Spalink. Resis-
tance distance and control performance for bittide syn-
chronization. In Proceedings of the European Control
Conference, pages 1850–1857, 2022.

[9] D. L. Mills. Internet time synchronization: The network
time protocol. IEEE Transactions on Communications,
39(10):1482–1493, 1991.

[10] L. Moreau. Stability of continuous-time distributed con-
sensus algorithms. In Proceedings of the IEEE Confer-
ence on Decision and Control, volume 4, pages 3998–
4003, 2004.

[11] T. Spalink. Deterministic sharing of distributed re-
sources. Princeton University, 2006.

[12] Synchronous optical network (SONET) transport sys-
tems: Common generic criteria. Telcordia GR-253.

[13] Timing and synchronization aspects in packet networks.
ITU-T G.8261/Y.1361.

6


	1 Introduction
	2 Prior work
	3 Notation and preliminaries
	4 The bittide control system
	4.1 Model

	5 Approach
	6 Main results
	7 Conclusions
	8 Acknowledgments

