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Abstract

Text-only and semi-supervised training based on audio-only
data has gained popularity recently due to the wide availabil-
ity of unlabeled text and speech data. In this work, we pro-
pose incorporating text-only and semi-supervised training into
an attention-based deliberation model. By incorporating text-
only data in training a bidirectional encoder representation
from transformer (BERT) for the deliberation text encoder, and
large-scale text-to-speech and audio-only utterances using joint
acoustic and text decoder (JATD) and semi-supervised training,
we achieved 4%-12% WER reduction for various tasks com-
pared to the baseline deliberation. Compared to a state-of-the-
art language model (LM) rescoring method, the deliberation
model reduces the Google Voice Search WER by 11% relative.
We show that the deliberation model also achieves a positive
human side-by-side evaluation compared to the state-of-the-art
LM rescorer with reasonable endpointer latencies.

1. Introduction

End-to-end (E2E) automatic speech recognition (ASR) models
have made tremendous improvements in recent years [1, 2, 3,

, 5, 6,7,8]. In a state-of-the-art system [ 1], a neural language
model (LM) is used to rescore a cascaded encoder model and
outperforms a conventional ASR system in both Google Voice
Search (VS) and rare word recognition quality, as well as la-
tency. The LM in [1] is trained using billions of text-only data
and proves to improve rare word recognition quality. While LM
relies on only text hypotheses for rescoring, deliberation mod-
els have been recently proposed for second-pass rescoring using
both text hypotheses and audio [9, 10]. Compared to LM train-
ing, there has been few attempts at incorporating widely avail-
able text-only or audio-only data in deliberation (see [I1]). In
this work, we research various ways to utilize large-scale text-
only and semi-supervised data for deliberation training.

While the LM in [1] uses causal conformer layers, bidi-
rectional textual context is incorporated by using bidirectional
encoder representations from transformers (BERT) [12, 13]. In
addition to LM rescoring, neural correction models train text-
to-text models to predict targets based on estimated transcripts.
For example, a BERT model is used in [14] to initialize a trans-
former neural correction model. To increase diversity, text-to-
speech (TTS) utterances are decoded to generate text hypothe-
ses to train a transformer correction model [4]. LSTM mod-
els are used similarly in [15]. However, since neural correction
only relies on text, its correction capability is potentially limited
and thus only used for spelling correction.

Instead of training external modules such as LMs, sev-
eral recent studies incorporate text-only data into supervised
training to jointly train E2E models [16, 11, 17, 18, 19, 20].
For example, text-only data has been used to train speech en-
coders [16, 18]. [16] leverages text-only data represented as

phonemes and masked by noise, and uses them as inputs to pre-
dict the corresponding text using a shared encoder with ASR.
In [18], either text-only or speech-only data have been used in
a speech-text joint training to pre-train an encoder for a down-
stream task such as ASR. On the other hand, ASR decoders
have also been modified for text-only training. [11] extends a
joint acoustic and text decoder (JATD) from the Listen, Attend
and Spell (LAS) [21] to a deliberation decoder, and uses text-
only data (or synthesized utterances) to train the decoder with
fixed context vectors. [17] modifies the transformer decoder to
have only self-attention (except for the last layer) so they can be
trained by text-only data.

Besides text-only data, audio-only data is also widely avail-
able and thus used to assist ASR training [22, 23, 24, 25, 26].
For example, by pre-training speech encoders using audio-only
data, wav2vec [22, 23] achieves competitive results by using a
small amount of labeled data. In [24], the authors use large-
size models up to billions of parameters in semi-supervised
learning using unlabeled data combined with a small portion
of labeled data. The idea of noisy student training is explored
in [25, 26], where a bidirectional teacher generates training data
for a streaming student by using noisy corrupted inputs.

In this work, we propose to incorporate text-only data to
pre-training the deliberation text encoder in a masked language
model (MLM) task similar to BERT [27]. Our results show
that pretraining a conformer text encoder with large enough size
significantly improves recognition for both Voice Search and
long-tail words. In addition to the text encoder, we also syn-
thesize large-scale text-only data (84M) to TTS utterances in
training the deliberation decoder using JATD [11]. Third, since
deliberation attends to encoded audio, we perform large-scale
semi-supervised training using 5S00M unlabeled speech utter-
ances from Google Voice Search domain and transcribed using
a conventional model. With all the proposed techniques, we
achieved 4%-12% WER reductions for various test sets com-
pared to the deliberation baseline. Compared to a state-of-the-
art LM rescorer [ 1], our deliberation model performs 11% rel-
ative better in VS, 16% for the SxS test set, and competitively
for long-tail. A human side-by-side comparison shows the de-
liberation performs significantly better than LM rescoring with
reasonable endpointing latencies.

2. Modeling Improvement
2.1. Model Overview

Our model is illustrated in Fig. 1. Note that different from [9,

], the deliberation decoder is based on the non-causal en-
coder [2] instead of a causal encoder. The decoder attends to
both the non-causal encoder output (e) and hypotheses (yr)
from the non-causal path, i.e., decoded using non-causal en-
coder. The non-causal encoder often has a right-context for bet-
ter recognition quality [2]. We use a conformer encoder [28] as



the text encoder. A two-source attention LAS decoder is used as
the deliberation decoder, similar to [9]. The decoder can be used
for either re-decoding or rescoring. The deliberation model in
this work does not stream compared to [29], as we focus on
text-only and semi-supervised training.
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Figure 1: Deliberation based on cascaded encoders.
2.2. BERT Training Based on Text-Only Data
2.2.1. Pretrained BERT Text Encoder

The conformer encoder in deliberation in Fig. 1 is a text en-
coder which takes text hypotheses (y.) as inputs and outputs
text encodings (hp). In regular deliberation training [9, 10], we
randomly initialize the parameters of the text encoder and train
it jointly with other parts of the deliberation model. The train-
ing uses only supervised data. In this work, to leverage large
amounts of text-only data, we propose to pretrain the text en-
coder alone by masking the text-only inputs and then predicting
the masked tokens using a cross entropy (CE) loss, similar to
BERT [27].

Given an input text sequence, we first tokenize it into word-
pieces, and randomly choose 15% of tokens, similar to [27].
Each token is then replaced with [MASK] for 80% of the time,
arandom token for 10% of the time, or kept unchanged for 10%
of the time. Since our input hypotheses are single sentences, we
use only one segment for each BERT input. We use <sos> to
replace the special classification token [CLS], and use <eos>
for [SEP]. The <sos> and <eos> share the same vocabulary
as the cascaded encoder model to match BERT inputs to the for-
mat of first-pass hypotheses. Each input sequence is padded to a
fixed length, and padded tokens are not used for computing the
CE loss. We reuse the token id of <epsilon> for [MASK]
since it does not appear in our hypotheses which contain only
non-blank labels. Lastly, the task of next sentence prediction is
removed from our task since we only have single text sentences.
Instead of transformer layers, we use conformer layers [28] for
the text encoder. We refer to a text encoder trained in this way
as a pretrained BERT.

The pretrained BERT is then used as the deliberation text
encoder, and we update the parameters of the BERT and de-
liberation decoder jointly in training. The cascaded encoder is
kept frozen. We have also tried freezing the entire or part of the
pretrained BERT (e.g. layers close to inputs) and update the rest
of the deliberation decoder, but this leads to worse quality.

2.2.2. Masking First-Pass Hypotheses

Similar to the MLM idea in BERT [27], we also try to increase
the diversity of the text encoder inputs by randomly masking to-
kens in the input hypotheses. This aims to increase the diversity
of the data seen by the text encoder. Note that this is different
from the pretraining in Sect. 2.2.1 because here we do not use
any external data to pre-train the text encoder. We predict the
text targets use the CE loss in training, and do not use any mask-
ing in inference. We show in Sect. 3.2.5 that simply masking
a small portion of first-pass hypothesis tokens in training im-
proves over the baseline deliberation in certain conditions.

2.3. Large-Scale TTS and Semi-Supervised Training
2.3.1. Large Scale TTS Training

Text-only data can also be converted to TTS utterances for train-
ing the whole deliberation decoder. We employ JATD train-
ing [11] and scale it up using text data sampled from multiple
domains, i.e., 51M, 20M, 1.6M, 0.6M, and 11M text sentences
from Maps, News, Play, Search and YouTube domains, respec-
tively. In comparison, [11] uses only 4.6M samples from the
Maps domain. The text sentences are then converted to speech
by using a multi-speaker TTS system [30]. In our large scale
training, we mix the TTS data and supervised training data in a
1:9 ratio. The deliberation decoder is trained from scratch using
the mixed data. We find that sampling data using probabilities
proportional to their amount gives the best result. To differen-
tiate supervised and TTS data, we use only data from a single
domain for each training batch. When the data is supervised, we
compute both audio and text attention during training, and oth-
erwise use fixed context vectors to replace both audio and text
attention for TTS data. We show that Maps-only data improves
the corresponding domain quality, but degrade other domains,
resulting similar average performances. However, by using data
from all domains, JATD significantly improves all long-tail sets
on average as well as the Maps domain (details in Sect. 3.2.4).

2.3.2. Large Scale Semi-Supervised Training

Apart from text-only data, we also explore using large-scale un-
labeled audio utterances to improve training, inspired by [24,

]. In total, we have 500M audio-only utterances sampled
from the Search domain and then generate estimated transcripts
using a state-of-the-art hybrid model [31] for training. The
model employs a state-of-the-art language model for decoding
and tends to generates quality training data for long-tail words.
The utterances are not augmented by any noise. Note that in
later experiments (Sect. 4.1), we also mix the large-scale TTS
data (84M) and the semi-supervised data (S00M) in delibera-
tion training. As far as we know this is the first attempt to ex-
periment with large-scale TTS and semi-supervised training for
deliberation. In training, we use the TTS utterances as 10% of
all data, semi-supervised data as 10%, and train the deliberation
model from scratch.

3. Experiments

We perform our experiments using large-scale data [32] based
on a state-of-the-art cascaded encoder model [33].

3.1. Modeling Details
3.1.1. Baseline Deliberation Model

Our deliberation model is based on a cascaded encoder base-
line [33] which consists of 17 causal conformer layers and 5
non-causal layers. Each causal layer has a model dimension of
512 with 8-headed self-attention. The five non-causal layers has
a total of right context of 0.9s. We use an embedding prediction
network as in [34]. The cascaded encoder model is trained to
predict 4,096 lowercase wordpieces [35].

Our LAS-based deliberation decoder attends to non-causal
encoder outputs and hypotheses decoded using the non-causal
encoder. For efficiency, we use 4 first-pass hypotheses. The
text encoder is a 2-layer 640-D conformer encoder with a two-
token right-context, totaling around 12M parameters. We use
8-headed attention for both audio and hypotheses. The deliber-
ation decoder consists of 2 LSTM layers (similar to [9]), where



each layer has 2,048 hidden units followed by 640-dimensional
projection. A 4,096-dimensional softmax is then used to pre-
dict the same wordpieces as the baseline cascaded encoder. The
decoder has around 42M parameters.

An input speech waveform is divided into 32-ms segments
using hanning windows at a rate of 10 ms to compute 128-D
log-Mel features. Each log-Mel feature is then stacked with
three previous frames to form a 512-D vector, which is then
downsampled to a 30-ms frame rate as input features.

3.1.2. Training Data

Our multi-domain (MD) supervised training data consists of
around 300M utterances described in [32]. The utterances are
sampled from multiple domains, and are anonymized and hand-
transcribed except for YouTube where utterances are gener-
ated using a semi-supervised method [36]. In total, we have
~400k hours of training data. We also increase the data diver-
sity by using multi-condition training [37] such that the utter-
ance signal-to-noise ratio (SNR) is between 0dB and 30dB. We
also use mixed-bandwidth utterances at 8kHz or 16 kHz [38],
and SpecAug [39]. For text-only training, we use a text cor-
pus which contains more than 100B sentences [1] to train the
BERT text encoder described in Sect. 2.2.1. The text-only data
spans multiple domains including Maps, News, Play, Search
and YouTube.

3.1.3. Test Data

We use three sets for evaluation. The Voice Search (VS) test
set contains ~14K anonymized and hand-transcribed utterances
sampled from general Google Voice Search traffic. A SxS test
set contains around 900 utterances where an E2E model [40]
performs inferior to a state-of-the-art hybrid model [31]. To
focus on long-tail word recognition, we use a long-tail (LT) test
set described in [41]. The LT utterances are synthesized using
text sentences containing words rare in multi-domain training,
or with surprising pronunciations [41]. The utterances range
across multiple domains such as Maps, News, Play, Search and
YouTube, totaling 200K. In the following ablation studies, we
use a subset of LT, called Rare Proper Noun Maps (RPNM), to
represent the LT set for experiment efficiency. The performance
of RPNM usually correlates well with the full LT set.

3.2. Ablation Studies
3.2.1. Pretrained BERT Text Encoder

We compare three pretrained BERT (PTB) text encoders, de-
scribed in Sect. 2.2.1, with large, medium and small sizes. The
PTBs have 12, 4, and 2 conformer layers with a model dimen-
sion of 512, corresponding to 76M, 32M, and 12M parameters,
respectively. The conformer right context is set to 30 tokens to
become “bidirectional”. We use the same wordpiece model as
the deliberation for tokenization. We can see in Table 1 that the
large PTB performs the best, with a VS WER of 4.6%. The
WER improvement is uniform for all test sets, ranging from
4% to 12% compared to the baseline deliberation. We note that
when the size of the PTB reduces, the improvement reduces
gradually. When using a small PTB with the same size as the
baseline deliberation, we did not see any benefits from pretrain-
ing. This indicates that a relatively large BERT may be needed
to leverage the large amount of unpaired text data.

To further analyze whether the improvement is due to in-
creased size of the BERT, we remove pretraining (PT) for all
PTBs. We see in Table 1 that there is significant regression

Table 1: WERs (%) of deliberation using pretrained and non-
pretrained BERT text encoders of different sizes.

# Text Enc. WER (%)

Model Layers | VS | SxS | RPNM
Deliberation 2L 48 | 26.9 12.0
+ Large PTB 1L 4.6 | 23.6 11.1
-PT 5.3 29 13.2
+ Medium PTB AL 47 | 254 11.5
-PT 4.8 | 26.5 12.0
+ Small PTB oL 4.8 | 26.3 11.9
-PT 4.8 | 26.3 11.9

in large and medium PTB scenarios for all test sets. In the
large BERT scenario, we also note that the model becomes
hard to train without text-only pretraining, resulting worse per-
formance than the medium-size BERT. In addition, the small
non-pretrained BERT performs similar to the baseline, indicat-
ing our small conformer BERT has a similar performance as
the original conformer encoder. In addition, we have also tried
even larger BERT with 16 and 24 layers but none of them ob-
tained uniform improvements for all test sets compared to the
12L BERT. Considering computation efficiency, we choose the
12L BERT as the text encoder for the following experiments.

3.2.2. Semi-Supervised Training

As described in Sect. 2.3.2, we use S00M semi-supervised ut-
terances with transcripts generated using a hybrid model [31]
for training. We mix the semi-supervised data with the super-
vised data using a 1:9 ratio and train the deliberation model
from scratch. The semi-supervised data mainly improves VS
WER by 4% relatively (4.6% — 4.4% in Table 2). This is prob-
ably because our unlabeled data is from the Voice Search do-
main. In this study, our semi-supervised data size is relatively
small compared to text-only data, in future we plan to generate
more semi-supervised data using more powerful teachers.

Table 2: WERs (%) by semi-supervised training.

# Text Enc. WER (%)
Model Layers | VS | SxS | RPNM
Large PTB 1L 4.6 | 23.6 11.1
+ Semi-sup. data 44 | 23.6 10.9

3.2.3. Rescoring

So far, our decoding is done by beam search. To compare to LM
rescoring later (Sect. 4.2), we use deliberation to rescore the
first-pass hypotheses in a teacher-forcing fashion [40]. Com-
pared to Table 2, the rescoring WERs are 4.6%, 25.5%, and
10.9%, for VS, SxS, and RPNM, respectively. This is expected
according to our previous findings [9, 10]. We use the delibera-
tion rescorer for later experiments.

3.2.4. JATD

In Table 3, we see that by using only Maps data (JATD-Maps),
JATD improve significantly on the RPNM test set, which is a
set focusing on Maps. But there is no improvement in LT, in-
dicating potential regression for other domains. We thus per-
form large-scale JATD training for all domains described in Sec.
3.1.2 (JATD-AII). Table 3 shows that we have achieved signif-
icant improvements on both RPNM and LT. The improvement
is around 9% relative for the LT set. Note that our deliberation
rescoring baseline here does not incorporate pretrained BERT.
Similar to [11], we notice VS and SxS results do not change
significantly.



Table 3: WERs (%) by rescoring using JATD training.

Model # Text Enc. WER (%)
Layers VS | SxS | RPNM | LT
Delib. Rescoring 49 | 27.6 12.0 30.7
+ JATD-Maps 2L 5.0 | 26.8 10.4 30.7
+ JATD-All 5.0 | 269 10.3 27.8

3.2.5. Apply Masking to Hypotheses

To increase the diversity of data for text encoder training, we
have also tried applying masking to first-pass hypotheses, sim-
ilar to the MLM idea in [27]. Specifically, we mask around
2% of hypothesis tokens, randomize only 0.01% tokens, and
leave the rest unchanged. We have tried other ratios but did not
find improvement. We experiment masking to three delibera-
tion models in Table 4. Overall, we notice that masking only
improves the vanilla deliberation rescoring by 3.6% relative for
the SxS set. When other techniques such as pretrained BERT or
JATD are used, masking degrades the SxS and LT performance.
We thus will not include this in our final system but recommend
as a convenient approach to increase data diversity for the base-
line deliberation.

Table 4: WERs (%) using masking for first-pass hypotheses.

# Text Enc. WER (%)
Model Layers | VS | SxS | LT
Delib. Rescoring oL 49 | 27.6 | 30.7
+ MLM 5.0 | 26.6 | 30.6
Delib. + PTB 2L 48 1249 ] 295
+ MLM 4.8 | 25.8 | 29.7
Delib. + JATD-AIl oL 5.0 | 269 | 27.8
+ MLM 5.0 | 28.0 | 279

4. Comparison
4.1. WER Comparisons

In Table 5, we compare the cascaded encoder baseline (BO)
to the baseline deliberation model (B1) and deliberation with
proposed training techniques (E1-E3). The cascaded encoder
model (BO) is exactly the first-pass model used for deliberation.

First, we see that our best-performing deliberation model
(E3), with all techniques proposed in the paper, performs sig-
nificantly better than the deliberation baseline (B1), reducing
WERs by 4.1%, 6.5%, and 11.7%, for VS, SxS, and LT test sets,
respectively. The improvement is more prominent for long-
tail sets, indicating the text-only and semi-supervised training
is especially effective for long-tail. Compared to cascaded en-
coder (BO), our WER improvement is up to 15%. For individ-
ual techniques, we see that JATD and semi-supervised training
improves LT significantly by around 10% relative. BERT pre-
training improves VS significantly (6% relative), and the lack of
LT improvement is probably because JATD already does well in
long-tail.

In Table 5, we also compare to a LM rescoring model (B2)
similar to [1], which consists of 12 conformer layers. The LM
has a model dimension of 384 and 3072-D feedforward layers,
4-headed self attention, and a left context of 31 tokens. Over-
all, the LM rescorer has 71M parameters. The LM is trained
using the same text-only data used to train the BERT text en-
coder. During inference, the conformer LM is used to rescore
the lattice after the non-causal cascaded encoders. Compared to
LM rescoring in Table 5, deliberation with JATD (E1) performs
similarly to LM rescoring (B2) in long-tail words, and 6% and
12% relatively better for VS and SxS test sets, respectively.
Note that without BERT encoder the deliberation rescorer size
of E1 is 57M, which is 20% smaller than LM (71M). When

incorporating BERT and semi-supervised training, we achieve
more significant and uniform improvements: VS (8.9%), long-
tail (1.8%), and SxS test set (15.6%), all in relative WER reduc-
tions.

Table 5: WER (%) improvements by deliberation rescoring us-
ing text-only and semi-supervised training.

# Text Enc. WER (%)

Model layer VS | SxS LT
BO | Cas. Enc. [2] - 54 | 30.2 | 31.6
B1 | Deliberation L 49 | 27.6 | 30.7
El1 | Delib. JATD-All 5.0 | 269 | 27.8
E2 + 12L-BERT 1L 4.7 | 259 | 279
E3 + Semi-sup 4.7 | 25.8 | 27.1
B2 | LM Rescoring 12L 5.3 | 30.6 | 27.6

4.2. Side-by-Side Comparison with LM Rescoring

We further compare the proposed deliberation model to a state-
of-the-art LM rescorer [42] in a decoding setup with endpoint-
ing. The baseline cascaded encoders in [42] consist of a small
causal encoder and large non-causal encoder. The causal en-
coder consists of a 7-layer conformer and the non-causal en-
coder has a 10-layer right-context conformer with an overall
right-context of 0.9s. The encoder output dimension is pro-
jected to 384 to reduce model size. Following [1], we use
the hybrid autoregressive transducer (HAT) version of the LM
rescoring model (the non-HAT version performs worse). For
deliberation, we take the best-performing rescorer (E3 in Ta-
ble 5) and reduce the decoder dimension to 384 to match the
cascaded encoder. The deliberation rescorer has a total size of
106M. We found that a non-HAT decoder works better for de-
liberation than the HAT version.

We compare deliberation and LM rescoring in a human
side-by-side evaluation. A total of 705 utterances are tran-
scribed by both models, and are sent to two human transcribers
to rate. Each transcript is rated as either a win for deliberation
over LM rescoring (only deliberation is correct), or a loss (only
LM rescoring is correct), or neutral (both models are correct or
incorrect). Table 6 shows the deliberation rescorer changes 9%
of traffic, and has significantly more wins (114) than losses (50)
compared to LM rescoring. Overall, the p-Value of < 0.1%
shows the difference is statistically significant.

Table 6: Side-by-side eval: LM vs. Delib. Rescoring
Changed (%) | Win | Loss | Neutral | p-Value
9.0 114 50 541 <0.1%

In terms of VS WERSs in this comparison, the deliberation
model achieves a WER of 5.4%. This is 10% relative better
than cascaded encoders (6.0%), and 8% better than HAT LM
rescoring (5.9%). We have also tried increasing the LM size
to around 100M or using a BERT LM but did not see any im-
provement. The deliberation model achieves an EP50 (median
latency) of 380 ms and EP90 (90th latency) of 720 ms, similar
to LM rescoring.

5. Conclusion

We researched text-only and semi-supervised training for LAS-
based deliberation. By incorporating pretrained BERT text en-
coder, large-scale JATD and semi-supervised training, we have
improved the deliberation performance by 4% for VS, and 12%
relative for long-tail in terms of WERs. In the latest cascaded
encoder setup with endponting, we show the proposed delib-
eration rescorer outperforms a state-of-the-art LM rescoring
method by 8% relative in terms of VS WER, and wins in a hu-
man side-by-side evaluation.
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