
Diagnosing Data Pipeline Failures Using Action
Languages: A Progress Report

Alex Brik1[0000−0002−0891−4355] and Jeffrey Xu2[0000−0002−8159−073X]

1 Google Inc., Mountain View, USA
2 University of California Los Angeles

Abstract. In this paper we describe our work towards automating di-
agnosing failures of data processing pipelines at Google Inc. using action
language Hybrid ALE . We describe Diagnostic Modeling Library - a
component providing a novel abstraction layer on top of Hybrid ALE ,
describe the requirements and give an overview of our system, which has
been deployed on a limited number of data processing pipelines.

Data processing pipelines (pipelines, for short) are software systems that pro-
cess collections of data and produce either transformed data, aggregated data
or some other output. Industrial pipelines can consist of hundreds of jobs, with
outputs of some jobs consumed as inputs by others within the pipeline. In addi-
tion, pipelines themselves can have input dependencies on other pipelines. When
working well, this architecture allows efficient and effective processing of large
amounts of data. When a malfunction occurs, it can stop data processing tasks,
causing a set of cascading failures. The failures can cause an alert being dis-
patched to on-call engineers (on-calls, for short).

For the on-calls, an alert is a diagnostic challenge, as it can point to one of the
later, rather than an earlier among the cascading failures. The earlier failures
have to be found before the underlying problem can be resolved. Moreover,
multiple possible causes of failure may have to be investigated. Automating
the diagnosing process can decrease the time required to fix failures, and thus,
improve the fault tolerance of the system and increase on-calls productivity.

Action languages [5] allow to formalize reasoning about effects of actions
in dynamic domains. Constructing a mathematical model of an agent and its
environment based on the theory of action languages has been studied and has
applications to planning and diagnostic problems, see [3] for an overview. In
[1] an action language Hybrid ALE was introduced in order to facilitate the
development of diagnostic programs for the industrial pipelines. Hybrid ALE
provides a mechanism for accessing outside data sources with user provided
algorithms. This feature of Hybrid ALE allows Hybrid ALE programs to gather
information about pipelines from the outside sources in order to provide an
accurate diagnosis. Unlike most other action languages that translate to ASP
[4], Hybrid ALE translates to Hybrid ASP (H-ASP) [2] - an extensions of ASP
that allows ASP-like rules to interact with outside sources.

In this paper we describe our work at Google Inc. on automating diagnosing
of pipeline failures using Hybrid ALE . Our diagnostic system is deployed on

a limited number of pipelines. We start by specifying the requirements and by
motivating the use of action language based approach in general and HybridALE
in particular. We then review Hybrid ALE , and introduce Diagnostic Modeling
Library - a component providing an abstraction layer on top of Hybrid ALE . The
use of Diagnostic Modeling Library simplifies model creation. We then discuss
generating explanations and suggestion and give an overview of our system.

1 Requirements

Once on-calls receives a notification of a pipeline’s failure, they typically have
to perform the following tasks:

1. Determine the (most likely) causes of failure.
2. Obtain a detailed description of the failure, including possibly error messages

produced by the failed job and other relevant information.
3. Understand why the failure has occurred.
4. Determine how to repair the failure.
5. Proceed with the repair.

Determining the causes of failure is only the first step in the repair process.
An ideal system for helping on-calls would automate steps 1-5. In our work we
focus on automating steps 1-4.

On-calls often operate at the description level of individual jobs, jobs’ inputs
and outputs. This is the lowest description level where failure and success can be
quickly and effectively determined. This fact determines the types of models we
focus on. Such a model can be represented as an acyclic digraph (dependency
graph), where vertices are jobs and an edge from A to B represents the fact
that some of the outputs of A are inputs of B. For such a model, the process
of diagnosing the source of failure consists of starting with vertices without in-
edges, and performing a breadth first search to determine the earliest set of
vertices whose corresponding jobs have failed.

We now formulate the following engineering requirements for our system:

1. Provide a mechanism facilitating efficient creation of diagnostic models ca-
pable of the following: identifying pipeline jobs, describing dependencies be-
tween jobs, describing jobs’ termination status.

2. Provide a mechanism for determining termination status of individual jobs
(based on the external data sources)

3. Provide a mechanism for describing multiple possible diagnoses
4. Provide a mechanism for explaining the diagnoses in a user understandable

form (possibly by gathering information from external data sources)
5. Provide a mechanism for generating suggestions for repairing the failures

(possibly by gathering information from external data sources)

These requirements don’t necessitate an action language based approach.
We could create a library for describing dependency graphs that would model

the pipelines. We could then provide mechanisms for association callbacks with
graph vertices to determine the termination status of the corresponding jobs
based on the external data sources. Our library would use the dependency graph
to identify sources of failure. We could provide additional mechanisms for asso-
ciating callbacks to generate explanations and suggestions. In the cases when an
uncertainty exists, multiple trajectories would be examined.

There are two main reasons for choosing an action language based approach:

1. Availability of necessary functionality.

(a) Answer set semantics provides a convenient mechanism for reasoning
about multiple trajectories.

(b) Action languages provide an elegant formalism for describing actions and
their consequences, thus facilitating model creation.

2. Extensibility.

(a) Typically, requirements of the software systems change over time. Be-
cause of that, a diagnostic system has to be easily extensible. Using
formal languages as the basis for creating diagnostic models facilitates
extensibility vs. an ad-hoc system.

Hybrid ALE provides an additional convenience: a principled way to com-
bine arbitrary algorithms with the ASP-like rules, and a principled way to pass
arbitrary data between such algorithms.

2 Hybrid ALE

We now review action language Hybrid ALE . A key concept related to action
languages is that of a transition diagram, which is a labeled directed graph, where
vertices are states of a dynamic domain, and edge labels are subsets of actions.
An edge indicates that simultaneous execution of the actions in the label of an
edge can transform a source state into a destination state. The transformation is
not necessarily deterministic, and for a given source state there can be multiple
edges having different destination states, labeled with the same set of actions.
In Hybrid ALE, one considers hybrid transition diagrams, which are directed
graphs with two types of vertices: action states and domain states. A domain
state is a pair (A,p) where A is a set of propositional atoms and p is a vector
of sequences of 0s and 1s. We can think of A as a set of Boolean properties of a
system, and p as a description of the parameters used by external computations
called domain parameters and time. We let q|domain denote a vector of domain
parameters only. An action state is a tuple (A,p, a) where A and p are as in the
domain state, and a is a set of actions. An out edge from a domain state must
have an action state as its destination. An out edge from an action state must
have a domain state as its destination. Moreover, if (A,p) is a domain state that
has an out-edge to an action state (B, r, a), then A = B and p|domain = r|domain.
We note that there is a simple bijection between the set of transition diagrams
and the set of hybrid transition diagrams.

In Hybrid ALE, there are two types of atoms: fluents and actions. There
are two types of parameters: domain parameters and time. The fluents are par-
titioned into inertial and default. A domain literal l is a fluent atom p or its
negation ¬p. The domain parameters are partitioned into inertial and default.

A domain algorithm is a Boolean algorithm P such that for all generalized
positions q and r, if q|domain = r|domain, then P (q) = P (r). An action algorithm
is an advancing algorithm A such that for all q and for all r ∈ A(q), time(r) =
time(q) + 1. For an action algorithm A, the signature of A, sig(A), is the vector
of parameter indices i1, ..., ik of domain parameters fixed by A.

Hybrid ALE allows the following types of statements.
1. Default declaration for fluents: default fluent l
2. Default declaration for parameters: default parameter i with value w
3. Causal laws: a causes 〈l, L〉 with A if p0, ..., pm : P ,
4. State constraints: 〈l, L〉 if p0, ..., pm : P ,
5. Noconcurrency condition: impossible a0, ..., ak if p0, ..., pm : P ,
6. Allow condition: allow a if p0, ..., pm : P ,
7. Trigger condition: trigger a if p0, ..., pm : P ,
8. Inhibition condition: inhibit a if p0, ..., pm : P
where l is a domain literal, i is a parameter index, w is a parameter value, a
is an action, A is an action algorithm, i0, ..., ik are parameter indices, L and P
are domain algorithms, p0, ..., pm are domain literals, and a0, ..., ak are actions
k ≥ 0 and m ≥ −1. If L or P are omitted then the algorithm T is substituted.

A default declaration for fluents declares a default fluent and specifies its
default value. If l is a positive literal, then the default value is true, and if l
is a negative fluent then the default value is false. A default declaration for
parameters declares that i is a default parameter and that w is its default value.
A causal law specifies that if p0, ..., pm hold and P is true when a occurs, then l
holds and L is true after the occurrence of a. In addition, after a occurs, the values
of the parameters sig(A) are specified by the output of the action algorithm A. A
state constraint specifies that whenever p0, ..., pm hold and P is true, l also holds
and L is true. A noconcurrency condition specifies that whenever p0, ..., pm hold
and P is true, a0, ..., ak cannot occur concurrently pairwise. An allow condition
specifies that whenever p0, ..., pm hold and P is true, an action a can occur
(although not necessarily so). A trigger condition specifies that whenever p0,
..., pm hold and P is true, an action a necessarily occurs (unless inhibited). An
inhibition condition specifies that whenever p0, ..., pm hold and P is true, action
a cannot occur. A system description SD is a set of Hybrid ALE statements.

We omit the definition of semantics of Hybrid ALE for brevity. Interested
readers are encouraged to consult [1].

3 Diagnostic Modeling Library

While creating diagnostic models using Hybrid ALE we have noticed repeated
modeling patterns. In addition, requiring engineers to learn Hybrid ALE re-
stricts the adoption of our diagnostic system. The Diagnostic Modeling Library

encapsulates several modeling patterns expressed in Hybrid ALE , and provides
a convenient interface requiring a minimal understanding of action languages
that focuses on a job as a basic modeling unit.

job := DeclareJob(job name, job prereqs): declares a job job name.
job prereqs specifies job’s dependencies. The function specifies a single action
do(job name), which is triggered if the prerequisites job prereqs are satisfied. In
order to add failure modes, AllowFailure or TriggerFailure functions need to be
used in addition to DeclareJob. It’s Hybrid ALE translation is:

default fluent finished default(job name)
do(job name) causes finished default(job name)
finished(job name) if finished default(job name)
trigger do(job name) if job prereqs, -finished(job name)
succeeded(job name) if finished default(job name), -failed(job name)

job.AllowFailure(failure type, failure prereqs, FailureCheck, Fail-
ureCallback): specifies that a failure of type failure type for the job can occur
if failure prereqs are satisfied and FailureCheck domain algorithm returns true.
If the failure occurs, then the parameters in the consequent state are partly
determined by FailureCallback action algorithm. The Hybrid ALE translation
is:

allow failure type(job.job name) if job.job prereqs, failure prereqs,
-finished(job.job name): FailureCheck

failure type(job.job name) causes failure(job.job name) with FailureCallback

job.TriggerFailure(failure type, failure prereqs, FailureCheck, Fail-
ureCallback): specifies that a failure of type failure type for the job is triggered
if failure prereqs are satisfied and FailureCheck domain algorithm returns true.
If the failure occurs, then the parameters in the consequent state are partly
determined by FailureCallback action algorithm. The Hybrid ALE translation
is:

trigger failure type(job.job name) if job.job prereqs, failure prereqs,
-finished(job.job name): FailureCheck

failure type(job.job name) causes failure(job.job name) with FailureCallback

job.ValidateSuccess(invalidation prereqs, InvalidationAlg): allows to
invalidate a trajectory in case of job’s success. In particular, if the job succeeds
and invalidation prereqs are satisfied and InvalidationAlg - a domain algorithm
returns true, the trajectory becomes invalid. The Hybrid ALE translation is:

FALSE if finished default(job.job name), succeeded(job.job name),
invalidation prereqs: InvalidationAlg

Here FALSE is a special fluent that results in the trajectory becoming invalid.

job.ValidateFailure(invalidation prereqs, InvalidationAlg): allows to
invalidate a trajectory in case of job’s failure. In particular, if the job fails and in-
validation prereqs are satisfied and InvalidationAlg - a domain algorithm returns
true, the trajectory becomes invalid. The Hybrid ALE translation is:

FALSE if finished default(job.job name), failed(job.job name),
invalidation prereqs: InvalidationAlg

This is an incomplete interface. Nevertheless, the five functions above are the
most commonly used.

As an example the library usage, let’s suppose that our pipeline consists of
three jobs: A, B and C. Job B is dependent on job A, and job C is dependent on
job B. Suppose that it is possible to determine whether job A has failed by using
AFailureCheck algorithm, and it is possible to determine whether job C failed
by using CFailureCheck algorithm. It is not possible to determine whether job
B failed by any readily available algorithm. Nevertheless, we know that if job
C succeeds, then job B must have succeeded. We can capture this information
in the following model, with lines started with ’#’ indicating comments, and
symbol ’ ’ indicating an empty argument:

Declare job A with no prerequisites
jobA := DeclareJob(A,)
Specify that AFailureCheck identifies A’s failure
jobA.TriggerFailure(failure, , AFailureCheck,)
Declare job B dependent on job A
jobB := DeclareJob(B, finished(A))
Specify that job B can fail
jobB.AllowFailure(failure, , ,)
Declare job C dependent on job B
jobC := DeclareJob(C, finished(B))
Specify that CFailureCheck identifies C’s failure
jobC.TriggerFailure(failure, , CFailureCheck,)
Specify that job C’s success invalidates job B’s failure
jobC.ValidateSuccess(failed(B),)

4 Generating Explanations and Suggestions

Repairing the failures of pipelines can be facilitated if the diagnostic software
provides explanations or other relevant information about the source of the fail-
ure, and if the diagnostic software provides the suggestions for repairing.

Both the explanations and the suggestions can be specific to a trajectory and
to a failure. We did not attempt to solve the problem of automatic generation of
explanation and suggestions based on the formal model of a diagnosed system.
Nevertheless, we have made some initial steps in providing useful additional
information about the failures and possible ways to repair them to on-calls.

Our approach uses a combination of user generated information and infor-
mation from outside sources about the failure. Often, engineers familiar with a
pipeline can provide a short list of failure descriptions and another list with sug-
gestions for repairing. These can be integrated with the diagnostic model with
the help of lookup tables. In the tables, both explanations and suggestions are
keyed by an action representing a failure or by a specific fluent generated during

a failure. Messages in the tables can be automatically customized based on the
date or other parameters specific to the particular diagnosing evaluation, thus
making them more helpful to on-calls.

Additional information about the failures can be retrieved from the outside
data sources using action algorithms. In the modeling diagnostic library, both
AllowFailure and TriggerFailure functions can be evoked with FailureCallback
action algorithm. FailureCallback algorithm can retrieve information, such as
error messages generated by the failed job and use it to generate an explanation
recorded in explanation(job name) parameter in the consequent state. When a
diagnosis is reported, the value of explanation(job name) parameter is reported
as well. A similar mechanism can also be used to generate suggestions based on
the information from the outside sources. Such an explanation or a suggestion
is reported together with an associated action or a fluent, thus providing a more
meaningful description of the failure.

5 Job Termination Status and Automatic Model
Generation

Data processing pipelines at Google are typically run using Borg system [6].
This provides several advantages. First, data processing pipelines are described
using BCL configuration files [6]. A BCL description of a pipeline contains a
description of all the jobs in the pipeline as well as the dependencies. Second,
in many cases, it is possible to determine whether a particular job run failed or
succeeded using the Borg monitoring system, and in some cases to retrieve error
messages generated by the failed jobs as well as other relevant information.

We have used these features of the Borg system for the following:

1. To facilitate automatic creation of basic diagnostic models using the Model
Diagnostic Library

2. To automatically determine job’s run’s termination status as well to auto-
matically generate failure explanations by retrieving error messages gener-
ated during job’s run

3. When the automatically generated model is insufficient, it can serve as a
skeleton for a more detailed manually enhanced model.

This architecture is illustrated in figure 1. Pipeline configuration is used by
model generator to create a model. The automatically created model contains
callbacks that access data relevant for determining jobs’ termination status.
The model can then be refined with the help of the engineers familiar with
the pipeline. The model is expressed using diagnostic library. Diagnostic library
translates the model into a HybridALE description, and HybridALE description
is further translated into Hybrid ASP. Hybrid ASP solver then uses the model
to generate diagnoses, and possibly explanations and suggestions.

Fig. 1. Diagnostic system architecture.

6 Conclusion

In this paper we discussed our work on a system deployed on a limited number
of pipelines at Google Inc. for automating diagnosing of pipeline failures using
action language Hybrid ALE . We specified the requirements that guided our
work, and motivated the use of Hybrid ALE . To simplify model creation we
introduced Diagnostic Modeling Library - a component providing an abstrac-
tion layer on top of Hybrid ALE . We discussed initial progress in extending the
functionality of a diagnostic system to include explanation and suggestion gener-
ation - the functionality that makes a diagnostic system more useful for on-calls.
We reviewed the architecture of our system: from automatic model generation,
and manual model refinement to generating diagnosis based on the model and
external data. Our approach is generally applicable and is not Google specific.

References

1. Bomanson, J., Brik, A.: Diagnosing data pipeline failures using action languages. In
Balduccini, M., Lierler, Y., Woltran, S., eds.: Logic Programming and Nonmonotonic
Reasoning - 15th International Conference, LPNMR 2019, Philadelphia, PA, USA,
June 3-7, 2019, Proceedings. Volume 11481 of Lecture Notes in Computer Science.,
Springer (2019) 181–194

2. Brik, A., Remmel, J.B.: Hybrid ASP. In Gallagher, J.P., Gelfond, M., eds.: ICLP
(Technical Communications). Volume 11 of LIPIcs., Schloss Dagstuhl - Leibniz-
Zentrum fuer Informatik (2011) 40–50

3. Gelfond, M., Kahl, Y.: Knowledge Representation, Reasoning, and the Design of
Intelligent Agents: The Answer-Set Programming Approach. Cambridge University
Press (2014)

4. Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In:
ICLP/SLP. (1988) 1070–1080

5. Gelfond, M., Lifschitz, V.: Action languages. Electron. Trans. Artif. Intell. 2 (1998)
193–210

6. Verma, A., Pedrosa, L., Korupolu, M., Oppenheimer, D., Tune, E., Wilkes, J.: Large-
scale cluster management at google with borg. In: Proceedings of the European
Conference on Computer Systems (EuroSys), ACM, Bordeaux, France, 2015. (2015)

