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Abstract

Neural network configurations with random weights play an important role in the
analysis of deep learning. They define the initial loss landscape and are closely
related to kernel and random feature methods. Despite the fact that these networks
are built out of random matrices, the vast and powerful machinery of random matrix
theory has so far found limited success in studying them. A main obstacle in this
direction is that neural networks are nonlinear, which prevents the straightforward
utilization of many of the existing mathematical results. In this work, we open
the door for direct applications of random matrix theory to deep learning by
demonstrating that the pointwise nonlinearities typically applied in neural networks
can be incorporated into a standard method of proof in random matrix theory
known as the moments method. The test case for our study is the Gram matrix
Y TY , Y = f(WX), where W is a random weight matrix, X is a random data
matrix, and f is a pointwise nonlinear activation function. We derive an explicit
representation for the trace of the resolvent of this matrix, which defines its limiting
spectral distribution. We apply these results to the computation of the asymptotic
performance of single-layer random feature networks on a memorization task and
to the analysis of the eigenvalues of the data covariance matrix as it propagates
through a neural network. As a byproduct of our analysis, we identify an intriguing
new class of activation functions with favorable properties.

1 Introduction

The list of successful applications of deep learning is growing at a staggering rate. Image
recognition (Krizhevsky et al., 2012), audio synthesis (Oord et al., 2016), translation (Wu et al.,
2016), and speech recognition (Hinton et al., 2012) are just a few of the recent achievements. Our
theoretical understanding of deep learning, on the other hand, has progressed at a more modest pace.
A central difficulty in extending our understanding stems from the complexity of neural network loss
surfaces, which are highly non-convex functions, often of millions or even billions (Shazeer et al.,
2017) of parameters.

In the physical sciences, progress in understanding large complex systems has often come by
approximating their constituents with random variables; for example, statistical physics and
thermodynamics are based in this paradigm. Since modern neural networks are undeniably large
complex systems, it is natural to consider what insights can be gained by approximating their
parameters with random variables. Moreover, such random configurations play at least two privileged
roles in neural networks: they define the initial loss surface for optimization, and they are closely
related to random feature and kernel methods. Therefore it is not surprising that random neural
networks have attracted significant attention in the literature over the years.

Another useful technique for simplifying the study of large complex systems is to approximate
their size as infinite. For neural networks, the concept of size has at least two axes: the number
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of samples and the number of parameters. It is common, particularly in the statistics literature, to
consider the mean performance of a finite-capacity model against a given data distribution. From this
perspective, the number of samples, m, is taken to be infinite relative to the number of parameters, n,
i.e. n/m→ 0. An alternative perspective is frequently employed in the study of kernel or random
feature methods. In this case, the number of parameters is taken to be infinite relative to the number
of samples, i.e. n/m→∞. In practice, however, most successful modern deep learning architectures
tend to have both a large number of samples and a large number of parameters, often of roughly the
same order of magnitude. (One simple explanation for this scaling may just be that the other extremes
tend to produce over- or under-fitting). Motivated by this observation, in this work we explore the
infinite size limit in which both the number of samples and the number of parameters go to infinity at
the same rate, i.e. n,m → ∞ with n/m = φ, for some finite constant φ. This perspective puts us
squarely in the regime of random matrix theory.

An abundance of matrices are of practical and theoretical interest in the context of random neural
networks. For example, the output of the network, its Jacobian, and the Hessian of the loss function
with respect to the weights are all interesting objects of study. In this work we focus on the
computation of the eigenvalues of the matrix M ≡ 1

mY
TY , where Y = f(WX), W is a Gaussian

random weight matrix, X is a Gaussian random data matrix, and f is a pointwise activation function.
In many ways, Y is a basic primitive whose understanding is necessary for attacking more complicated
cases; for example, Y appears in the expressions for all three of the matrices mentioned above. But
studying Y is also quite interesting in its own right, with several interesting applications to machine
learning that we will explore in Section 4.

1.1 Our contribution

The nonlinearity of the activation function prevents us from leveraging many of the existing mathemat-
ical results from random matrix theory. Nevertheless, most of the basic tools for computing spectral
densities of random matrices still apply in this setting. In this work, we show how to overcome
some of the technical hurdles that have prevented explicit computations of this type in the past. In
particular, we employ the so-called moments method, deducing the spectral density of M from the
traces trMk. Evaluating the traces involves computing certain multi-dimensional integrals, which
we show how to evaluate, and enumerating a certain class of graphs, for which we derive a generating
function. The result of our calculation is a quartic equation which is satisfied by the trace of the
resolvent of M , G(z) = −E[tr(M − zI)−1]. It depends on two parameters that together capture the
only relevant properties of the nonlinearity f : η, the Gaussian mean of f2, and ζ, the square of the
Gaussian mean of f ′. Overall, the techniques presented here pave the way for studying other types of
nonlinear random matrices relevant for the theoretical understanding of neural networks.

1.2 Applications of our results

We show that the training loss of a ridge-regularized single-layer random-feature least-squares
memorization problem with regularization parameter γ is related to −γ2G′(−γ). We observe
increased memorization capacity for certain types of nonlinearities relative to others. In particular,
for a fixed value of γ, the training loss is lower if η/ζ is large, a condition satisfied by a large class of
activation functions, for example when f is close to an even function. We believe this observation
could have an important practical impact in designing next-generation activation functions.

We also examine the eigenvalue density of M and observe that if ζ = 0 the distribution collapses to
the Marchenko-Pastur distribution (Marčenko & Pastur, 1967), which describes the eigenvalues of the
Wishart matrix XTX . We therefore make the surprising observation that there exist functions f such
that f(WX) has the same singular value distribution as X . Said another way, the eigenvalues of the
data covariance matrix are unchanged in distribution after passing through a single nonlinear layer
of the network. We conjecture that this property is actually satisfied through arbitrary layers of the
network, and find supporting numerical evidence. This conjecture may be regarded as a claim about
the universality of our results with respect to the distribution of X . Note that preserving the first
moment of this distribution is also an effect achieved through batch normalization (Ioffe & Szegedy,
2015), although higher moments are not necessarily preserved. We therefore offer the hypothesis that
choosing activation functions with ζ = 0 might lead to improved training performance, in the same
way that batch normalization does, at least early in training.
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1.3 Related work

The study of random neural networks has a relatively long history, with much of the initial work
focusing on approaches from statistical physics and the theory of spin glasses. For example, Amit
et al. (1985) analyze the long-time behavior of certain dynamical models of neural networks in terms
of an Ising spin-glass Hamiltonian, and Gardner & Derrida (1988) examine the storage capacity of
neural networks by studying the density of metastable states of a similar spin-glass system. More
recently, Choromanska et al. (2015) studied the critical points of random loss surfaces, also by
examining an associated spin-glass Hamiltonian, and Schoenholz et al. (2017) developed an exact
correspondence between random neural networks and statistical field theory.

In a somewhat tangential direction, random neural networks have also been investigated through their
relationship to kernel methods. The correspondence between infinite-dimensional neural networks
and Gaussian processes was first noted by Neal (1994a,b). In the finite-dimensional setting, the
approximate correspondence to kernel methods led to the development random feature methods that
can accelerate the training of kernel machines (Rahimi & Recht, 2007). More recently, a duality
between random neural networks with general architectures and compositional kernels was explored
by Daniely et al. (2016).

In the last several years, random neural networks have been studied from many other perspectives.
Saxe et al. (2014) examined the effect of random initialization on the dynamics of learning in deep
linear networks. Schoenholz et al. (2016) studied how information propagates through random
networks, and how that affects learning. Poole et al. (2016) and Raghu et al. (2016) investigated
various measures of expressivity in the context of deep random neural networks.

Despite this extensive literature related to random neural networks, there has been relatively little
research devoted to studying random matrices with nonlinear dependencies. The main focus in this
direction has been kernel random matrices and robust statistics models (El Karoui et al., 2010; Cheng
& Singer, 2013). In a closely-related contemporaneous work, Louart et al. (2017) examined the
resolvent of Gram matrix Y Y T in the case where X is deterministic.

2 Preliminaries

Throughout this work we will be relying on a number of basic concepts from random matrix theory.
Here we provide a lightning overview of the essentials, but refer the reader to the more pedagogical
literature for background (Tao, 2012).

2.1 Notation

Let X ∈ Rn0×m be a random data matrix with i.i.d. elements Xiµ ∼ N (0, σ2
x) and W ∈ Rn1×n0 be

a random weight matrix with i.i.d. elements Wij ∼ N (0, σ2
w/n0). As discussed in Section 1, we are

interested in the regime in which both the row and column dimensions of these matrices are large and
approach infinity at the same rate. In particular, we define

φ ≡ n0

m
, ψ ≡ n0

n1
, (1)

to be fixed constants as n0, n1,m→∞. In what follows, we will frequently consider the limit that
n0 →∞ with the understanding that n1 →∞ and m→∞, so that eqn. (1) is satisfied.

We denote the matrix of pre-activations by Z = WX . Let f : R → R be a function with
zero mean and finite moments,∫

dz√
2π

e−
z2

2 f(σwσxz) = 0,

∣∣∣∣∫ dz√
2π

e−
z2

2 f(σwσxz)
k

∣∣∣∣ <∞ for k > 1 , (2)

and denote the matrix of post-activations Y = f(Z), where f is applied pointwise. We will be
interested in the Gram matrix,

M =
1

m
Y Y T ∈ Rn1×n1 . (3)
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2.2 Spectral density and the Stieltjes transform

The empirical spectral density of M is defined as,

ρM (t) =
1

n1

n1∑
j=1

δ (t− λj(M)) , (4)

where δ is the Dirac delta function, and the λj(M), j = 1, . . . , n1, denote the n1 eigenvalues of M ,
including multiplicity. The limiting spectral density is defined as the limit of eqn. (4) as n1 →∞, if
it exists.

For z ∈ C \ supp(ρM ) the Stieltjes transform G of ρM is defined as,

G(z) =

∫
ρM (t)

z − t
dt = − 1

n1
E
[
tr(M − zIn1

)−1
]
, (5)

where the expectation is with respect to the random variables W and X . The quantity (M − zIn1
)−1

is the resolvent of M . The spectral density can be recovered from the Stieltjes transform using the
inversion formula,

ρM (λ) = − 1

π
lim
ε→0+

ImG(λ+ iε) . (6)

2.3 Moment method

One of the main tools for computing the limiting spectral distributions of random matrices is the
moment method, which, as the name suggests, is based on computations of the moments of ρM . The
asymptotic expansion of eqn. (5) for large z gives the Laurent series,

G(z) =

∞∑
k=0

mk

zk+1
, (7)

where mk is the kth moment of the distribution ρM ,

mk =

∫
dt ρM (t)tk =

1

n1
E
[
trMk

]
. (8)

If one can compute mk, then the density ρM can be obtained via eqns. (7) and (6). The idea behind
the moment method is to compute mk by expanding out powers of M inside the trace as,

1

n1
E
[
trMk

]
=

1

n1
E

 ∑
i1,...,ik∈[n1]

Mi1i2Mi2i3 · · ·Mik−1ikMiki1

 , (9)

and evaluating the leading contributions to the sum as the matrix dimensions go to infinity, i.e. as
n0 → ∞. Determining the leading contributions involves a complicated combinatorial analysis,
combined with the evaluation of certain nontrivial high-dimensional integrals. In the next section and
the supplementary material, we provide an outline for how to tackle these technical components of
the computation.

3 The Stieltjes transform of M

3.1 Main result

The following theorem characterizes G as the solution to a quartic polynomial equation.

Theorem 1. For M , φ, ψ, σw, and σx defined as in Section 2.1, and constants η and ζ defined as,

η =

∫
dz

e−z
2/2

√
2π

f(σwσxz)
2 and ζ =

[
σwσx

∫
dz

e−z
2/2

√
2π

f ′(σwσxz)

]2

, (10)
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the Stieltjes transform of the spectral density of M satisfies,

G(z) =
ψ

z
P

(
1

zψ

)
+

1− ψ
z

, (11)

where,

P = 1 + (η − ζ)tPφPψ +
PφPψtζ

1− PφPψtζ
, (12)

and
Pφ = 1 + (P − 1)φ , Pψ = 1 + (P − 1)ψ . (13)

The proof of Theorem 1 is relatively long and complicated, so it’s deferred to the supplementary
material. The main idea underlying the proof is to translate the calculation of the moments in
eqn. (7) into two subproblems, one of enumerating certain connected outer-planar graphs, and another
of evaluating integrals that correspond to cycles in those graphs. The complexity resides both in
characterizing which outer-planar graphs contribute at leading order to the moments, and also in
computing those moments explicitly. A generating function encapsulating these results (P from
Theorem 1) is shown to satisfy a relatively simple recurrence relation. Satisfying this recurrence
relation requires that P solve eqn. (12). Finally, some bookkeeping relates G to P .

3.2 Limiting cases

3.2.1 η = ζ

In Section 3 of the supplementary material, we use a Hermite polynomial expansion of f to show that
η = ζ if and only if f is a linear function. In this case, M = ZZT , where Z = WX is a product of
Gaussian random matrices. Therefore we expect G to reduce to the Stieltjes transform of a so-called
product Wishart matrix. In (Dupic & Castillo, 2014), a cubic equation defining the Stieltjes transform
of such matrices is derived. Although eqn. (11) is generally quartic, the coefficient of the quartic term
vanishes when η = ζ (see Section 4 of the supplementary material). The resulting cubic polynomial
is in agreement with the results in (Dupic & Castillo, 2014).

3.2.2 ζ = 0

Another interesting limit is when ζ = 0, which significantly simplifies the expression in eqn. (12).
Without loss of generality, we can take η = 1 (the general case can be recovered by rescaling z). The
resulting equation is,

z G2 +
((

1− ψ

φ

)
z − 1

)
G+

ψ

φ
= 0 , (14)

which is precisely the equation satisfied by the Stieltjes transform of the Marchenko-Pastur distribution
with shape parameter φ/ψ. Notice that when ψ = 1, the latter is the limiting spectral distribution of
XXT , which implies that Y Y T and XXT have the same limiting spectral distribution. Therefore we
have identified a novel type of isospectral nonlinear transformation. We investigate this observation
in Section 4.1.

4 Applications

4.1 Data covariance

Consider a deep feedforward neural network with lth-layer post-activation matrix given by,

Y l = f(W lY l−1), Y 0 = X . (15)

The matrix Y l(Y l)T is the lth-layer data covariance matrix. The distribution of its eigenvalues (or the
singular values of Y l) determine the extent to which the input signals become distorted or stretched
as they propagate through the network. Highly skewed distributions indicate strong anisotropy in
the embedded feature space, which is a form of poor conditioning that is likely to derail or impede
learning. A variety of techniques have been developed to alleviate this problem, the most popular of
which is batch normalization. In batch normalization, the variance of individual activations across the
batch (or dataset) is rescaled to equal one. The covariance is often ignored — variants that attempt to
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Figure 1: Distance between the (a) first-layer and (b) tenth-layer empirical eigenvalue distributions
of the data covariance matrices and our theoretical prediction for the first-layer limiting distribution
ρ̄1, as a function of network width n0. Plots are for shape parameters φ = 1 and ψ = 3/2. The
different curves correspond to different piecewise linear activation functions parameterize by α:
α = −1 is linear, α = 0 is (shifted) relu, and α = 1 is (shifted) absolute value. In (a), for all α, we
see good convergence of the empirical distribution ρ1 to our asymptotic prediction ρ̄1. In (b), in
accordance with our conjecture, we find good agreement between ρ̄1 and the tenth-layer empirical
distribution ζ = 0, but not for other values of ζ. This provides evidence that when ζ = 0 the
eigenvalue distribution is preserved by the nonlinear transformations.

fully whiten the activations can be very slow. So one aspect of batch normalization, as it is used in
practice, is that it preserves the trace of the covariance matrix (i.e. the first moment of its eigenvalue
distribution) as the signal propagates through the network, but it does not control higher moments of
the distribution. A consequence is that there may still be a large imbalance in singular values.

An interesting question, therefore, is whether there exist efficient techniques that could preserve or
approximately preserve the full singular value spectrum of the activations as they propagate through
the network. Inspired by the results of Section 3.2.2, we hypothesize that choosing an activation
function with ζ = 0 may be one way to approximately achieve this behavior, at least early in training.
From a mathematical perspective, this hypothesis is similar to asking whether our results in eqn. (11)
are universal with respect to the distribution of X . We investigate this question empirically.

Let ρl be the empirical eigenvalue density of Y l(Y l)T , and let ρ̄1 be the limiting density determined
by eqn. (11) (with ψ = 1). We would like to measure the distance between ρ̄1 and ρl in order to
see whether the eigenvalues propagate without getting distorted. There are many options that would
suffice, but we choose to track the following metric,

d(ρ̄1, ρl) ≡
∫
dλ |ρ̄1(λ)− ρl(λ)| . (16)

To observe the effect of varying ζ, we utilize a variant of the relu activation function with non-zero
slope for negative inputs,

fα(x) =
[x]+ + α[−x]+ − 1+α√

2π√
1
2 (1 + α2)− 1

2π (1 + α)2
. (17)

One may interpret α as (the negative of) the ratio of the slope for negative x to the slope for positive
x. It is straightforward to check that fα has zero Gaussian mean and that,

η = 1, ζ =
(1− α)2

2(1 + α2)− 2
π (1 + α)2

, (18)

so we can adjust ζ (without affecting η) by changing α. Fig. 1(a) shows that for any value of α (and
thus ζ) the distance between ρ̄1 and ρ1 approaches zero as the network width increases. This offers
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Figure 2: Memorization performance of random feature networks versus ridge regularization pa-
rameter γ. Theoretical curves are solid lines and numerical solutions to eqn. (19) are points.
β ≡ log10(η/ζ − 1) distinguishes classes of nonlinearities, with β = −∞ corresponding to a
linear network. Each numerical simulation is done with a different randomly-chosen function f and
the specified β. The good agreement confirms that no details about f other than β are relevant. In
(a), there are more random features than data points, allowing for perfect memorization unless the
function f is linear, in which case the model is rank constrained. In (b), there are fewer random
features than data points, and even the nonlinear models fail to achieve perfect memorization. For
a fixed amount of regularization γ, curves with larger values of β (smaller values of ζ) have lower
training loss and hence increased memorization capacity.

numerical evidence that eqn. (11) is in fact the correct asymptotic limit. It also shows how quickly
the asymptotic behavior sets in, which is useful for interpreting Fig. 1(b), which shows the distance
between ρ̄1 and ρ10. Observe that if ζ = 0, ρ10 approaches ρ̄1 as the network width increases. This
provides evidence for the conjecture that the eigenvalues are in fact preserved as they propagate
through the network, but only when ζ = 0, since we see the distances level off at some finite value
when ζ 6= 0. We also note that small non-zero values of ζ may not distort the eigenvalues too much.

These observations suggest a new method of tuning the network for fast optimization. Re-
cent work (Pennington et al., 2017) found that inducing dynamical isometry, i.e. equilibrating the
singular value distribution of the input-output Jacobian, can greatly speed up training. In our context,
by choosing an activation function with ζ ≈ 0, we can induce a similar type of isometry, not of the
input-output Jacobian, but of the data covariance matrix as it propagates through the network. We
conjecture that inducing this additional isometry may lead to further training speed-ups, but we leave
further investigation of these ideas to future work.

4.2 Asymptotic performance of random feature methods

Consider the ridge-regularized least squares loss function defined by,

L(W2) =
1

2n2m
‖Y −WT

2 Y ‖2F + γ‖W2‖2F , Y = f(WX) , (19)

where X ∈ Rn0×m is a matrix of m n0-dimensional features, Y ∈ Rn2×m is a matrix of regression
targets, W ∈ Rn1×n0 is a matrix of random weights and W2 ∈ Rn1×n2 is a matrix of parameters to
be learned. The matrix Y is a matrix of random features1. The optimal parameters are,

W ∗2 =
1

m
YQYT , Q =

(
1

m
Y TY + γIm

)−1

. (20)

1We emphasize that we are using an unconvential notation for the random features – we call them Y in order
to make contact with the previous sections.
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Our problem setup and analysis are similar to that of (Louart et al., 2017), but in contrast to that work,
we are interested in the memorization setting in which the network is trained on random input-output
pairs. Performance on this task is then a measure of the capacity of the model, or the complexity of
the function class it belongs to. In this context, we take the dataX and the targets Y to be independent
Gaussian random matrices. From eqns. (19) and (20), the expected training loss is given by,

Etrain = EW,X,Y [L(W ∗2 )] = EW,X,Y
[
γ2

m
trYTYQ2

]
= EW,X

[
γ2

m
trQ2

]
= −γ

2

m

∂

∂γ
EW,X [trQ] .

(21)

It is evident from eqn. (5) and the definition of Q that EW,X [trQ] is related to G(−γ). However, our
results from the previous section cannot be used directly because Q contains the trace Y TY , whereas
G was computed with respect to Y Y T . Thankfully, the two matrices differ only by a finite number of
zero eigenvalues. Some simple bookkeeping shows that

1

m
EW,X [trQ] =

(1− φ/ψ)

γ
− φ

ψ
G(−γ) . (22)

From eqn. (11) and its total derivative with respect to z, an equation for G′(z) can be obtained by
computing the resultant of the two polynomials and eliminating G(z). An equation for Etrain follows;
see Section 4 of the supplementary material for details. An analysis of this equation shows that it is
homogeneous in γ, η, and ζ, i.e., for any λ > 0,

Etrain(γ, η, ζ) = Etrain(λγ, λη, λζ) . (23)

In fact, this homogeneity is entirely expected from eqn. (19): an increase in the regularization constant
γ can be compensated by a decrease in scale of W2, which, in turn, can be compensated by increasing
the scale of Y , which is equivalent to increasing η and ζ. Owing to this homogeneity, we are free to
choose λ = 1/η. For simplicity, we set η = 1 and examine the two-variable function Etrain(γ, 1, ζ).
The behavior when γ = 0 is a measure of the capacity of the model with no regularization and
depends on the value of ζ,

Etrain(0, 1, ζ) =

{
[1− φ]+ if ζ = 1 and ψ < 1,

[1− φ/ψ]+ otherwise.
(24)

As discussed in Section 3.2, when η = ζ = 1, the function f reduces to the identity. With this in
mind, the various cases in eqn. (24) are readily understood by considering the effective rank of the
random feature matrix Y.

In Fig. 2, we compare our theoretical predictions for Etrain to numerical simulations of solutions
to eqn. (19). The different curves explore various ratios of β ≡ log10(η/ζ − 1) and therefore
probe different classes of nonlinearities. For each numerical simulation, we choose a random
quintic polynomial f with the specified value of β (for details on this choice, see Section 3 of the
supplementary material). The excellent agreement between theory and simulations confirms that
Etrain depends only on β and not on any other details of f . The black curves correspond to the
performance of a linear network. The results show that for ζ very close to η, the models are unable to
utilize their nonlinearity unless the regularization parameter is very small. Conversely, for ζ close to
zero, the models exploits the nonlinearity very efficiently and absorb large amounts of regularization
without a significant drop in performance. This suggests that small ζ might provide an interesting
class of nonlinear functions with enhanced expressive power. See Fig. 3 for some examples of
activation functions with this property.

5 Conclusions

In this work we studied the Gram matrix M = 1
mY

TY , where Y = f(WX) and W and X are
random Gaussian matrices. We derived a quartic polynomial equation satisfied by the trace of the
resolvent of M , which defines its limiting spectral density. In obtaining this result, we demonstrated
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(1)(x)
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Figure 3: Examples of activation functions and their derivatives for which η = 1 and ζ = 0. In
red, f (1) = c1

(
− 1 +

√
5e−2x2)

; in green, f (2)(x) = c2
(

sin(2x) + cos(3x/2)− 2e−2x− e−9/8
)
;

in orange, f (3)(x) = c3
(
|x| −

√
2/π

)
; and in blue, f (4)(x) = c4

(
1 − 4√

3
e−

x2

2

)
erf(x). If we let

σw = σx = 1, then eqn. (2) is satisfied and ζ = 0 for all cases. We choose the normalization
constants ci so that η = 1.

that pointwise nonlinearities can be incorporated into a standard method of proof in random matrix
theory known as the moments method, thereby opening the door for future study of other nonlinear
random matrices appearing in neural networks.

We applied our results to a memorization task in the context of random feature methods and obtained
an explicit characterizations of the training error as a function of a ridge regression parameter. The
training error depends on the nonlinearity only through two scalar quantities, η and ζ, which are
certain Gaussian integrals of f . We observe that functions with small values of ζ appear to have
increased capacity relative to those with larger values of ζ.

We also make the surprising observation that for ζ = 0, the singular value distribution of f(WX) is
the same as the singular value distribution ofX . In other words, the eigenvalues of the data covariance
matrix are constant in distribution when passing through a single nonlinear layer of the network.
We conjectured and found numerical evidence that this property actually holds when passing the
signal through multiple layers. Therefore, we have identified a class of activation functions that
maintains approximate isometry at initialization, which could have important practical consequences
for training speed.

Both of our applications suggest that functions with ζ ≈ 0 are a potentially interesting class of
activation functions. This is a large class of functions, as evidenced in Fig. 3, among which are many
types of nonlinearities that have not been thoroughly explored in practical applications. It would be
interesting to investigate these nonlinearities in future work.
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Supplemental Material: Nonlinear random matrix theory for deep learning

1 Outline of proof of Theorem 1

1.1 Polygonal Graphs

Expanding out the powers of M in the equation for moments E
[

1
n1

trMk
]
, we have,

E
[

1

n1
trMk

]
=

1

n1

1

mk
E

 ∑
i1,...,ik∈[n1]
µ1,...,µk∈[m]

Yi1µ1
Yi2µ1

Yi2µ2
Yi3µ2

· · ·YikµkYi1µk

 . (S1)

Notice that this sum can be decomposed based on the pattern of unique i and µ indices, and, because
the elements of Y are i.i.d., the expected value of terms with the same index pattern is the same.
Therefore, we are faced with the task of identifying the frequency of each index pattern and the
corresponding expected values to leading order in n0 as n0 →∞.

To facilitate this analysis, it is useful to introduce a diagrammatic representation of the terms in
eqn. (S1). For each term, i.e. each instantiation of indices i and µ in the sum, we will define a graph.

Consider first any term in which all indices are unique. In this case, we can identify each index with
a vertex and each factor Yijµj with an edge, and the corresponding graph can be visualized as a
2k-sided polygon. There is a canonical planar embedding of such a cycle.

More generally, certain indices may be equal in the term. In this case, we can think of the term as
corresponding to a polygonal cycle where certain vertices have been identified. The graph now looks
like a union of cycles, each joined to another at a common vertex.

Finally, we define admissible index identifications as those for which no i index is identified with
a µ index and for which no pairings are crossing (with respect to the canonical embedding). The
admissible graphs for k = 3 are shown in Figure S1, and for k = 4 in Figure S2.
Proposition 1. Every admissible graph is a connected outer-planar graph in which all blocks are
simple even cycles.

The proof follows from a simple inductive argument. We will show that these admissible graphs
determine the asymptotic (in n0) value of the expectation.

1.2 Calculation of Moments

Let EG denote the expected value of a term in eqn. (S1) corresponding to a graph G. We begin
with the case where G is a 2k-cycle. Each 2k-cycle represents a multi-dimensional integral over the
elements of W and X . Here we establish a correspondence between these integrals and a lower-
dimensional integral whose structure is defined by the adjacency matrix of the graph. For a given
2k-cycle, the expectation we wish to compute is,

E2k ≡ E [Yi1µ1
Yi2µ1

· · ·YikµkYi1µk ] (S2)

=

∫
f
(∑

l

Wi1lXlµ1

)
f
(∑

l

Wi2lXlµ1

)
· · · f

(∑
l

WiklXlµk

)
f
(∑

l

Wi1lXlµk

)
DWDX

where,

DW =

n1,n0∏
i,j=1

dWij√
2πσ2

w/n0

e
− n0

2σ2w
W 2
ij DX =

n0,d∏
i,µ=1

dXiµ√
2πσ2

x

e
− 1

2σ2x
X2
iµ , (S3)

and i1 6= i2 6= ... 6= ik 6= µ1 6= µ2 6= ... 6= µk. Next we introduce auxilliary integrals over z, which
we can do by adding delta function contraints enforcing Z = WX . To this end, let Z denote the set
of unique Yiµ in eqn. (S2). Let Z ∈ Rn0×d be the matrix whose entries are,

Ziµ =

{
ziµ if Yiµ ∈ Z
0 otherwise .

(S4)
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For each y ∈ Z we introduce an auxilliary integral,

E2k =

∫ ∏
zαβ∈Z

δ(zαβ−
∑
k

WαkXkβ) f(zi1µ1)f(zi2µ1) · · · f(zikµk)f(zi1µk)DzDWDX , (S5)

where
Dz =

∏
zαβ∈Z

dzαβ . (S6)

Next we use a Fourier representation of the Dirac delta function,

δ(x) =
1

2π

∫
dλ eiλx , (S7)

for each of the delta functions in eqn. (S5). As above, we define a matrix Λ ∈ Rn1×d whose entries
are,

Λiµ =

{
λiµ if Yiµ ∈ Z
0 otherwise .

(S8)

Then we can write,

E2k =

∫
e−i tr ΛT (WX−Z)f(zi1µ1)f(zi2µ1) · · · f(zikµk)f(zi1µk) DλDzDWDX, (S9)

where,

Dλ =
∏

λαβ∈Λ

dλαβ
2π

. (S10)

Note that the integral is bounded so we can use Fubini-Tonelli Theorem to switch integrals and
perform the X and W integrals before λ and z integrals. We first perform the X integrals,∫

DX e−i tr ΛTWX =

d,n0∏
b,c=1

∫
dXcb√
2πσ2

x

exp

[
− 1

2σ2
x

X2
cb − i

n1∑
a=1

λabWacXcb

]

= exp

−σ2
x

2

n1,d,n0∑
a,b,c=1

(
λabWac

)2
= e−

σ2x
2 tr ΛΛTWWT

.

(S11)

Next we perform the W integrals,∫
DW e−

σ2x
2 tr ΛΛTWWT

=

n1,n0∏
i,j=1

∫
dwi,j

(2πσ2
w/n0)1/2

e
− 1

2 tr
(
n0
σ2w

In1+σ2
xΛΛT

)
WWT

=

n0∏
j=1

∫
dn1wj

(2πσ2
w/n0)n1/2

exp

[
−1

2
wTj

( n0

σ2
w

In1
+ σ2

xΛΛT
)
wj

]

=

n0∏
i=1

1

det |In1
+

σ2
wσ

2
x

n0
ΛΛT |1/2

=
1

det |In1
+

σ2
wσ

2
x

n0
ΛΛT |n0/2

,

(S12)

where wj ∈ Rn1 is the jth column of W and In1
is the n1 × n1 identity matrix. Compiling the

results up until now gives,

E2k =

∫
DλDz e−i tr ΛZ

det |1 +
σ2
wσ

2
x

n0
ΛΛT |n0/2

F (z), (S13)

where we have introduced the abbreviation,

F (z) = f(zi1µ1
)f(zi2µ1

) · · · f(zikµk)f(zi1µk) (S14)
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to ease the notation. So far, we have not utilized the fact that n0, n1, and d are large. To proceed,
we will use this fact to perform the λ integrals in the saddle point approximation, also known as the
method of steepest descent. To this end, we write

E2k =

∫
DλDz exp

[
−n0

2
log det |1 +

σ2
wσ

2
x

n0
ΛΛT | − i tr ΛZ

]
F (z) (S15)

and observe that the λ integrals will be dominated by contributions near where the coefficient of
n0 is minimized. It is straightforward to see that the minimizer is Λ = 0, at which point the phase
factor tr ΛZ vanishes. Because the phase factor vanishes at the minimzer, we do not need to worry
about the complexity of the integrand, and the approximation becomes equivalent to what is known
as Laplace’s method. The leading contributions to the integral come from the first non-vanishing
terms in the expansion around the minimizer Λ = 0. To perform this expansion, we use the following
identity, valid for small X ,

log det |1 +X| =
∞∑
j=1

(−1)j+1

j
trXj . (S16)

Using this expansion, we have,

E2k =

∫
DλDz e− 1

2σ
2
wσ

2
x tr ΛΛT e−

n0
2

∑∞
j=2

(−1)j+1

j tr(
σ2wσ

2
x

n0
ΛΛT )je−i tr ΛZF (z)

=

∫
Dλ̃Dz e−

n0
2 tr Λ̃Λ̃T e−

n0
2

∑∞
j=2

(−1)j+1

j tr(Λ̃Λ̃T )je−i
√
n0

σwσx
tr Λ̃ZF (z) ,

(S17)

where we have changed integration variables to λ̃ij = σwσx√
n0
λij and

Dλ̃ =
∏

λ̃αβ∈Λ̃

dλ̃αβ
2πσwσx/

√
n0

. (S18)

To extract the asymptotic contribution of this integral, we need to understand traces of Λ̃Λ̃T . To this
end, we make the following observation.

Lemma 1. Given the matrix Λ̃ = [λ̃ij ], there exists matrix A such that

tr(Λ̃Λ̃T )k =
1

2
trA2k , (S19)

where A is the weighted adjacency matrix defined by the undirected bigraph with vertex set V =
(I, U), where

I ≡ {2i | ∃µ s.t. yiµ ∈ Z}, (S20)
U ≡ {2µ− 1 | ∃i s.t. yiµ ∈ Z} , (S21)

and edges,
E ≡ {{2µ− 1, 2i} | yiµ ∈ Z} , (S22)

with weights w({2µ− 1, 2i}) = λ̃iµ.

The proof follows by defining an adjacency matrix:

A =

(
0 Λ̃

Λ̃T 0

)
, (S23)

where the I vertices are ordered before U vertices, and observe that the weights agree. Therefore,

A2k =

(
(Λ̃Λ̃T )k 0

0 (Λ̃T Λ̃)k

)
. (S24)

Observe that the traces agree as required.

Now suppose that the middle exponential factor appearing in eqn. (S17) is truncated to finite order,
m,

e−
n0
2

∑m
j=2

(−1)j+1

j tr(Λ̃Λ̃T )j . (S25)
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Since we are expanding for small Λ̃, we can expand the exponential into a polynomial of order 2m.
Any term in this polynomial that does not contain at least one factor λ̃iµ for each Yiµ ∈ Z will vanish.
To see this, denote (any one of) the missing λ̃iµ as λ̃ and the corresponding ziµ as z. Then,

∫
dz

∫
dλ̃

2πσwσx/
√
n0
e−

n0
2 λ̃

2

e−i
√
n0

σwσx
λ̃zf(z) =

∫
dz

e
− z2

2σ2wσ
2
x√

2πσ2
wσ

2
x

f(z)

=

∫
dz√
2π

e−
z2

2 f(σwσxz)

= 0 ,

(S26)

The last line follows from eqn. (2).

The leading contribution to eqn. (S17) comes from the terms in the expansion of eqn. (S25)
that have the fewest factors of λ̃, while still retaining one factor λ̃iµ for each Yiµ. Since λ̃→ 0, as
n0 →∞ (the minimizer is Λ̃ = 0), it follows that if there is a a term with exactly one factor of λ̃iµ
for each Yiµ, it will give the leading contribution. We now argue that there is always such a term, and
we compute its coefficient.

Using eqn. (S19), traces of tr(Λ̃Λ̃T ) are equivalent to traces of A2, where A is the adja-
cency matrix of the graph defined above. It is well known that the (u, v) entry of the Ak is the
sum over weighted walks of length k, starting at vertex u and ending at vertex v. If there is a
cycle of length k in the graph, then the diagonal elements of Ak contain two terms with exactly
one factor of λ̃ for each edge in the cycle. (There are two terms arising from the clockwise and
counter-clockwise walks around the cycle). Therefore, if there is a cycle of length 2k, the expression
1/2 trA2k contains a term with one factor of λ̃ for each edge in the cycle, with coefficient equal to 2k.

So, finally, we can write for k > 1,

E2k =

∫
Dλ̃Dz e−

n0
2 tr Λ̃Λ̃T e−

n0
2

∑∞
j=2

(−1)j+1

j tr(Λ̃Λ̃T )je−i
√
n0

σwσx
tr Λ̃ZF (z)

≈ (−1)kn0

∫
Dλ̃Dz e−

n0
2 tr Λ̃Λ̃T e−i

√
n0

σwσx
tr Λ̃Z λ̃i1µ1

λ̃i2µ1
· · · λ̃ikµk λ̃i1µkF (z)

= (−1)kn0

[∫
dλ̃

2πσwσx/
√
n0
dz e−

n0
2 λ̃

2

e−i
√
n0

σwσx
λ̃zλ̃ f(z)

]2k

= (−1)kn0

−i ∫ dz
e
− z2

2σ2wσ
2
x

√
2πn0σ2

wσ
2
x

zf(z)

2k

= n1−k
0

[
σwσx

∫
dz

e−z
2/2

√
2π

f ′(σwσxz)

]2k

= n1−k
0 ζk

(S27)

where in the second to last line we have integrated by parts and we have defined,

ζ ≡

[
σwσx

∫
dz

e−z
2/2

√
2π

f ′(σwσxz)

]2

. (S28)
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We also note that if k = 1, there is no need to expand beyond first order because those integrals will
not vanish (as they did in eqn. (S26)). So in this case,

E2 ≈
∫
Dλ̃Dz e−

n0
2 tr Λ̃Λ̃T e−i

√
n0

σwσx
tr Λ̃ZF (z)

=

[∫
dλ̃

2πσwσx/
√
n0
dz e−

n0
2 λ̃

2

e−i
√
n0

σwσx
λ̃z f(z)

]2k

=

∫ dz
e
− z2

2σ2wσ
2
x√

2πn0σ2
wσ

2
x

f(z)

2k

=

∫
dz

e−z
2/2

√
2π

f(σwσxz)
2

≡ η .

(S29)

The quantities η and ζ are important and will be used to obtain an expression for G.

The above was the simplest case, a 2k cycle. For any admissible graph G, we can view it as a tree
over blocks, each block being a (even) cycle. If G has 2k edges then one can write the integral above
as a product of integrals over cyclic blocks. In this case, each block contributes a factor of n0 to the
integral, and if there are c cyclic blocks, with k1 blocks of size 1 and k0 blocks of size greater than 1,
the resulting expression for the integral has value nk0−k0 ζk0ηk1 . Since k = k0 = 1 for a 2-cycle, we
have the following proposition.

Proposition 2. Given an admissible graph G with c cyclic blocks, b blocks of size 1, and 2k edges,
EG grows as nc−k0 · ηbζc−b.

1.2.1 Non-Admissible Graphs

Finally, we note that the terms contributing to the admissible graphs determine the asymptotic value
of the expectation. The number of terms (and therefore graphs) with k indices and c identifications is
Θ(n2k−c

0 ). Although the fraction of non-admissible graphs with c identifications is far larger than
that of admissible graphs as a function of k, the leading term for the integrals corresponding to latter
grow as nc−k0 , while the leading terms for the former grow at most as nc−1−k

0 . The underlying reason
for this subleading scaling is that any partition of a non-admissible graph into c blocks, where no
two blocks have an edge in-between, requires c index identifications in the original 2k-polygon, as
opposed to c− 1 identifications for an admissible graph. Therefore, we may restrict our attention
only to admissible graphs in order to complete the asymptotic evaluation of G.

1.3 Generating function

Let p̃(k, vi, vµ, b) denote the number of admissible graphs with 2k edges, vi i-type vertex identifica-
tions, vµ µ-type vertex identifications, and b cycles of size 1. Similarly, let p(k, vi, vµ, b) denote the
same quantity modulo permutations of the vertices. Then, combining the definition of G(z) (eqn. (7))
and Proposition 2, we have,

G(z) ' 1

z
+

∞∑
k=1

k∑
vi,vµ=0

vi+vµ+1∑
b=0

(
n1

k − vi

)(
m

k − vµ

)
p̃(k, vi, vµ, b)

zk+1

n
v+vµ+1−k
0

n1mk
ηbζvi+vµ+1−b

' 1

z
+

∞∑
k=1

1

zk+1

k∑
vi,vµ=0

v+vµ+1∑
b=0

p(k, vi, vµ, b)η
bζvi+vµ+1−bφviψvµ

' 1− ψ
z

+
ψ

z

∞∑
k=0

1

zkψk
P (k),

(S30)
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where we have defined,

P (k) =

k∑
vi,vµ=0

vi+vµ+1∑
b=0

p(k, vi, vµ, b)η
bζvi+vµ+1−bφviψvµ . (S31)

Let P (t) =
∑
k P (k)tk be a generating function. Let 2k refer to the size of the cycle containing

vertex 1. Summing over all possible values of k yields the following recurrence relation,

P = 1 + tPφPψη +

∞∑
k=2

(PφPψζt)
k

= 1 + (η − ζ)tPφPψ +
PφPψtζ

1− PφPψtζ
.

(S32)

Note that if vertex 1 is inside a bubble, we get a factor of η instead of ζ, which is why that term
is treated separately. The auxilliary generating functions Pφ and Pψ correspond to the generating
functions of graphs with an extra factor φ or ψ respectively, i.e.

Pφ = 1 + (P − 1)φ Pψ = 1 + (P − 1)ψ , (S33)

which arises from making a i-type or µ-type vertex identifications. Accounting for the relation
between G and P in eqn. (S30) yields,

G(z) =
ψ

z
P

(
1

zψ

)
+

1− ψ
z

. (S34)

Hence, we have completed our outline of the proof of Theorem 1.

2 Example Graphs
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i1 μ3
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Figure S1: Admissible graphs for k = 3
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Figure S2: Admissible topologies for k = 4

3 Hermite expansion

Any function with finite Gaussian moments can be expanded in a basis of Hermite polynomials.
Defining

Hn(x) = (−1)ne
x2

2
∂n

∂xn
e−

x2

2 (S35)

we can write,

f(x) =

∞∑
n=0

fn√
n!
Hn(x) , (S36)

for some constants fn. Owing the orthogonality of the Hermite polynomials, this representation is
useful for evaluating Gaussian integrals. In paticular, the condition that f be centered is equivalent
the vanishing of f0,

0 =

∫ ∞
−∞

dx
e−x

2/2

√
2π

f(x)

= f0 .

(S37)

The constants η and ζ are also easily expressed in terms of the coefficients,

η =

∫ ∞
−∞

dx
e−x

2/2

√
2π

f(x)2

=

∞∑
n=0

f2
n ,

(S38)

and,

ζ =

[∫ ∞
−∞

dx
e−x

2/2

√
2π

f ′(x)

]2

= f2
1 ,

(S39)

which together imply that η ≥ ζ. Equality holds when fi>1 = 0, in which case,
f(x) = f1H1(x) = f1x (S40)

i.e. when f is a linear function.

The Hermite representation also suggests a convenient way to randomly sample functions
with specified values of η and ζ. First choose f1 =

√
ζ, and then enforce the constraint,

η − 1 =

N∑
n=2

f2
n , (S41)

where we have truncated the representation to some finite order N . Random values of fn satisfying
this relation are simple to obtain since they all live on the sphere of radius

√
η − 1.
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4 Equations for Stieltjes transform

From eqn. (11), straightforward algebra shows that G satisfies,
4∑
i=0

aiG
i = 0 , (S42)

where,

a0 = −ψ3 ,

a1 = ψ(ζ(ψ − φ) + ψ(η(φ− ψ) + ψz))

a2 = −ζ2(φ− ψ)2 + ζ
(
η(φ− ψ)2 + ψz(2φ− ψ)

)
− ηψ2zφ

a3 = ζ(−z)φ(2ζψ − 2ζφ− 2ηψ + 2ηφ+ ψz)

a4 = ζz2φ2(η − ζ) .

(S43)

The total derivative of this equation with respect to z is,
4∑
i=1

a′iG
i +G′

3∑
i=0

biG
i = 0 , (S44)

where,

a′1 = ψ3 ,

a′2 = −ψ(ζ(ψ − 2φ) + ηψφ) ,

a′3 = −2ζφ(ζ(ψ − φ) + η(φ− ψ) + ψz) ,

a′4 = 2ζzφ2(η − ζ) ,

b0 = ψ(ζ(ψ − φ) + ψ(η(φ− ψ) + ψz))

b1 = 2η
(
ζ(φ− ψ)2 − ψ2zφ

)
− 2ζ

(
ζ(φ− ψ)2 + ψz(ψ − 2φ)

)
b2 = −3ζzφ(2ζψ − 2ζφ− 2ηψ + 2ηφ+ ψz)

b3 = 4ζz2φ2(η − ζ) .

(S45)

To eliminate G from eqs. (S43) and (S45), we compute the resultant of the two polynomials, which
produces a quartic polynomial in G′. Using eqns. (21) and (22) to change variables to Etrain, we can
derive the following equation satisfied by Etrain,

4∑
i=0

6∑
j=0

ci,jγ
jEitrain = 0 , (S46)

where the ci,j are given below. Notice that η = ζ is a degenerate case since a4 = b3 = 0 and the
resultant must be computed separately. We find,

3∑
i=0

4∑
j=0

di,jγ
jEitrain|η=ζ = 0 , (S47)

where the di,j are given below. By inspection we find that

ci,j(λη, λζ) = λ8−jci,j(η, ζ) and di,j(λζ) = λ4−jdi,j(ζ) , (S48)

which establishes the homogeneity of Etrain in γ, η, and ζ. From the coefficients ci,0 we can read off
the quartic equation satisfied by Etrain when γ = 0 and η 6= ζ. It has two double roots at,

Etrain|γ=0 = 0 and Etrain|γ=0 = 1− φ/ψ . (S49)

In accordance with the condition that G→ 1/z as z →∞, the first root is chosen if ψ < φ and the
second root chosen otherwise.

If η = ζ, then the coefficients di,0 define a cubic equation for Etrain that has three distinct
roots,

Etrain|γ=0,η=ζ = 0 , Etrain|γ=0,η=ζ = 1− φ , and Etrain|γ=0,η=ζ = 1− φ/ψ . (S50)
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In this case, the first root is chosen when φ > max(ψ, 1), the second root is chosen when φ, ψ < 1,
and the third root chosen otherwise.

Finally we give the coefficients ci,j ,

c0,0 = 0, c0,1 = 0, c0,2 = 0, c0,3 = 0,

c1,0 = 0, c1,1 = 0, c3,6 = 0, c4,6 = 0 ,

and,

c0,4 = ψ6φ3
(
ζ2(4ψ − 1)− 2ζηψ − η2ψ2

)(
ζ2
(
(ψ − 1)ψ + φ2 + 2ψφ

)
−

2ζηψφ− η2ψφ2
)

c0,5 = 2ζψ8φ3
(
ζ2(−ψ + φ+ 1) + ζη

(
− ψ2 + ψ − 3ψφ+ φ

)
+ η2ψφ

)
c0,6 = − ζ2(ψ − 1)ψ9φ3

c1,2 = ψ4φ(φ− ψ)3
(
ζ2(4ψ − 1)− 2ζηψ − η2ψ2

)(
ζ2(4φ− 1)− 2ζηφ−

η2φ2
)(
ζ2(ψ + φ− 1)− η2ψφ

)
c1,3 = − 2ψ5φ(φ− ψ)

(
ζ5
(
− (ψ − 1)ψ2 − φ3 +

(
− 32ψ2 + 9ψ + 1

)
φ2 + ψ(9ψ − 4)φ

)
+

ζ4η
(
− (ψ − 1)ψ3 + (4ψ − 1)φ4 +

(
12ψ2 − 8ψ + 1

)
φ3 + 2ψ

(
6ψ2 + 17ψ − 2

)
φ2 + 4ψ2

(
ψ2−

2ψ − 1
)
φ
)
− ζ3η2ψφ

(
(ψ − 2)ψ2 + φ3 + (7ψ − 2)φ2 + ψ(7ψ + 8)φ

)
+

2ζ2η3ψφ
(
ψ3 + (1− 4ψ)φ3 − 4ψ3φ

)
+ 3ζη4ψ2φ2

(
ψ2 + φ2

)
+

η5ψ3φ3(ψ + φ)
)

c1,4 = ψ6(−φ)(φ− ψ)
(
ζ4
(
− (ψ − 1)ψ2 + (4ψ − 1)φ3 +

(
− 16ψ2 + ψ + 1

)
φ2 + ψ

(
4ψ2 − ψ−

9
)
φ
)

+ 2ζ3ηψφ
(
(ψ − 1)ψ + φ2 + (12ψ − 1)φ

)
+ 2ζ2η2ψφ

(
3ψ2 + (3− 9ψ)φ2+(

ψ − 8ψ2
)
φ
)

+ 6ζη3ψ2φ2(ψ + φ) + η4ψ3φ3
)

c1,5 = 2ζψ8φ2
(
ζ2
(
(ψ − 1)ψ − φ2 + 2ψφ+ φ

)
+ 2ζη

(
ψ2 + (2ψ − 1)φ2 − ψ2φ

)
+

η2ψφ(ψ − φ)
)

c1,6 = ζ2ψ9φ2(ψ + (ψ − 1)φ)

c2,0 = ζ2ψ2(ζ − η)2(φ− ψ)6
(
ζ2(4ψ − 1)− 2ζηψ − η2ψ2

)(
ζ2(4φ− 1)−

2ζηφ− η2φ2
)

c2,1 = − 2ζψ3(ζ − η)(φ− ψ)4
(
ζ5
(
− 5ψ2 + ψ + (16ψ − 5)φ2 +

(
16ψ2 − 6ψ + 1

)
φ
)
+

ζ4η
(
− (ψ − 3)ψ2 + (4ψ − 1)φ3 +

(
− 40ψ2 − 7ψ + 3

)
φ2 + ψ2(4ψ − 7)φ

)
+ ζ3η2

(
2ψ3 + (2−

9ψ)φ3 + 34ψ2φ2 − 9ψ3φ
)

+ ζ2η3ψφ
(
ψ2 + (8ψ + 1)φ2 + 2ψ(4ψ − 3)φ

)
−

3ζη4ψ2φ2(ψ + φ)− 2η5ψ3φ3
)

c2,2 = ψ4
(
− (φ− ψ)2

)(
ζ6
(
− ψ2

(
ψ2 − 8ψ + 1

)
+ (4ψ − 1)φ4 +

(
− 148ψ2 + 22ψ + 8

)
φ3−(

148ψ3 − 118ψ2 + 21ψ + 1
)
φ2 + ψ

(
4ψ3 + 22ψ2 − 21ψ + 3

)
φ
)
− 2ζ5η

(
− 3(ψ − 1)ψ3 + (11ψ−

3)φ4 +
(
− 147ψ2 + 24ψ + 3

)
φ3 + ψ

(
− 147ψ2 + 66ψ − 8

)
φ2 + ψ2

(
11ψ2 + 24ψ − 8

)
φ
)
+

ζ4η2
(
− 6ψ4 +

(
66ψ2 + 9ψ − 6

)
φ4 + ψ

(
28ψ2 − 199ψ + 27

)
φ3 + ψ2

(
66ψ2 − 199ψ + 29

)
φ2+

9ψ3(ψ + 3)φ
)

+ 2ζ3η3ψφ
(
5ψ3 + (5− 44ψ)φ3 + (21− 20ψ)ψφ2 + (21− 44ψ)ψ2φ

)
+

ζ2η4ψ2φ2
(
24ψ2 + (24− 13ψ)φ2 + (23− 13ψ)ψφ

)
+ 10ζη5ψ3φ3(ψ + φ)+

η6ψ4φ4
)
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c2,3 = 2ψ5
(
ζ5
(
− (ψ − 1)ψ4 + (3ψ − 1)φ5 +

(
− 36ψ2 + 19ψ + 1

)
φ4 + ψ

(
98ψ2 − 26ψ − 7

)
φ3−

2ψ2
(
18ψ2 + 13ψ − 7

)
φ2 + ψ3

(
3ψ2 + 19ψ − 7

)
φ
)

+ ζ4η
(
2ψ5 +

(
− 40ψ2 + 5ψ + 2

)
φ5+

ψ
(
24ψ2 + 54ψ − 19

)
φ4 + 2ψ2

(
12ψ2 − 67ψ + 10

)
φ3 + 2ψ3

(
− 20ψ2 + 27ψ + 10

)
φ2 + ψ4(5ψ−

19)φ
)

+ ζ3η2ψφ
(
− 11ψ4 + (50ψ − 11)φ4 − 2ψ(21ψ + 1)φ3 − 6ψ2(7ψ − 5)φ2 + 2ψ3(25ψ−

1)φ
)

+ 2ζ2η3ψ2φ2
(
− 7ψ3 + (5ψ − 7)φ3 − 2(ψ − 3)ψφ2 + ψ2(5ψ + 6)φ

)
+

ζη4ψ3φ3
(
− 5ψ2 − 5φ2 + 4ψφ

)
− η5ψ4φ4(ψ + φ)

)
c2,4 = ψ6

(
ζ4
(
ψ4 +

(
− 31ψ2 + 7ψ + 1

)
φ4 + ψ

(
70ψ2 − 6ψ − 13

)
φ3 + ψ2

(
− 31ψ2 − 6ψ+

31
)
φ2 + ψ3(7ψ − 13)φ

)
+ 2ζ3ηψφ

(
− 8ψ3 + (17ψ − 8)φ3 + 3(3− 16ψ)ψφ2 + ψ2(17ψ+

9)φ
)

+ ζ2η2ψ2φ2
(
− 14ψ2 + (17ψ − 14)φ2 + ψ(17ψ + 14)φ

)
− 6ζη3ψ3φ3(ψ + φ)−

η4ψ4φ4
)

c2,5 = − 2ζψ8φ
(
ζ2
(
2ψ2 + (ψ + 2)φ2 + (ψ − 5)ψφ

)
+ ζηψφ(2ψ + (2− 3ψ)φ)+

η2ψ2φ2
)

c2,6 = − ζ2ψ10φ2

c3,0 = 2ζ2ψ3(ζ − η)2(φ− ψ)5
(
ζ2(4ψ − 1)− 2ζηψ − η2ψ2

)(
ζ2(4φ− 1)−

2ζηφ− η2φ2
)

c3,1 = − 4ζψ4(ζ − η)(φ− ψ)3
(
ζ5
(
− 5ψ2 + ψ + (16ψ − 5)φ2 +

(
16ψ2 − 6ψ + 1

)
φ
)
+

ζ4η
(
− (ψ − 3)ψ2 + (4ψ − 1)φ3 +

(
− 40ψ2 − 7ψ + 3

)
φ2 + ψ2(4ψ − 7)φ

)
+ ζ3η2

(
2ψ3 + (2−

9ψ)φ3 + 34ψ2φ2 − 9ψ3φ
)

+ ζ2η3ψφ
(
ψ2 + (8ψ + 1)φ2 + 2ψ(4ψ − 3)φ

)
−

3ζη4ψ2φ2(ψ + φ)− 2η5ψ3φ3
)

c3,2 = − 2ζψ5(φ− ψ)
(
ζ5
(
− ψ2

(
ψ2 − 8ψ + 1

)
+ (4ψ − 1)φ4 +

(
− 132ψ2 + 18ψ + 8

)
φ3−(

132ψ3 − 94ψ2 + 16ψ + 1
)
φ2 + 2ψ

(
2ψ3 + 9ψ2 − 8ψ + 1

)
φ
)
− 2ζ4η

(
− 3(ψ − 1)ψ3 + (11ψ−

3)φ4 +
(
− 139ψ2 + 23ψ + 3

)
φ3 + ψ

(
− 139ψ2 + 56ψ − 7

)
φ2 + ψ2

(
11ψ2 + 23ψ − 7

)
φ
)
+

2ζ3η2
(
− 3ψ4 +

(
31ψ2 + 5ψ − 3

)
φ4 + ψ

(
2ψ2 − 93ψ + 13

)
φ3 + ψ2

(
31ψ2 − 93ψ + 12

)
φ2+

ψ3(5ψ + 13)φ
)

+ 2ζ2η3ψφ
(
5ψ3 + (5− 43ψ)φ3 + (19− 10ψ)ψφ2 + (19− 43ψ)ψ2φ

)
+

ζη4ψ2φ2
(
23ψ2 + (23− 8ψ)φ2 + 2(9− 4ψ)ψφ

)
+ 8η5ψ3φ3(ψ + φ)

)

c3,3 = 4ζψ6(φ− ψ)
(
ζ4
(
− (ψ − 1)ψ2 + (3ψ − 1)φ3 +

(
− 30ψ2 + 16ψ + 1

)
φ2 + ψ

(
3ψ2 + 16ψ−

4
)
φ
)

+ 2ζ3η
(
ψ3 +

(
− 18ψ2 + 2ψ + 1

)
φ3 + ψ

(
− 18ψ2 + 27ψ − 7

)
φ2 + ψ2(2ψ − 7)φ

)
+

ζ2η2ψφ
(
− 11ψ2 + (49ψ − 11)φ2 + ψ(49ψ − 22)φ

)
+ 2ζη3ψ2φ2((ψ − 6)φ− 6ψ)−

2η4ψ3φ3
)

c3,4 = − 2ζ2ψ7(φ− ψ)
(
ζ2
(
− ψ2 +

(
27ψ2 − 6ψ − 1

)
φ2 + 2(5− 3ψ)ψφ

)
−

4ζηψφ((9ψ − 4)φ− 4ψ) + 8η2ψ2φ2
)

c3,5 = 8ζ3ψ9φ(ψ − φ)
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c4,0 = ζ2ψ4(ζ − η)2(φ− ψ)4
(
ζ2(4ψ − 1)− 2ζηψ − η2ψ2

)(
ζ2(4φ− 1)−

2ζηφ− η2φ2
)

c4,1 = − 2ζψ5(ζ − η)(φ− ψ)2
(
ζ5
(
− 5ψ2 + ψ + (16ψ − 5)φ2 +

(
16ψ2 − 6ψ + 1

)
φ
)
+

ζ4η
(
− (ψ − 3)ψ2 + (4ψ − 1)φ3 +

(
− 40ψ2 − 7ψ + 3

)
φ2 + ψ2(4ψ − 7)φ

)
+ ζ3η2

(
2ψ3 + (2−

9ψ)φ3 + 34ψ2φ2 − 9ψ3φ
)

+ ζ2η3ψφ
(
ψ2 + (8ψ + 1)φ2 + 2ψ(4ψ − 3)φ

)
−

3ζη4ψ2φ2(ψ + φ)− 2η5ψ3φ3
)

c4,2 = − ζψ6
(
ζ5
(
− ψ2

(
ψ2 − 8ψ + 1

)
+ (4ψ − 1)φ4 +

(
− 132ψ2 + 18ψ + 8

)
φ3 −

(
132ψ3 − 94ψ2

+ 16ψ + 1
)
φ2 + 2ψ

(
2ψ3 + 9ψ2 − 8ψ + 1

)
φ
)
− 2ζ4η

(
− 3(ψ − 1)ψ3 + (11ψ − 3)φ4 +

(
− 139ψ2+

23ψ + 3
)
φ3 + ψ

(
− 139ψ2 + 56ψ − 7

)
φ2 + ψ2

(
11ψ2 + 23ψ − 7

)
φ
)

+ 2ζ3η2
(
− 3ψ4+(

31ψ2 + 5ψ − 3
)
φ4 + ψ

(
2ψ2 − 93ψ + 13

)
φ3 + ψ2

(
31ψ2 − 93ψ + 12

)
φ2 + ψ3(5ψ + 13)φ

)
+

2ζ2η3ψφ
(
5ψ3 + (5− 43ψ)φ3 + (19− 10ψ)ψφ2 + (19− 43ψ)ψ2φ

)
+

ζη4ψ2φ2
(
23ψ2 + (23− 8ψ)φ2 + 2(9− 4ψ)ψφ

)
+ 8η5ψ3φ3(ψ + φ)

)
c4,3 = 2ζψ7

(
ζ4
(
− (ψ − 1)ψ2 + (3ψ − 1)φ3 +

(
− 30ψ2 + 16ψ + 1

)
φ2 + ψ

(
3ψ2 + 16ψ−

4
)
φ
)

+ 2ζ3η
(
ψ3 +

(
− 18ψ2 + 2ψ + 1

)
φ3 + ψ

(
− 18ψ2 + 27ψ − 7

)
φ2 + ψ2(2ψ − 7)φ

)
+

ζ2η2ψφ
(
− 11ψ2 + (49ψ − 11)φ2 + ψ(49ψ − 22)φ

)
+ 2ζη3ψ2φ2((ψ − 6)φ− 6ψ)−

2η4ψ3φ3
)

c4,4 = ζ2ψ8
(
ζ2
(
ψ2 +

(
− 27ψ2 + 6ψ + 1

)
φ2 + 2ψ(3ψ − 5)φ

)
+ 4ζηψφ((9ψ − 4)φ−

4ψ)− 8η2ψ2φ2
)

c4,5 = − 4ζ3ψ10φ

And the coefficients di,j read,
d0,0 = 0, d0,1 = 0, d2,4 = 0, d3,4 = 0 ,

and,
d0,2 = − ζ2(ψ − 1)2ψ2φ2

(
φ2 − ψ

)
d0,3 = 2ζψ4φ2(ψ + 2φ+ 1)

d0,4 = ψ5φ2

d1,0 = ζ4(ψ − 1)2(φ− 1)3(φ− ψ)3

d1,1 = 2ζ3ψ(φ− 1)
(
− ψ3(ψ + 1) +

(
ψ2 − 4ψ + 1

)
φ4 +

(
6ψ2 + ψ + 1

)
φ3 − ψ

(
ψ3 + 6ψ2+

5
)
φ2 + ψ2

(
4ψ2 − ψ + 5

)
φ
)

d1,2 = ζ2ψ2
(
ψ3 +

(
ψ2 − 11ψ + 1

)
φ4 −

(
ψ3 + 1

)
φ3 + 2ψ

(
5ψ2 + 6ψ + 5

)
φ2−

11ψ2(ψ + 1)φ
)

d1,3 = 2ζψ4φ
(
− 2ψ − 3φ2 + ψφ+ φ

)
d1,4 = ψ5

(
− φ2

)
d2,0 = ζ4(ψ − 1)2(φ− 1)2(φ− ψ)2(−2ψ + ψφ+ φ)

d2,1 = 2ζ3ψ
(
− 2ψ3(ψ + 1) +

(
ψ3 − 3ψ2 − 3ψ + 1

)
φ4 +

(
ψ4 + ψ3 + 12ψ2 + ψ + 1

)
φ3−

6ψ
(
ψ3 + ψ2 + ψ + 1

)
φ2 + ψ2

(
9ψ2 − 2ψ + 9

)
φ
)

d2,2 = ζ2ψ2
(
− 2ψ3 +

(
ψ3 − 9ψ2 − 9ψ + 1

)
φ3 − 12

(
ψ3 + ψ

)
φ2 + 21ψ2(ψ + 1)φ

)
d2,3 = − 4ζψ4φ(−2ψ + ψφ+ φ)
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d3,0 = ζ4(ψ − 1)2ψ(φ− 1)2(φ− ψ)2

d3,1 = 2ζ3ψ2
(
ψ2(ψ + 1) +

(
ψ2 − 4ψ + 1

)
φ3 +

(
ψ3 + 2ψ2 + 2ψ + 1

)
φ2 + 2ψ

(
− 2ψ2 + ψ−

2
)
φ
)

d3,2 = ζ2ψ3
(
ψ2 +

(
ψ2 − 10ψ + 1

)
φ2 − 10ψ(ψ + 1)φ

)
d3,3 = − 4ζψ5φ
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