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Abstract
As the web continues to play an ever increasing role

in information exchange, so too is it becoming the pre-
vailing platform for infecting vulnerable hosts. In this
paper, we provide a detailed study of the pervasiveness
of so-called drive-by downloads on the Internet. Drive-
by downloads are caused by URLs that attempt to exploit
their visitors and cause malware to be installed and run
automatically. Over a period of 10 months we processed
billions of URLs, and our results shows that a non-trivial
amount, of over 3 million malicious URLs, initiate drive-
by downloads. An even more troubling finding is that
approximately 1.3% of the incoming search queries to
Google’s search engine returned at least one URL labeled
as malicious in the results page. We also explore sev-
eral aspects of the drive-by downloads problem. Specifi-
cally, we study the relationship between the user brows-
ing habits and exposure to malware, the techniques used
to lure the user into the malware distribution networks,
and the different properties of these networks.

1 Introduction

It should come as no surprise that our increasing reliance
on the Internet for many facets of our daily lives (e.g.,
commerce, communication, entertainment, etc.) makes
the Internet an attractive target for a host of illicit ac-
tivities. Indeed, over the past several years, Internet ser-
vices have witnessed major disruptions from attacks, and
the network itself is continually plagued with malfea-
sance [1�]. While the monetary gains from the myriad
of illicit behaviors being perpetrated today (e.g., phish-
ing, spam) is just barely being understood [11], it is clear
that there is a general shift in tactics—wide-scale attacks
aimed at overwhelming computing resources are becom-
ing less prevalent, and instead, traditional scanning at-

tacks are being replaced by other mechanisms. Chief
among these is the exploitation of the web, and the ser-
vices built upon it, to distribute malware.

This change in the playing field is particularly alarm-
ing, because unlike traditional scanning attacks that use
push-based infection to increase their population, web-
based malware infection follows a pull-based model. For
the most part, the techniques in use today for deliver-
ing web-malware can be divided into two main cate-
gories. In the first case, attackers use various social en-
gineering techniques to entice the visitors of a website
to download and run malware. The second, more de-
vious case, involves the underhanded tactic of targeting
various browser vulnerabilities to automatically down-
load and run—i.e., unknowingly to the visitor—the bi-
nary upon visiting a website. When popular websites
are exploited, the potential victim base from these so-
called drive-by downloads can be far greater than other
forms of exploitation because traditional defenses (e.g.,
firewalls, dynamic addressing, proxies) pose no barrier
to infection. While social engineering may, in general,
be an important malware spreading vector, in this work
we restrict our focus and analysis to malware delivered
via drive-by downloads.

Recently, Provos et al. [�0] provided insights on this
new phenomenon, and presented a cursory overview of
web-based malware. Specifically, they described a num-
ber of server- and client-side exploitation techniques that
are used to spread malware, and elucidated the mecha-
nisms by which a successful exploitation chain can start
and continue to the automatic installation of malware. In
this paper, we present a detailed analysis of the malware
serving infrastructure on the web using a large corpus of
malicious URLs collected over a period of ten months.
Using this data, we estimate the global prevalence of
drive-by downloads, and identify several trends for dif-



�	 17th USENIX Security Symposium	 USENIX Association

ferent aspects of the web malware problem. Our results
reveal an alarming contribution of Chinese-based web
sites to the web malware problem: overall, �7% of the
malware distribution servers and ��% of the web sites
that link to them are located in China. These results raise
serious question about the security practices employed
by web site administrators.

Additionally, we study several properties of the mal-
ware serving infrastructure, and show that (for the most
part) the malware serving networks are composed of
tree-like structures with strong fan-in edges leading to
the main malware distribution sites. These distribution
sites normally deliver the malware to the victim after a
number of indirection steps traversing a path on the dis-
tribution network tree. More interestingly, we show that
several malware distribution networks have linkages that
can be attributed to various relationships.

In general, the edges of these malware distribution
networks represent the hop-points used to lure users to
the malware distribution site. By investigating these
edges, we reveal a number of causal relationships that
eventually lead to browser exploitation. More troubling,
we show that drive-by downloads are being induced by
mechanisms beyond the conventional techniques of con-
trolling the content of compromised websites. In par-
ticular, our results reveal that Ad serving networks are
increasingly being used as hops in the malware serving
chain. We attribute this increase to syndication, a com-
mon practice which allows advertisers to rent out part of
their advertising space to other parties. These findings
are problematic as they show that even protected web-
servers can be used as vehicles for transferring malware.
Additionally, we also show that contrary to common wis-
dom, the practice of following “safe browsing” habits
(i.e., avoiding gray content) by itself is not an effective
safeguard against exploitation.

The remainder of this paper is organized as follows.
In Section �, we provide background information on how
vulnerable computer systems can be compromised solely
by visiting a malicious web page. Section � gives an
overview of our data collection infrastructure and in Sec-
tion � we discuss the prevalence of malicious web sites
on the Internet. In Section �, we explore the mecha-
nisms used to inject malicious content into web pages.
We analyze several aspects of the web malware distribu-
tion networks in Section �. In Section 7 we provide an
overview of the impact of the installed malware on the
infected system. Section � discusses implications of our
results and Section � presents related work. Finally, we
conclude in Section 10.

2 Background

Unfortunately, there are a number of existing exploita-
tion strategies for installing malware on a user’s com-
puter. One common technique for doing so is by re-
motely exploiting vulnerable network services. How-
ever, lately, this attack strategy has become less suc-
cessful (and presumably, less profitable). Arguably, the
proliferation of technologies such as Network Address
Translators (NATs) and firewalls make it difficult to re-
motely connect and exploit services running on users’
computers. This, in turn, has lead attackers to seek other
avenues of exploitation. An equally potent alternative is
to simply lure web users to connect to (compromised)
malicious servers that subsequently deliver exploits tar-
geting vulnerabilities of web browsers or their plugins.

Adversaries use a number of techniques to inject con-
tent under their control into benign websites. In many
cases, adversaries exploit web servers via vulnerable
scripting applications. Typically, these vulnerabilities
(e.g., in phpBB� or InvisionBoard) allow an adversary
to gain direct access to the underlying operating sys-
tem. That access can often be escalated to super-user
privileges which in turn can be used to compromise any
web server running on the compromised host. In general,
upon successful exploitation of a web server the adver-
sary injects new content to the compromised website. In
most cases, the injected content is a link that redirects
the visitors of these websites to a URL that hosts a script
crafted to exploit the browser. To avoid visual detection
by website owners, adversaries normally use invisible
HTML components (e.g., zero pixel IFRAMEs) to hide
the injected content.

Another common content injection technique is to use
websites that allow users to contribute their own con-
tent, for example, via postings to forums or blogs. De-
pending on the site’s configuration, user contributed con-
tent may be restricted to text but often can also contain
HTML such as links to images or other external content.
This is particularly dangerous, as without proper filter-
ing in place, the adversary can simply inject the exploit
URL without the need to compromise the web server.

Figure 1 illustrates the main phases in a typical in-
teraction that takes place when a user visits a web-
site with injected malicious content. Upon visiting this
website, the browser downloads the initial exploit script
(e.g., via an IFRAME). The exploit script (in most cases,
javascript) targets a vulnerability in the browser or
one of its plugins. Interested readers are referred to
Provos et al. [�0] for a number of vulnerabilities that
are commonly used to gain control of the infected sys-
tem. Successful exploitation of one of these vulnera-
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Figure 1: A typical Interaction with of drive-by down-
load victim with a landing URL .

bilities results in the automatic execution of the exploit
code, thereby triggering a drive-by download. Drive-by
downloads start when the exploit instructs the browser to
connect to a malware distribution site to retrieve malware
executable(s). The downloaded executable is then auto-
matically installed and started on the infected system1.

Finally, attackers use a number of techniques to evade
detection and complicate forensic analysis. For example,
the use of randomly seeded obfuscated javascript in
their exploit code is not uncommon. Moreover, to com-
plicate network based detection attackers use a number
or redirection steps before the browser eventually con-
tacts the malware distribution site.

3 Infrastructure and Methodology

Our primary objective is to identify malicious web sites
(i.e., URLs that trigger drive-by downloads) and help
improve the safety of the Internet. Before proceeding
further with the details of our data collection methodol-
ogy, we first define some terms we use throughout this
paper. We use the terms landing pages and malicious
URLs interchangeably to denote the URLs that initiate
drive-by downloads when users visit them. In our subse-
quent analysis, we group these URLs according to their
top level domain names and we refer to the resulting set
as the landing sites. In many cases, the malicious pay-
load is not hosted on the landing site, but instead loaded
via an IFRAME or a SCRIPT from a remote site. We
call the remote site that hosts malicious payloads a dis-
tribution site. In what follows, we detail the different
components of our data collection infrastructure.

Pre-processing Phase. As Figure 2 illustrates, the data
processing starts from a large web repository maintained
by Google. Our goal is to inspect URLs from this repos-
itory and identify the ones that trigger drive-by down-
loads. However, exhaustive inspection of each URL in
the repository is prohibitively expensive due to the large
number of URLs in the repository (on the order of bil-
lions). Therefore, we first use light-weight techniques to
extract URLs that are likely malicious then subject them
to a more detailed analysis and verification phase.

Figure 2: URL selection and verification workflow.

We employ the mapreduce [9] framework to process
billions of web pages in parallel. For each web page, we
extract several features, some of which take advantage of
the fact that many landing URLs are hijacked to include
malicious payload(s) or to point to malicious payload(s)
from a distribution site. For example, we use “out of
place” IFRAMEs, obfuscated JavaScript, or IFRAMEs to
known distribution sites as features. Using a specialized
machine-learning framework [7], we translate these fea-
tures into a likelihood score. We employ five-fold cross-
validation to measure the quality of the machine-learning
framework. The cross-validation operates by splitting
the data set into 5 randomly chosen partitions and then
training on four partitions while using the remaining par-
tition for validation. This process is repeated five times.
For each trained model, we create an ROC curve and use
the average ROC curve to estimate the overall accuracy.
Using this ROC curve, we estimate the false positive and
detection rate for different thresholds. Our infrastructure
pre-processes roughly one billion pages daily. In order to
fully utilize the capacity of the subsequent detailed ver-
ification phase, we choose a threshold score that results
in an outcome false positive rate of about 10−3 with a
corresponding detection rate of approximately 0.9. This
amounts to about one million URLs that we subject to
the computationally more expensive verification phase.
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In addition to analyzing web pages in the crawled web
repository, we also regularly select several hundred thou-
sands URLs for in-depth verification. These URLs are
randomly sampled from popular URLs as well as from
the global index. We also process URLs reported by
users.

Verification Phase. This phase aims to verify whether
a candidate URL from the pre-processing phase is ma-
licious (i.e., initiates a drive-by download). To do that,
we developed a large scale web-honeynet that simultane-
ously runs a large number of Microsoft Windows images
in virtual machines. Our system design draws on the ex-
perience from earlier work [��], and includes unique fea-
tures that are specific to our goals. In what follows we
discuss the details of the URL verification process.

Each honeypot instance runs an unpatched version of
Internet Explorer. To inspect a candidate URL , the sys-
tem first loads a clean Windows image then automati-
cally starts the browser and instructs it to visit the candi-
date URL . We detect malicious URLs using a combina-
tion of execution based heuristics and results from anti-
virus engines. Specifically, for each visited URL we run
the virtual machine for approximately two minutes and
monitor the system behavior for abnormal state changes
including file system changes, newly created processes
and changes to the system’s registry. Additionally, we
subject the HTTP responses to virus scans using multi-
ple anti-virus engines. To detect malicious URLs , we de-
velop scoring heuristics used to determines the likelihood
that a URL is malicious. We determine a URL score based
on a combined measure of the different state changes
resulting from visiting the URL . Our heuristics score
URLs based on the number of created processes, the
number of observed registry changes and the number of
file system changes resulting from visiting the URL .

To limit false positives, we choose a conservative de-
cision criteria that uses an empirically derived thresh-
old to mark a URL as malicious. This threshold is set
such that it will be met if we detect changes in the sys-
tem state, including the file system as well as creation
of new processes. A visited URL is marked as malicious
if it meets the threshold and one of the incoming HTTP
responses is marked as malicious by at least one anti-
virus scanner. Our extensive evaluation shows that this
criteria introduces negligible false positives. Finally, a
URL that meets the threshold requirement but has no in-
coming payload flagged by any of the anti-virus engines,
is marked as suspicious.

On average, the detailed verification stage processes
about one million URLs daily, of which roughly 25, 000

new URLs are flagged as malicious. The verification sys-
tem records all the network interactions as well as the
state changes. In what follows, we describe how we pro-
cess the network traces associated with the detected ma-
licious URLs to shed light on the malware distribution
infrastructure.

Constructing the Malware Distribution Networks.
To understand the properties of the web malware serving
infrastructure on the Internet, we analyze the recorded
network traces associated with the detected malicious
URLs to construct the malware distribution networks.
We define a distribution network as the set of malware
delivery trees from all the landing sites that lead to a par-
ticular malware distribution site. A malware delivery tree
consists of the landing site, as the leaf node, and all nodes
(i.e., web sites) that the browser visits until it contacts the
malware distribution site (the root of the tree). To con-
struct the delivery trees we extract the edges connecting
these nodes by inspecting the Referer header from the
recorded successive HTTP requests the browser makes
after visiting the landing page. However, in many cases
the Referer headers are not sufficient to extract the
full chain. For example, when the browser redirection
results from an external script the Referrer, in this
case, points to the base page and not the external script
file. Additionally, in many cases the Referer header is
not set (e.g., because the requests are made from within
a browser plugin or newly-downloaded malware).

To connect the missing causality links, we interpret the
HTML and JavaScript content of the pages fetched by the
browser and extract all the URLs from the fetched pages.
Then, to identify causal edges we look for any URLs that
match any of the HTTP fetches that were subsequently
visited by the browser. In some cases, URLs contain
randomly generated strings, so some requests cannot be
matched exactly. In these cases, we apply heuristics
based on edit distance to identify the most probable par-
ent of the URL . Finally, for each malware distribution
site, we construct its associated distribution network by
combining the different malware delivery trees from all
landing pages that lead to that site.

Our infrastructure has been live for more than one
year, continuously monitoring the web and detecting ma-
licious URLs. In what follows, we report our findings
based on analyzing data collected during that time pe-
riod. Again, recall that we focus here on the perva-
siveness of malicious activity (perpetrated by drive-by
downloads) that is induced simply by visiting a landing
page, thereafter requiring no additional interaction on the
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client’s part (e.g., clicking on embedded links). Finally,
we note that due to the large scale of our data collection
and some infrastructural constraints, a number longitu-
dinal aspects of the web malware problem (e.g., the life-
time of the different malware distribution networks) are
beyond the scope of this paper and are a subject of our
future investigation.

4 Prevalence of Drive-by Downloads

We provide an estimate of the prevalence of web-
malware based on data collected over a period of ten
months (Jan �007 - Oct �007). During that period, we
subjected over �0 million URLs for in-depth processing
through our verification system. Overall, we detected
more than 3 million malicious URLs hosted on more than
180 thousand landing sites. Overall, we observed more
than 9 thousand different distribution sites. The findings
are summarized in Table 1. Overall, these results show
the scope of the problem, but do not necessarily reflect
the exposure of end-users to drive-by downloads. In what
follows, we attempt to address this question by estimat-
ing the overall impact of the malicious web sites.

Data collection period Jan - Oct �007
Total URLs checked in-depth 66, 534, 330

Unique suspicious landing URLs 3, 385, 889

Unique malicious landing URLs 3, 417, 590

Unique malicious landing sites 181, 699

Unique distribution sites 9, 340

Table 1: Summary of collected data.

To study the potential impact of malicious web sites
on the end-users, we first examine the fraction of incom-
ing search queries to Google’s search engine that return
at least one URL labeled as malicious in the results page.
Figure � provides a running average of this fraction. The
graph shows an increasing trend in the search queries that
return at least one malicious result, with an average ap-
proaching 1.3% of the overall incoming search queries.
This finding is troubling as it shows that a significant
fraction of search queries return results that may expose
the end-user to exploitation attempts.

To further understand the importance of this finding,
we inspect the prevalence of malicious sites among the
links that appear most often in Google search results.
From the top one million URLs appearing in the search
engine results, about 6, 000 belong to sites that have been
verified as malicious at some point during our data col-
lection. Upon closer inspection, we found that these sites
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Figure �: Percentage of search queries that resulted in at
least one URL labeled as malicious; 7-day running avg.

appear at uniformly distributed ranks within the top mil-
lion web sites—with the most popular landing page hav-
ing a rank of 1, 588. These results further highlight the
significance of the web malware threat as they show the
extent of the malware problem; in essence, about 0.6%

of the top million URLs that appeared most frequently
in Google’s search results led to exposure to malicious
activity at some point.

An additional interesting result is the geographic lo-
cality of web based malware. Table � shows the ge-
ographic breakdown of IP addresses of the top � mal-
ware distribution sites and the landing sites. The results
show that a significant number of Chinese-based sites
contribute to the drive-by problem. Overall, 67% of the
malware distribution sites and 64.6% of the landing sites
are hosted in China. These findings provide more evi-
dence [1�] of poor security practices by web site admin-
istrators, e.g., running out-dated and unpatched versions
of the web server software.

dist. site % of all landing site % of all
hosting country dist. sites hosting country landing sites

China �7.0% China ��.�%
United States 1�.0% United States 1�.�%

Russia �.0% Russia �.�%
Malaysia �.�% Korea �.0%

Korea �.0% Germany �.0%

Table �: Top � Hosting countries

Upon closer inspection of the geographic locality of
the web-malware distribution networks as a whole (i.e.,
the correlation between the location of a distribution site
and the landing sites pointing to it), we see that the mal-
ware distribution networks are highly localized within
common geographical boundaries. This locality varies
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across different countries, and is most evident in China,
with 96% of the landing sites in China pointing to mal-
ware distribution servers hosted in that country.

4.1 Impact of browsing habits

In order to examine the impact of users’ browsing habits
on their exposure to exploitation via drive-by downloads,
we measure the prevalence of malicious websites across
the different website functional categories based on the
DMOZ classification [1]. Using a large random sample
of about 7.2 million URLs , we first map each URL to
its corresponding DMOZ category. We were able to find
the corresponding DMOZ categories for about �0% of
these URLs�. We further inspect each URL through our
indepth verification system then measure the percentage
of malicious URLs in each functional category. Figure �
shows the prevalence of detected malicious and suspi-
cious websites in each top level DMOZ category.

As the graph illustrates, website categories associ-
ated with “gray content” (e.g., adult websites) show a
stronger connection to malicious content. For instance,
about 0.�% of the URLs in the Adult category exhibited
drive-by download activity upon visiting these websites.
These results suggest that users who browse such web-
sites will likely be more exposed to exploitation com-
pared to users who browse websites from the other func-
tional categories. However, an important observation
from the same figure is that the distribution of malicious
websites is not significantly skewed toward pages that
serve gray content. In fact, the distribution shows that
malicious websites are generally present in all website
categories we observed. Overall, these results show that
while “safe browsing” habits may limit users’ exposure
to drive-by downloads it does not provide an effective
safeguard against exploitation.
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Figure �: Prevalence of suspicious and malicious pages.

5 Malicious Content Injection

In Section �, we showed that exposure to web-malware
is not strongly tied to a particular browsing habit. Our as-
sertion is that this is due, in part, to the fact that drive-by
downloads are triggered by visiting staging sites that are
not necessarily of malicious intent but have content that
lures the visitor into the malware distribution network.

In this section, we validate this conjecture by study-
ing the properties of the web sites that participate in the
malware delivery trees. As discussed in Section �, at-
tackers use a number of techniques to control the con-
tent of benign web sites and turn them into nodes in the
malware distribution networks. These techniques can be
divided into two categories: web server compromise and
third party contributed content (e.g., blog posts). Unfor-
tunately, it is generally difficult to determine the exact
contribution of either category. In fact, in some cases
even manual inspection of the content of each web site
may not lead to conclusive evidence regarding the man-
ner in which the malicious content was injected into the
web site. Therefore, in this section we provide insights
into some features of these web sites that may explain
their presence in the malware delivery trees. We only fo-
cus on the features that we can determine in an automated
fashion. Specifically, where possible, we first inspect
the version of the software running on the web server
for each landing site. Additionally, we explore one im-
portant angle that we discovered which contributes sig-
nificantly to the distribution of web malware—namely,
drive-by downloads via Ads.

5.1 Web Server Software

We first begin by examining (where possible) the soft-
ware running on the web-servers for all the landing sites
that lead to the malware distribution sites. Specifically,
we collected all the “Server” and “X-Powered-By”
header tokens from each landing page (see Table �).
Not surprisingly, of those servers that reported this in-
formation, a significant fraction were running outdated
versions of software with well known vulnerabilities�.
For example, ��.1% of the Apache servers and ��.�%
of servers with PHP scripting support reported a version
with security vulnerabilities. Overall, these results reflect
the weak security practices applied by the web site ad-
ministrators. Clearly, running unpatched software with
known vulnerabilities increases the risk of content con-
trol via server exploitation.
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Srv. Software count Unknown Up-to-date Old

Apache ��,0�� ��.�% ��.�% ��%
Microsoft IIS 11�,�0� n/a n/a n/a
Unknown 1�,70� n/a n/a n/a

Scripting
PHP �7,�7� �.�% �1.�% ��.�%

Table �: Server version for landing sites. In the case of Microsoft IIS, we could not verify their version.
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Figure �: Percentage of landing sites potentially infect-
ing visitors via malicious advertisements, and their rela-
tive share in the search results.

5.2 Drive-by Downloads via Ads

Today, the majority of Web advertisements are dis-
tributed in the form of third party content to the adver-
tising web site. This practice is somewhat worrisome, as
a web page is only as secure as it’s weakest component.
In particular, even if the web page itself does not contain
any exploits, insecure Ad content poses a risk to adver-
tising web sites. With the increasing use of Ad syndica-
tion (which allows an advertiser to sell advertising space
to other advertising companies that in turn can yet again
syndicate their content to other parties), the chances that
insecure content gets inserted somewhere along the chain
quickly escalates. Far too often, this can lead to web
pages running advertisements to untrusted content. This,
in itself, represents an attractive avenue for distributing
malware, as it provides the adversary with a way to in-
ject content to web sites with large visitor base without
having to compromise any web server.

To assess the extent of this behavior, we estimate the
overall contribution of Ads to drive-by downloads. To
do so, we construct the malware delivery trees from all
detected malicious URLs following the methodology de-

scribed in Section �. For each tree, we examine every
intermediary node for membership in a set of 2, 000 well
known advertising networks. If any of the nodes qual-
ify, we count the landing site as being infectious via Ads.
Moreover, to highlight the impact of the malware deliv-
ered via Ads relative to the other mechanisms, we weight
the landing sites associated with Ads based on the fre-
quency of their appearance in Google search results com-
pared to that of all landing sites. Figure � shows the
percentage of landing sites belonging to Ad networks.
On average, 2% of the landing sites were delivering mal-
ware via advertisements. More importantly, the overall
weighted share for those sites was substantial—on aver-
age, 12% of the overall search results that returned land-
ing pages were associated with malicious content due to
unsafe Ads. This result can be explained by the fact that
Ads normally target popular web sites, and so have a
much wider reach. Consequently, even a small fraction
of malicious Ads can have a major impact (compared to
the other delivery mechanisms).

Another interesting aspect of the results shown in Fig-
ure � is that Ad-delivered drive-by downloads seem to
appear in sudden short-lived spikes. This is likely due
to the fact that Ads appearing on several advertising web
sites are centrally controlled, and therefore allow the ma-
licious content to appear on thousands of web sites sites
almost instantaneously. Similarity, once detected, these
Ads are removed simultaneously, and so disappear as
quickly as they appeared. For this reason, we notice
that drive-by downloads delivered by other content in-
jection techniques (e.g., individual web servers compro-
mise) have more lasting effect compared to Ad deliv-
ered malware, as each web site must be secured inde-
pendently.

The general practice of Ad syndication contributes sig-
nificantly to the rise of Ad delivered malware. Our re-
sults show that overall 7�% of the landing sites that de-
livered malware via Ads use multiple levels of Ad syn-
dication. To understand how far trust would have to ex-
tend in order to limit the Ad delivered drive-by down-
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Figure �: CDF of the number of redirection steps for Ads
that successfully delivered malware.

loads, we plot the distribution of the path length from the
landing site leading to the malware distribution sites for
each delivery tree. The edges connecting the nodes in
these paths reflect the number of redirects a browser has
to follow before receiving the final payload. Hence, for
syndicated Ads that delivered malware the path length
is indicative of the number of syndication steps before
reaching the final Ad; in our case, the malware payload.
Figure � shows the distribution of the number of redi-
rects for syndicated Ads that delivered malware relative
to the other malicious landing URLs. The results are
quite telling: malware delivered via Ads exhibits longer
delivery chains, in 50% percent of all cases, more than 6

redirection steps were required before receiving the mal-
ware payload. Clearly, it is increasingly difficult to main-
tain trust along such long delivery chains.

Inspecting the delivery trees that featured syndication
reveals a total of �� unique Ad networks participating
in these trees. We further studied the relative role of the
different networks by evaluating the frequency of appear-
ance of each Ad network in the malware delivery trees.
Interestingly, our results show that five advertising net-
works appear in approximately 75% of all malware deliv-
ery trees. Figure 7 shows the distribution of the relative
position of each network in the malware delivery chains
it participated in. The normalized position is calculated
by dividing the index of the Ad network in each chain
by the length of the chain. The graph shows that these
advertising networks split into three different categories:
In the first category, which includes network I, the ad-
vertising network appears at the beginning of the deliv-
ery chain. In the second category, which includes net-
works II-IV, advertising networks appear frequently
in the middle of the delivery chains. In both these cat-

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

C
D

F

Normalized Ad  network position in the chain

Network I
II
III
IV
V

Figure 7: CDF of the normalized position of the top five
Ad networks most frequently participating in malware
delivery chains.

egories advertising networks do not participate directly
in delivering malware. However, the relative position of
networks in the delivery chain may be used as an indi-
cation of their relationship with the malware distribution
sites – the deeper a network’s relative position the closer
it is related to the malware distribution site. Finally, in
the third category, indicated by network V, our analysis
revealed that in almost 50% of all incidents, the advertis-
ing network is directly delivering malware. For example,
advertising network V pushes Ads that install malware in
the form of a browser toolbar.

Finally we further elucidate this problem via an in-
teresting example from our data corpus. The landing
page in our example refers to a Dutch radio station’s web
site. The radio station in question was showing a ban-
ner advertisement from a German advertising site. Us-
ing JavaScript, that advertiser redirected to a prominent
advertiser in the US, which in turn redirected to yet an-
other advertiser in the Netherlands. That advertiser redi-
rected to another advertisement (also in the Netherlands)
that contained obfuscated JavaScript, which when un-
obfuscated, pointed to yet another JavaScript hosted in
Austria. The final JavaScript was encrypted and redi-
rected the browser via multiple IFRAMEs to adxtnet.net,
an exploit site hosted in Austria. This resulted in the
automatic installation of multiple Trojan Downloaders.
While it is unlikely that the initial advertising companies
were aware of the malware installations, each redirection
gave another party control over the content on the origi-
nal web page—with predictable consequences.
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6 Malware Distribution Infrastructure

In this section, we explore various properties of the host-
ing infrastructure for web malware. In particular, we ex-
plore the size of of the malware distribution networks,
and examine the distribution of binaries hosted across
sites. We argue that such analysis is important, as it sheds
light on the sophistication of the hosting infrastructures
and the level of malfeasance we see today. As is the case
with other recent malware studies (e.g., [�, ��, �1]) we
hope that this analysis will be of benefit to researchers
and practitioners alike.
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Figure �: CDF of the number of landing sites pointing to
a particular malware distribution site.

For the remaining discussion, recall that a malware
distribution network constitutes all the landing sites that
point to a single distribution site. Using the methodol-
ogy described in Section �, we identified the distribution
networks associated with each malware distribution site.
We first evaluate their size in terms of the total number of
landing sites that point to them. Figure � shows the dis-
tribution of sizes for the different distribution networks.

The graph reveals two main types of malware distri-
bution networks: (1) networks that use only one landing
site, and (�) networks that have multiple landing sites.
As the graph shows, distribution networks can grow to
have well over �1,000 landing sites pointing to them.
That said, roughly ��% of the detected malware distri-
bution sites used only a single landing site at a time. We
manually inspected some of these distribution sites and
found that the vast majority were either subdomains on
free hosting services, or short-lived domains that were
created in large numbers. It is likely, though not con-
firmed, that each of these sites used only a single landing
site as a way to slip under the radar and avoid detection.

Next, we examine the network location of the malware
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Figure �: The cumulative fraction of malware distribu-
tion sites over the /8 IP prefix space.

distribution servers and the landing sites linking to them.
Figure � shows that the malware distribution sites are
concentrated in a limited number of /� prefixes. About
70% of the malware distribution sites have IP addresses
within 58.* -- 61.* and 209.* -- 221.* net-
work ranges. Interestingly, Anderson et al. [�] observed
comparable IP space concentrations for the scam hosting
infrastructure. The landing sites, however exhibit rela-
tively more IP space diversity; Roughly �0% of the land-
ing sites fell in the above ranges.
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Figure 10: The cumulative fraction of the malware dis-
tribution sites across the different ASes.

We further investigated the Autonomous System (AS)
locality of the malware distribution sites by mapping
their IP addresses to the AS responsible for the longest
matching prefixes for these IP addresses. We use the lat-
est BGP snapshot from Routeviews [��] to do the IP to
AS mapping. Our results show that all the malware dis-
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tribution sites’ IP addresses fall into a relatively small set
of ASes — only �00 as of this writing. Figure 10 shows
the cumulative fraction of these sites across the ASes
hosting them (sorted in descending order by the number
of sites in each AS). The graph further shows the highly
nonuniform concentration of the malware distribution
sites: 95% of these sites map to only 210 ASes. Finally,
the results of mapping the landing sites (not shown) pro-
duced 2, 517 ASes with 95% of the sites falling in these
500 ASes.

Lastly, the distribution of malware across domains
also gives rise to some interesting insights. Figure 11
shows the distribution of the number of unique mal-
ware binaries (as inferred from MD� hashes) down-
loaded from each malware distribution site. As the graph
shows, approximately ��% of the distribution sites deliv-
ered a single malware binary. The remaining distribution
sites hosted multiple distinct binaries over their observa-
tion period in our data, with �% of the servers hosting
more than 100 binaries. In many cases, we observed that
the multiple payloads reflect deliberate obfuscation at-
tempts to evade detection. In what follows, we take a
more in-depth look by studying the different forms of re-
lationships among the various distribution networks.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1  10  100  1000  10000  100000

C
D

F

Number of Unique Malware Binary Hashes

Figure 11: CDF of the number of unique binaries down-
loaded from each malware distribution site.

6.1 Relationships Among Networks

To gain a better perspective on the degree of connectiv-
ity between the distribution networks, we investigate the
common properties of the hosting infrastructure across
the malware distribution sites. We also evaluate the de-
gree of overlap among the landing sites linking to the
different malware distribution sites.

Malware hosting infrastructure. Throughout our
measurement period we detected 9, 430 malware distri-
bution sites. In 90% of the cases each site is hosted
on a single IP address. The remaining 10% sites are
hosted on IP addresses that host multiple malware distri-
bution sites. Our results show IP addresses that hosted up
to 210 malware distribution sites. Closer inspection re-
vealed that these addresses refer to public hosting servers
that allow users to create their own accounts. These
accounts appear as sub-folders of the the virtual host-
ing server DNS name (e.g., 512j.com/akgy, 512j.
com/alavin, 512j.com/anti) or in many cases as
separate DNS aliases that resolve to the IP address of the
hosting server. We also observed several cases where the
hosting server is a public blog that allows users to have
their own pages (e.g., mihanblog.com/abadan2,
mihanblog.com/askbox).
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Figure 1�: CDF of the normalized pairwise intersection
between landing sites across distribution networks.

Overlapping landing sites. We further evaluate the
overlap between the landing sites that point to the dif-
ferent malware distribution sites. To do so, we calculate
the pairwise intersection between the sets of the landing
sites pointing to each of the distribution sites in our data
set. For a distribution network i with a set of landing
sites Xi and network j with the set of landing sites Xj ,
the normalized pairwise intersection of the two networks,
Ci,j , is calculated as,

Ci,j =
|Xi ∩ Xj |

|Xi|
(1)

Where |X| is the number of elements in the set X . In-
terestingly, our results showed that 80% of the distribu-
tion networks share at least one landing page. Figure 1�
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shows the normalized pair-wise landing sets intersection
across these distribution networks. The graph reveals a
strong overlap among the landing sites for the related net-
work pairs. These results suggest that many landing sites
are shared among multiple distribution networks. For ex-
ample, in several cases we observed landing pages with
multiple IFRAMEs linking to different malware distribu-
tion sites. Finally, we note that the sudden jump to a
pair-wise score of one is mostly due to network pairs in
which the landing sites for one network are a subset of
those for the other network.
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Figure 1�: CDF of the normalized pairwise intersection
between malware hashes across distribution networks.

Content replication across malware distribution sites.
We finally evaluate the extent to which malware is repli-
cated across the different distribution sites. To do so,
we use the same metric in Equation 1 to calculate the
normalized pairwise intersection of the set of malware
hashes served by each pair of distribution sites. Our re-
sults show that in 25% of the malware distribution sites,
at least one binary is shared between a pair of sites.
While malware hashes exhibit frequent changes as a re-
sult of obfuscation, our results suggest that there is still a
level of content replication across the different sites. Fig-
ure 1� shows the normalized pair-wise intersection of the
malware sets across these distribution networks. As the
graph shows, binaries are less frequently shared between
distribution sites compared to landing sites, but taken as
a whole, there is still a non-trivial degree of similarity
among these networks.

7 Post Infection Impact

Recall that upon visiting a malicious URL, the browser
downloads the initial exploit. The exploit (in most cases,

javascript) targets a vulnerability in the browser or
one of its plugins and takes control of the infected sys-
tem, after which it retrieves and runs the malware ex-
ecutable(s) downloaded from the malware distribution
site. Rather than inspecting the behavior of each phase
in isolation, our goal is to give an overview of the col-
lective changes that happen to the system state after vis-
iting a malicious URL . Figure 1� shows the distribution
of the number of Windows executables downloaded af-
ter visiting a malicious URL as observed from monitor-
ing the interaction between the browser and the malware
distribution site. As the graph shows, visiting malicious
URLs can lead to a large number of downloads (� on av-
erage, but as large as �0 in the extreme case).
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Figure 1�: CDF of the number of downloaded executa-
bles as a result of visiting a malicious URL

Another noticeable outcome is the increase in the
number of running processes on the virtual machine.
This increase is associated with the automatic execution
of binaries. For each landing URL , we collected the
number of processes that were started on the guest op-
erating system after being infected with malware. Fig-
ure 1� shows the CDF of the number of processes
launched after the system is infected. As the graph shows
visiting malicious URLs produces a noticeable increase
in the number of processes, in some cases, inducing so
much overhead that they “crashed” the virtual machine.

Additionally, we examine the type of registry changes
that occur when the malware executes. Overall, we
detected registry changes after visiting 57.5% of the
landing pages. We divide these changes into the fol-
lowing categories: BHO indicates that the malware in-
stalled a Browser Helper Object that can access privi-
leged state in the browser; Preferences means that the
browser home page, default search engine or name server
where changed by the malware; Security indicates that
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Figure 1�: CDF of the number of processes started after
visiting a malicious URL

malware changed firewall settings or even disabled au-
tomatic software updates; Startup indicates that the mal-
ware is trying to persist across reboots. Notice that these
categories are not mutually exclusive (i.e., a single ma-
licious URL may cause changes in multiple categories).
Table � summarizes the percentage of registry changes
per category. Notice that “Startup” changes are more
prevalent indicating that malware tries to persist even af-
ter the machine is rebooted.

Category BHO Preferences Security Startup
URLs % �.��% ��.�% ��.1�% �1.�7%

Table �: Registry changes from drive-by downloads.

In addition to the registry changes, we analyzed the
network activity of the virtual machine post infection. In
our system, the virtual machines are allowed to perform
only DNS and HTTP connections. Table � shows the
percentage of connection attempts per destination port.
Even though we omit the HTTP connections originat-
ing from the browser, HTTP is still the most prevalent
port for malicious activity post-infection. This is due
to “downloader” binaries that fetch, in some cases, up
to 60 binaries over HTTP. We also observe a significant
percentage of connection attempts to typical IRC ports,
accounting for more than 50% of all non-HTTP connec-
tions. As a number of earlier studies have already shown
(e.g., [�, 1�, �, �1, ��, 1�]), the IRC connection attempts
are most likely for unwillingly (to the owner) adding the
compromised machine to an IRC botnet, confirming the
earlier conjecture by Provos et al. [�0] regarding the con-
nection between web malware and botnets. More de-
tailed examples of malware’s behavior can be found in

Protocol/Port Connections %
HTTP (�0, �0�0) �7%
IRC (���0-7001) �.�%
FTP (�1) 0.�%
UPnP (1�00) 0.�%
Mail (��) 0.7�%
Other �.��%

Table �: Most frequently contacted ports directly by the
downloaded malware.

Polychronakis et al. [1�].

7.1 Anti-virus engine detection rates

As we discussed earlier, web based malware uses a pull-
based delivery mechanism in which a victim is required
to visit the malware hosting server or any URL linking to
it in order to download the malware. This behavior puts
forward a number of challenges to defense mechanisms
(e.g., malware signature generation schemes) mainly due
to the inadequate coverage of the malware collection sys-
tem. For example, unlike active scanning malware which
uses a push-based delivery mechanism (and so sufficient
placement of honeypot sensors can provide good cover-
age), the web is significantly more sparse and, therefore,
more difficult to cover.

In what follows, we evaluate the potential implications
of the web malware delivery mechanism by measuring
the detection rates of several well known anti-virus en-
gines. Specifically, we evaluate the detection rate of each
anti-virus engine against the set of suspected malware
samples collected by our infrastructure. Since we can not
rely on anti-virus engines, we developed a heuristic to
detect these suspected binaries before subjecting them to
the anti-virus scanners. For each inspected URL via our
in-depth verification system we test whether visiting the
URL caused the creation of at least one new process on
the virtual machine. For the URLs that satisfy this condi-
tion, we simply extract any binary� download(s) from the
recorded HTTP response and “flag” them as suspicious.

We applied the above methodology to identify suspi-
cious binaries on a daily basis over a one month period
of April, �007. We subject each binary for each of the
anti-virus scanners using the latest virus definitions on
that day. Then, for an anti-virus engine, the detection
rate is simply the number of detected (flagged) samples
divided by the total number of suspicious malware in-
stances inspected on that day. Figure 1� illustrates the
individual detection rates of each of the anti-virus en-
gines. The graph reveals that the detection capability of
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the anti-virus engines is lacking, with an average detec-
tion rate of 70% for the best engine. These results are
disturbing as they show that even the best anti-virus en-
gines in the market (armed with their latest definitions)
fail to cover a significant fraction of web malware.
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Figure 1�: Detection rates of � anti-virus engines.

False Positives. Notice that the above strategy may
falsely classify benign binaries as malicious. To eval-
uate the false positives, we use the following heuristic:
we optimistically assume that all suspicious binaries will
eventually be discovered by the anti-virus vendors. Us-
ing the set of suspicious binaries collected over a month
historic period, we re-scan all undetected binaries two
months later (in July, �007) using the latest virus defini-
tions. Then, all undetected binaries from the rescanning
step are considered false positives. Overall, our results
show that the earlier analysis is fairly accurate with false
positive rates of less than 10%. We further investigated a
number of binaries identified as false positives and found
that a number of popular installers exhibit a behavior
similar to that of drive-by downloads, where the installer
process first runs and then downloads the associated soft-
ware package. To minimize the impact of false positives,
we created a white-list of all known benign downloads,
and all binaries in the white-list are exempted from the
analysis in this paper.

Of course, we are being overly conservative here as
our heuristic does not account for binaries that are never
detected by any anti-virus engine. However, for our
goals, this method produces an upper bound for the re-
sulting false positives. As an additional benchmark we
asked for direct feedback from anti-virus vendors about
the accuracy of the undetected binaries that we (now)
share with them. On average, they reported about 6%

false positives in the shared binaries, which is within the
bounds of our prediction.

8 Discussion

Undoubtedly, the level of malfeasance on the Internet is a
cause for concern. That said, while our work to date has
shown that the prevalence of web-malware is indeed a
serious threat, the analysis herein says nothing about the
number of visitors that become infected as a result of vis-
iting a malicious page. In particular, we note that since
our goal is to survey the landscape, our infrastructure is
intentionally configured to be vulnerable to a wide range
of attacks; hopefully, savvy computer users who dili-
gently apply software updates would be far less vulnera-
ble to infection. To be clear, while our analysis unequiv-
ocally shows that millions of users are exposed to ma-
licious content every day, without a wide-scale browser
vulnerability study, the actual number of compromises
remains unknown. Nonetheless, we believe the perva-
sive nature of the results in this study elucidates the state
of the malware problem today, and hopefully, serves to
educate both users, web masters and other researchers
about the security challenges ahead.

Lastly, we note that several outlets exists for taking
advantage of the results of our infrastructure. For in-
stance, the data that Google uses to flag search results
is freely available through the Safe Browsing API [�], as
well as via the Safe Browsing diagnostic page [�]. We
hope these services prove to be of benefit to the greater
community at large.

9 Related Work

Virtual machines have been used as honeypots for de-
tecting unknown attacks by several researchers [�, 1�,
17, ��, ��]. Although, honeypots have traditionally been
used mostly for detecting attacks against servers, the
same principles also apply to client honeypots (e.g., an
instrumented browser running on a virtual machine). For
example, Moshchuk et al. used client-side techniques
to study spyware on the web (by crawling 1� million
URLs in May �00� [17]). Their primary focus was not on
detecting drive-by downloads, but in finding links to ex-
ecutables labeled spyware by an adware scanner. Addi-
tionally, they sampled 45, 000 URLs for drive-by down-
loads and showed a decrease over time. However, the
fundamental limitation of analyzing the malicious nature
of URLs discovered by “spidering” is that a crawl can
only follow content links, whereas the malicious nature
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of a page is often determined by the web hosting infras-
tructure. As such, while the study of Moshchuk et al.
provides valuable insights, a truly comprehensive analy-
sis of this problem requires a much more in-depth crawl
of the web. As we were able to analyze many billions of
URLs , we believe our findings are more representative
of the state of the overall problem.

More closely related is the work of Provos et al. [�0]
and Seifert et al. [��] which raised awareness of the
threat posed by drive-by downloads. These works are
aimed at explaining how different web page compo-
nents are used to exploit web browsers, and provides an
overview of the different exploitation techniques in use
today. Wang et al. proposed an approach for detecting
exploits against Windows XP when visiting webpages in
Internet Explorer [��]. Their approach is capable of de-
tecting zero-day exploits against Windows and can de-
termine which vulnerability is being exploited by expos-
ing Windows systems with different patch levels to dan-
gerous URLs. Their results, on roughly 17, 000 URLs,
showed that about 200 of these were dangerous to users.

This paper differs from all of these works in that it of-
fers a far more comprehensive analysis of the different
aspects of the problem posed by web-based malware, in-
cluding an examination of its prevalence, the structure of
the distribution networks, and the major driving forces.

Lastly, malware detection via dynamic tainting analy-
sis may provide deeper insight into the mechanisms by
which malware installs itself and how it operates [10, 1�,
�7]. In this work, we are more interested in structural
properties of the distribution sites themselves, and how
malware behaves once it has been implanted. Therefore,
we do not employ tainting because of its computational
expense, and instead, simply collect changes made by the
malware that do not require having the ability to trace the
information flow in detail.

10 Conclusion

The fact that malicious URLs that initiate drive-by down-
loads are spread far and wide raises concerns regarding
the safety of browsing the Web. However, to date, little
is known about the specifics of this increasingly common
malware distribution technique. In this work, we attempt
to fill in the gaps about this growing phenomenon by pro-
viding a comprehensive look at the problem from several
perspectives. Our study uses a large scale data collection
infrastructure that continuously detects and monitors the
behavior of websites that perpetrate drive-by downloads.
Our in-depth analysis of over 66 million URLs (spanning
a 10 month period) reveals that the scope of the problem

is significant. For instance, we find that 1.3% of the in-
coming search queries to Google’s search engine return
at least one link to a malicious site.

Moreover, our analysis reveals several forms of rela-
tions between some distribution sites and networks. A
more troubling concern is the extent to which users may
be lured into the malware distribution networks by con-
tent served through online Ads. For the most part, the
syndication relations that implicitly exist in advertising
networks are being abused to deliver malware through
Ads. Lastly, we show that merely avoiding the dark
corners of the Internet does not limit exposure to mal-
ware. Unfortunately, we also find that even state-of-the-
art anti-virus engines are lacking in their ability to protect
against drive-by downloads. While this is to be expected,
it does call for more elaborate defense mechanisms to
curtail this rapidly increasing threat.
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Notes
1Some compromised web servers also trigger dialog windows ask-

ing users to manually download and run malware. However, this anal-
ysis considers only malware installs that require no user interaction.

�This mapping is readily available at Google.
�We consider a version as outdated if it is older than the latest corre-

sponding version released by January, �007 (the start date for our data
collection).

�We restrict our analysis to Windows executables identified by
searching for PE headers in each payload.




