
OmniNet: Omnidirectional Representations from Transformers

Yi Tay * 1 Mostafa Dehghani * 2 Vamsi Aribandi 1 3 Jai Gupta 1 Philip Pham 1

Zhen Qin 1 Dara Bahri 1 Da-Cheng Juan 1 Donald Metzler 1

Abstract

This paper proposes Omnidirectional Repre-
sentations from Transformers (OMNINET). In
OmniNet, instead of maintaining a strictly horizon-
tal receptive field, each token is allowed to attend
to all tokens in the entire network. This process
can also be interpreted as a form of extreme
or intensive attention mechanism that has the
receptive field of the entire width and depth of the
network. To this end, the omnidirectional attention
is learned via a meta-learner, which is essentially
another self-attention based model. In order to
mitigate the computationally expensive costs of
full receptive field attention, we leverage efficient
self-attention models such as kernel-based (Choro-
manski et al., 2020), low-rank attention (Wang
et al., 2020) and/or Big Bird (Zaheer et al., 2020)
as the meta-learner. Extensive experiments are
conducted on autoregressive language modeling
(LM1B, C4), Machine Translation, Long Range
Arena (LRA), and Image Recognition. The
experiments show that OmniNet achieves consid-
erable improvements across these tasks, including
achieving state-of-the-art performance on LM1B,
WMT’14 En-De/En-Fr, and Long Range Arena.
Moreover, using omnidirectional representation
in Vision Transformers leads to significant
improvements on image recognition tasks on both
few-shot learning and fine-tuning setups.

1. Introduction
Transformers (Vaswani et al., 2017), characterized by
stacked self-attention modules and feed-forward transforma-
tions, have become a staple in modern deep learning, natural
language processing (Devlin et al., 2018; Raffel et al., 2019)
and even computer vision (Dosovitskiy et al., 2020). One

*Equal contribution 1Google Research, Mountain View 2Google
Brain Team, Amsterdam 3Google AI Resident. Correspon-
dence to: Yi Tay <yitay@google.com>, Mostafa Dehghani
<dehghani@google.com>.

Preprint, Copyright 2021 by the author(s).

key defining characteristics in the self-attention mechanism
is the global receptive field in which each token is accessible
to every other token in the sequence, serving as an enabler
for learning global contextual representations.

This paper proposes learning omnidirectional represen-
tations from transformers. The key idea is to move
beyond horizontally global receptive fields and explore the
possibility of omnidirectional receptive fields. In short,
we allow each token to not only attend to all other tokens
in the same layer, but also all token in all the layers of the
network. This global access enables tokens to have a full
view of the network and as a result access the knowledge
and intermediate representations of every token at each layer.
By modeling the relationships amongst tokens of different
hierarchical levels, we are also able to capture patterns
pertaining to the propagation of representations across time.
Finally, this approach can be also be interpreted as a form
of dense residual connection (Huang et al., 2017), which has
been shown to be beneficial by aiding gradient flow.

Learning omnidirectional receptive fields is non-trivial for
two key reasons. Firstly, given the quadratic complexity of
the scaled dot product attention, the complexity of designing
such a receptive field is increased from N2L to (NL)2,
where L is the depth of the network andN is the sequence
length. We postulate that this is one big challenge that has
prohibited this type of architecture from being explored
in the past. Secondly, simply enabling omnidirectional
attention from the get-go would easily cause a degeneration
of the transformer into a flat network, losing much of its
representational power that is enabled by sequentially
refining its representations across network layers.

To mitigate these issues, our omnidirectional attention is
implemented as a form of meta-learner that acts upon a
standard transformer model. The meta-learner is yet another
self-attention model that accepts all hidden representations
across all layers as an input and refines them based on all
the available information. In order to mitigate the prohibitive
memory and computational costs of omnidirectional atten-
tion, we explore and evaluate multiple efficient alternatives
of parameterizing the meta-learner, e.g., including fast
attention via generalizable kernel attention (Choromanski
et al., 2020), low-rank self-attention (Wang et al., 2020),

OmniNet: Omnidirectional Representations from Transformers

and/or block-based sparsity (Zaheer et al., 2020). Addition-
ally, we further hypothesize that employing methods that
try to learn the low-rank factorized structure of the entire
network can lead to improved generalization capabilities -
as demonstrated in our few-shot learning experiments.

Aside from varying the parameterization of the meta-learner,
we also introduce partitioned variants of OmniNet in which
the meta-learner is applied to blocks of p consecutive layers.
In short, this partitioning strategy groups the full network
ofL layers into L

p partitions. After computing each partition,
the meta-learner learns the omnidirectional attention of all
nodes across all layers in the partition.

Via extensive experiments, we show that OmniNet achieves
very promising results on a myriad of language, vision, and
logic tasks. Specifically, we report strong experimental
results on autoregressive language modeling (Chelba et al.,
2013; Raffel et al., 2019), five collections of WMT machine
translation, Long Range Arena (Tay et al., 2020a), and Image
Recognition using Vision Transformers (Dosovitskiy et al.,
2020). Moreover, we systematically evaluate OmniNets
through the lens of the performance-compute trade-off and
show that they are pareto-optimal in this regard.

On machine translation, OmniNet outperforms ADMIN (Liu
et al., 2020), the current state-of-the-art 60 layers deep
transformer model on two well-established machine
translation collections (WMT’14 English-German and
WMT’14 English-French). On the one billion language
modeling benchmark, OmniNet outperforms existing
state-of-the-art models such as Transformer-XL (Dai et al.,
2019). On LRA, OmniNet improves aggregate performance
over Performers (Choromanski et al., 2020) by +8.9% and
vanilla Transformers by +2.6%. On Image Recognition
tasks, OmniNet demonstrates stellar few-shot learning and
finetuning performance, outperforming ViT (Dosovitskiy
et al., 2020) by up to≈+3% on both finetuning and few-shot
learning experiments.

2. Related Work
Just across the past several years, attention mechanisms (Bah-
danau et al., 2014) have made a significant impact on machine
learning research (Vaswani et al., 2017; Devlin et al., 2018;
Dosovitskiy et al., 2020; Raffel et al., 2019; Brown et al.,
2020; Dehghani et al., 2018). Simply speaking, these param-
eterized pooling mechanisms learn to align representations
and route information based on the notion of relative impor-
tance. While early work in this area was mainly concerned
with learning an alignment function between two or more
sequences (Bahdanau et al., 2014; Parikh et al., 2016), there
have been more focus on self-alignment (e.g., self-attention)
in the recent research climate (Vaswani et al., 2017).

Attention mechanisms are generally applied layer-wise and

operate across a one-dimensional sequence. Attention is
generally bidirectional, or unidirectional in the case where a
token is to be denied access to future tokens. There have been
early attempts to mix information across layers in pursuit
of improving gradient flow and model trainability. For
example, (Bapna et al., 2018) proposed transparent attention
in which the decoder gains access to all encoder layers.
(He et al., 2018) proposed layer-wise coordination between
encoder-decoder for machine translation. (Tay et al., 2018)
proposed to densely connect the attention across stacked
RNN encoder layers for language understanding tasks. The
recent Realformer (residual attention) (He et al., 2020)
proposed connecting the attention activations in a residual
fashion. We believe there is sufficient evidence in the liter-
ature to suggest that mixing representations across layers is
beneficial. This is further supported by fundamental work in
this area such as ResNets (He et al., 2016), highway networks
(Srivastava et al., 2015) and DenseNets (Huang et al., 2017).

In this paper, we are mainly interested in methods for
efficiently learning omnidirectional attention - an attention
over the entire width and depth of the network. To this end,
we leverage the recent advances in making transformers
fast and efficient (Zaheer et al., 2020; Choromanski et al.,
2020; Wang et al., 2020). Many of these approaches
learn an approximation via low-rank projection, kernels or
block-based sparsity. An overview and extensive empirical
comparison can be found at (Tay et al., 2020b;a). To this end,
the proposed approach leverages these recent advances to
make what was previously not possible. By leveraging fast
and efficient self-attention, we enable scalable and powerful
omnidirectional attention.

3. The Proposed Method
This section introduces OmniNet. We first begin by
reviewing the standard Transformer architecture.

3.1. Transformer Architectures

This section provides a brief background for the Transformer
architecture. The Transformer block accepts N ×d input,
whereN denotes the number of tokens in the sequence and
d denotes the size of the representation. Each Transformer
block is characterized by a self-attention block and a two
layered feed-forward network with ReLU activations
in-between that is applied position-wise.

3.1.1. SELF-ATTENTION

The self-attention mechanism first projects each inputX into
Q,K,V representations using linear transformations, cor-
responding to queries, keys, and values. The self-attention
mechanism is typically multi-headed where multiple similar
linear projections are executed in parallel. The output of

OmniNet: Omnidirectional Representations from Transformers

...

...

...

...
...... ...

...

Omnidirectional Attention

St
an

da
rd

 La
ye

rs
Om

ni
di

re
ct

io
na

l L
ay

er

pooling pooling pooling pooling

... Omnidirectional
Representations

...

Figure 1. Overview of OmniNet. In the diagram, the omnidi-
rectional module, when partition size is P = L, combines the
information across all positions (1:N), across all layers (1:L−1),
and for each position selects the best of all layers via a pooling
operation to generate the final representations.

each self-attention head h at layer l is written as:

yh,l=softmax

(
Qh,lK

>
h,l√

dk

)
Vh,l, (1)

where yh,l is the output of head h at layer l and dk is the
size of each head. The output from the multiple heads is
then concatenated and then passed through another linear
transformation via Wo,l which projects the concatenation
of all heads down to dm. This is wrapped via a layer
normalization followed by a residual connection and can be
written as: LayerNorm(Wo,lconcat([y1,l ···yH,l)))+xl−1
as the final output of the self-attention module.

Feed Forward Layers The FFN block of the Transformer
block performs a two layer transformation defined as:

zl=LayerNorm(W1,lReLU(W2,l(Y)))+zl−1, (2)

whereW1,W2 are trainable parameters (weight transforms)
of the FFN layer. Bias parameters are omitted for clarity.

3.2. OmniNet

The proposed OmniNet method operates on an arbitrary
multi-layered architecture that accepts sequential inputs. In
our description, this typically refers to a stacked X-former
architecture in this section. Note that while this is typically a
transformer model, it can also be an arbitrary variant (Choro-
manski et al., 2020; Wang et al., 2020). Figure 1 illustrates
a brief overview of the proposed OmniNet architecture.

3.2.1. OMNIDIRECTIONAL REPRESENTATIONS

In a stacked network of L layers, each layer exposes a
sequence of N vectors of d dimensions each. Specifically,
OmniNet operates across all layers and connects the
multi-layered network architecture in a grid like fashion.
We describe the network as xformer which acceptsX as an
input and returns a tensor ofL×N×d dimensions.

xformer(X)=X1,X2···XL, (3)

where Xi ∈ RN×d. Let Xi
j be the representation of X

at layer i and position j of the sequence. The OmniNet
mechanism can be written as:

O=Attend(IndexSort(X1,X2,···XL)), (4)

where Attend denotes an arbitrary self-attention block. The
IndexSort operation takes X1,X2,XL and sorts,1 tokens
within each matrix by index such that the adjacent token of
the ith token in layer l are the ith token from l−1 and l+1
respectively. Next, given that the input sequence length
is LN , it is advantageous for Attend to be as efficient as
possible. We describe three variants of OmniNet’s core
linear-time self-attention mechanism in subsequent sections.

Given O ∈ R(L×N)×d, the output of the omnidirectional
attention, we perform P (.) a pooling operator. While there
are many choices of pooling operators, parameterized or
otherwise, we adopt a simple pooling function - a max
pooling of strideL.

O′=MaxPool1D(O), (5)

whereO′∈RN×d. GivenO′, the final representation of an
OmniNet augmented network is defined as:

OmniNet(X)=xformer(X)L+O
′. (6)

The OmniNet and main transformer model are trained
together in an end-to-end fashion, i.e., gradients flow to both
networks concurrently at each backward pass.

3.2.2. MAINTAINING
CAUSALITY AND AUTOREGRESSIVE DECODING

A key point to note with IndexSort is that this order enables
us to apply a causal mask to the Attend function, namely
if tokens are sorted according to sequence index first as
opposed to layer first, then it would be easy to apply a causal
maskM , whereM [i,j]=0 when i≤j and−inf when i>j.
This enables OmniNet to be used in autoregressive settings.

1Since attention is permutation invariant this sorting simply
makes it easier to (1) compute casual masks and (2) aggregate
representations index-wise.

OmniNet: Omnidirectional Representations from Transformers

3.2.3. EFFICIENT TRANSFORMERS

We describe several choices of linear-time self-attention
mechanisms that are used in OmniNet’s omnidirectional
attention. Generally,Attend refers to an attention block with
an attention function and a two-layered positional FFN in
a similar structure to the transformer backbone. For the sake
of brevity, we only describe the core attention mechanism
here. Our choice of the efficient transformer is informed
by (Tay et al., 2020a) selecting models that perform well on
the compute-performance trade-off. For a list of potential
variants to adopt, we refer readers to (Tay et al., 2020b).

Kernel-based This variant uses the generalizable kernel
attention, the fast attention mechanism proposed in Per-
former (Choromanski et al., 2020). Specifically, this is
written as:

o=Woconcat(D̂h
−1

(φ(Qh)(φ(Kh))
>Vh)),

where D̂h=diagφ(Qh)((φ(Kh))
>1L) and φ(.) is a random

feature map that projects Rd to Rr. We refer readers
to (Choromanski et al., 2020) for more details.

Low-rank Inspired by Linformer’s (Wang et al., 2020)
self-attention mechanism, we set Attend to be:

o=Wo(concat(softmax

(
Qh(WKh)

>
√
dk

)
(WVh)),

whereW ∈RN×k are low-rank projection transformations
that are shared across heads and across keys and values. The
complexity of this self-attention mechanism isNk instead
ofN2, where k≪N .

Block and Memory based Lastly, we also explore a
block and memory-based variant of efficient Transformers
based on Big Bird (Zaheer et al., 2020). In short, this is a
combination of windowed attention, global attention, and
sparse attention. The output for token i is defined as:

oi=xi+

H∑
h=1

softmax
(
Qh,iK

>
h,N(i)

)
Vh,i,

whereN(i) is the neighborhood function which denotes the
out-neighbors of node i,H is the total number of heads and
h represents a head. The neighborhood function is mainly
dependent on the width of the windowed attention. We refer
the reader to (Zaheer et al., 2020) for more details.

3.2.4. PARTITIONED OMNINET

This section describes the types of partitioning variants
that we explore in OmniNet. When L is large, the eventual
representation input to OmniNet can be extremely large.2

2A sequence length of 1K would result in a 11K input
sequence length for a 12 layered Transformer model, when using
an omnidirectional layer as the final layer.

Table 1. Experimental results (quality, i.e., perplexity scores at 30K
and 100K respectively) on autoregressive language modeling. All
models are approximately 50M parameters.

Model LM1B C4

Transformer 33.14 34.86
Realformer 32.95 35.63
Performer 34.33 35.68
BigBird 32.90 38.36

OmniNetB 33.69 (-1.7%) 34.73 (+0.4%)
OmniNetP 30.19 (+9.0%) 33.97 (+2.6%)
OmniNetT 30.12 (+9.1%) 33.39 (+4.2%)

Table 2. Comparison with existing state-of-the-art and published
works on One Billion Word Language modeling (Chelba et al.,
2013) benchmark.

Model #Params PPL

Adaptive Input (Baevski & Auli) 0.5B 24.1
Adaptive Input (Baevski & Auli) 1.0B 23.7
Transformer-XL (Dai et al.) 0.5B 23.5
Transformer-XL (Dai et al.) 0.8B 21.8

OmniNetP (Large) 0.1B 21.6
OmniNetB (Large) 0.1B 22.0
OmniNetT (Large) 0.1B 21.5

Let P be an integer valued hyperparameter that determines
the partition size. For aL layer transformer network, when
` mod P is 0, we insert a meta-learner block.

X`=

{
Attend(X`−P ,···X`−1)), if ` modP =0

xformer(X`−1)

In short, whenever ` mod P =0, we activate an omnidirec-
tional attention layer, aggregating representations all the way
from the previous partition `−P layer up till `−1. In this
case, we skip the original xformer layer, hence maintaining
approximately the same parameter size of the network.

4. Experiments
We conduct experiments on autoregressive language mod-
eling, machine translation, long range sequence modeling
and a series of image recognition tasks. Our implementation
uses Flax (Heek et al., 2020) and Jax (Bradbury et al., 2018).

4.1. Autoregressive Language Modeling

We run experiments on large-scale autoregressive (uni-
directional) language modeling. We use two large-scale
datasets, language modeling one billion (LM1B) (Chelba
et al., 2013) and the Colossal Cleaned Common Crawl
corpus (C4) (Raffel et al., 2019).

OmniNet: Omnidirectional Representations from Transformers

Table 3. Results on five collections from the WMT’17 machine translation task.
Model En-De En-Fi Cs-En En-Fr Ru-En

Transformer. 28.6 20.5 22.2 43.0 35.8

OmniNetL 28.8 (+0.7%) 20.8 (+1.5%) 22.8 (+2.7%) 43.3 (+0.7%) 36.2 (+1.1%)
OmniNetB 28.8 (+0.7%) 20.9 (+2.0%) 22.6 (+1.8%) 43.2 (+0.5%) 34.2 (-4.5%)
OmniNetP 29.0 (+1.4%) 20.9 (+2.0%) 23.0 (+3.6%) 43.1 (+0.2%) 36.2 (+1.1%)

Table 4. Comparisons with the state-of-the-art on WMT’14 En-De
and WMT’14 En-Fr. OmniNet outperforms ADMIN (Liu et al.,
2020), the current state-of-the-art deep transformer model for MT.

Model En-De En-Fr

Evolved Trans. (So et al., 2019) 29.2 n/a
Large Trans. (Ott et al., 2018) 28.6 41.4
60L Trans. (Liu et al., 2020) 29.5 41.8

OmniNetP 29.8 42.6

4.1.1. EXPERIMENTAL SETUP

For both tasks, we use a max length of 256 subword tokens
per example and report scores on subword perplexity on
the validation set. In the first ablative experiment, we
train all models for 30K for LM1b and 100K steps for
C4 using 16 TPU-V3 Chips. Models are of base size and
have an embedding dimension of 512, 8 heads, 6 layers and
hidden dimensions (MLP) of 2048. For strong baselines,
we compare with Transformers, Performers (Choromanski
et al., 2020), and BigBird (Zaheer et al., 2020). We also add
the recent Realformer (residual attention Transformer) (He
et al., 2020) as a strong baseline. For OmniNet, we tune the
partition amongst {2,3,6}. All models have approximately
50M parameters. Next, we are interested in (1) how
OmniNet scales to large sizes and (2) comparing with other
published works (Dai et al., 2019). Hence, we implement
a larger OmniNet with MLPs of size 8K and head size of 2K.

4.1.2. RESULTS ON LANGUAGE MODELING

Table 1 reports results on LM. We observe that OmniNetP,T

outperforms all baselines by about +9.1% on LM1b and
+4.2% on C4. We also outperform strong baselines such as
Realformer, BigBird, and vanilla Transformers on both cor-
pora. We also observe that OmniNetP performs reasonably
close to OmniNetT , which ascertains that using an efficient
Transformer may be sufficient for omnidirectional attention.
On the other hand, Table 2 reports a comparison with other
published works on LM1B. Notably, OmniNetP,T (large)
outperforms Transformer-XL and achieves state-of-the-art
performance.

4.2. Neural Machine Translation

We conduct experiments on machine translation, a sequence-
to-sequence task. for evaluating Transformer models.

Table 5. Results on Long Range Arena (Tay et al., 2020a).

Model Text Retrieval ListOps Avg

Linformer 53.9 52.3 35.7 47.3
BigBird 64.0 54.7 36.1 51.6

Performer 65.4 53.8 18.0 45.7
+OmniNetP 65.6 60.9 18.2 48.2
+OmniNetL 63.1 63.7 37.1 54.6

Transformer 62.5 57.5 36.4 52.1
+OmniNetP 65.1 58.8 37.2 53.7
+OmniNetL 63.1 63.8 37.2 54.7

4.2.1. EXPERIMENTAL SETUP

We use five collections/datasets from WMT-17,3 namely En-
De (English→German), En-Cs (English→Czech), En-Fi
(English→ Finnish), En-Fr (English→ French) and En-Ru
(English→ Russian). We train all models using 16 TPU-V3
chips with a batch size of 256. Our base Transformer model
has 6 layers, a hidden size of 4096, embedding size of 1024,
and a head size of 1024. The number of heads is 16. We use
a SentencePiece (Kudo & Richardson, 2018) vocabulary of
32K built for each language specifically. More details can
be found in the appendix.

4.2.2. RESULTS ON WMT’17 MACHINE TRANSLATION

Table 3 reports results on all 5 collections of WMT’17. Over-
all, OmniNetP outperforms the vanilla Transformer model
on all five collections, with up to≈+3.6% performance im-
provement. Similar to LM, we find that the performer variant
works the best and the BigBird variant works the worse.

4.2.3. COMPARISONS AGAINST STATE-OF-THE-ART

We train a large OmniNet model and compare it with the
state-of-the-art approaches. We compare with ADMIN (Liu
et al., 2020), a very deep (60 layers) Transformer model
that achieves state-of-the-art performance on the WMT
En-De dataset. We use a 8 layer OmniNet model with 4096
MLP dimensions, 1024 hidden dimensions and embedding
dimensions. We compare models using sacrebleu (Post,
2018). For OmniNet, given the strong performance of the
Performer variant on WMT’17 collections, we only train a
single P variant OmniNet for comparing with SOTA models.
Further details of the setup can be found in the appendix.

3http://www.statmt.org/wmt17/
translation-task.html

http://www.statmt.org/wmt17/translation-task.html
http://www.statmt.org/wmt17/translation-task.html

OmniNet: Omnidirectional Representations from Transformers

Table 4 reports results on WMT’14 En-De and En-Fr.
Our results show that OmniNet outperforms the existing
state-of-the-art ADMIN model (Liu et al., 2020), a 60-layer
deep transformer model.

4.3. Long Range Arena

We conduct experiments on the recently proposed Long
Range Arena benchmark (Tay et al., 2020a). The goal of this
experiment is to show that OmniNet improves long-range se-
quence modeling. A dual goal is to show that it is possible to
combine different inductive biases to obtain a better efficient
Transformer model that is versatile on different types of data.

4.3.1. EXPERIMENTAL SETUP

We run two key experiments using Transformer and
Performer as the main backbone model and vary the meta-
learner in OmniNet, using Linformer and Performer variants
of the OmniNet meta-learner. The goal is to demonstrate
that OmniNet translates to backbone agnostic improvements.
We run OmniNet experiments using the LRA codebase and
run OmniNet models using the same hyperparameters as
the results reported in (Tay et al., 2020a). Note that LRA is
comprised of five benchmarks, however, we omit Image and
Pathfinder experiments since the best hyperparameters on
these tasks turn out to be shallow (1-2 layered) models. We
report the average of the text, retrieval, and ListOps tasks.

4.3.2. RESULTS ON LRA

Table 5 reports the results on our LRA experiments. Firstly,
we observe that OmniNet makes substantial improvements
to the base model, regardless of whether it is a Transformer
or Performer. Notably, with OmniNetL, the Linformer
meta-learner, the Performer model is improved by almost 6 to
7 absolute percentage points. An interesting observation can
be made on the ListOps task where OmninetP (Performer
variant) does not result in much improvement over the
base Performer. However, the performance doubles with
OmniNetL. Since the base Linformer model does pretty
well on this task, we postulate that this is due to OmniNetL
providing a Linformer-like inductive bias to the Performer
model. Finally, we observe that OmniNet improves the
vanilla Transformer in both cases (P or L), improving the
average score by about +2.6% absolute percentage points.

4.4. Image Recognition

Transformer-based models started showing competitive per-
formance on different vision tasks like classification, object
detection, and segmentation (Chen et al., 2020; Dosovitskiy
et al., 2020; Carion et al., 2020; Kumar et al., 2021).

To showcase the power of omnidirectional representations in
yet another task, we incorporate the omnidirectional represen-

tation in Vision Transformer (ViT) (Dosovitskiy et al., 2020),
when pre-trained on a large amount of data in a supervised
fashion and evaluated on downstream image recognition
tasks, either through few-shot learning or fine-tuning.

4.4.1. VISION TRANSFORMER

Vision Transformers (ViT) (Dosovitskiy et al., 2020) have
recently shown impressive results on image classification
compared to state-of-the-art convolutional networks, while
they require significantly fewer computational resources to
train. ViT is a standard Transformer that is directly applied
to images. To do so, we first split the input images into non-
overlapping patches and embedded them using a linear pro-
jection. The patch embeddings are provided as a sequence of
tokens to a Transformer. When pre-trained on large datasets
(14M-300M images) at a sufficient scale, ViT shows excellent
results that are transferable to tasks with fewer data points.

4.4.2. EXPERIMENTAL SETUP

Similar to the ViT setup, we pre-train our OmniNet models on
the JFT dataset (Sun et al., 2017) with 18k classes and 303M
images, for 7 epochs. We evaluate our models in the transfer
setup (few-shot and fine-tuning) on several downstream
tasks: ImageNet, CIFAR-10, CIFAR-100 (Krizhevsky et al.,
2009), Oxford-IIIT Pets (Parkhi et al., 2012), and Oxford
Flowers-102 (Nilsback & Zisserman, 2008). We follow
the pre-processing from (Kolesnikov et al., 2019) on both
upstream and downstream datasets, which is used in the
original ViT experiments.

In our experiments, we train and evaluate OmniNetB/32 and
OmniNetB/16, which are based on ViTB/32 and ViTB/16.4

Similar to ViTB/32 and ViTB/16, OmniNetB/32 and
OmniNetB/16 are both “base” models, adopted from BERT,
and use patch sizes of 32×32 and 16×16 respectively.

In our OmniNet models, we replace the final layer of ViT
with an omnidirectional layer. In other words, we set the
portion size P =12. In this task, we limit our experiments
to using Performers (Choromanski et al., 2020) in the
omnidirectional attention, given their strong results among
the efficient transformer variants.

During pre-training, we use a batch size of 4096 using Adam
with β1=0.9 and β2=0.999, and use a weight decay of 0.05
for OmniNet. We use a learning rate of 8e−4 with a linear
decay and a linear warmup of 10K steps.

4Note that SOTA results on the downstream tasks we use here
are from ViTH/14 (Dosovitskiy et al., 2020), which has more than
seven times as many parameters than the base models we use as
baselines. Here, we aim at merely showcasing the gain of using
omnidirectional representations in the image recognition task.

OmniNet: Omnidirectional Representations from Transformers

Table 6. Transfer performance of pre-trained OmniNet and equivalent ViT models in fine-tuning setup on popular image classification
benchmarks. All models are pre-trained on the JFT-300M dataset and fine-tuned on the target dataset.

ViTB/32 OmniNetB/32 ViTB/16 OmniNetB/16

ImageNet 0.8073 → 0.8374 0.8415 → 0.8626
CIFAR-10 0.9861 → 0.9900 0.9900 → 0.9940
CIFAR-100 0.9049 → 0.9153 0.9186 → 0.9224
Oxford-IIIT Pets 0.9340 → 0.9441 0.9580 → 0.9674
Oxford Flowers-102 0.9927 → 0.9954 0.9956 → 0.9961

exaFLOPs 165 193 743 891

1 5 10 25
num shots

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

ac
cu

ra
cy

ImageNet

ViTB/32 ViTB/16 OmniNetB/32 OmniNetB/16

1 5 10 25
num shots

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

ac
cu

ra
cy

CIFAR10

1 5 10 25
num shots

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

ac
cu

ra
cy

CIFAR100

1 5 10 25
num shots

0.70

0.75

0.80

0.85

0.90

0.95

ac
cu

ra
cy

Oxford_IIIT_Pets

1 5 10 25
num shots

0.90

0.92

0.94

0.96

0.98

1.00

ac
cu

ra
cy

Oxford Flowers-102

Figure 2. Performance of pre-trained OmniNet and equivalent ViT models in few-shot learning setup on downstream tasks, when transferred
using only few images (1, 5, 10, and 25) per class.

4.4.3. RESULTS ON IMAGE RECOGNITION

We first present the results of OmniNet and corresponding
ViT models as baselines in the fine-tuning setup. For
fine-tuning, we use SGD with momentum and a batch
size 512 in all downstream tasks. Table 6 presents the
results of fine-tuning experiments. We also report the total
pre-training compute, in terms of number of FLOPs for each
model. As we can see, introducing a module that learns
omnidirectional representations to Vision Transformers
leads to improvements on different downstream tasks. Given
these improvements and comparing the number of FLOPs for
OmniNets and ViTs, we can see that the additional compute,
thanks to efficient attention techniques, is fairly reasonable.

For evaluating OmniNet in the few-shot learning setup, simi-
lar to ViT, we train a linear classifier on top of the representa-
tions from the frozen pre-trained model, given only a subset
of training examples. Plots in Figure 2 illustrate the accuracy
of OmniNet and ViT, using different numbers of shots. The
results indicate that adding omnidirectional representations
to ViT leads to better transfer across all downstream datasets.

4.5. Effect of Partition
Size and Compute/Performance Trade-offs

OmniNet offers the flexibility to apply the Omnidirectional
layers on different partition sizes. With smaller partition
sizes, we attend to tokens from fewer layers, and with

Figure 3. Performance of ViT and OmniNet (with different partition
sizes) in terms of top-1 accuracy on ImageNet 5-shot linear, versus
their computational costs in terms of number of FLOPs.

bigger partition, we widen the vertical receptive field of
the omnidirectional attention, which might be effective for
learning better representations by capturing information
from more levels. In terms of computational costs, however,
there is a trade-off when choosing the partition size. Small
partition sizes means running attention on smaller sequences
while repeating it more frequent, and bigger partition sizes
means dealing with longer sequences, but having fewer
omnidirectional layers in the network.

We train OmniNetB/32 and OmniNetB/16 with different
partition sizes: P = {1,2,4,6,12}. Partition size P = 1 is
simply having no vertical attention and it is just replacing
normal attention in ViT, with Performer. We compare these

OmniNet: Omnidirectional Representations from Transformers

At
te

nt
io

n
M

ap
s

Po
ol

in
g

St
at

ist
ic

s
input Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6 Layer 7 Layer8 Layer 9 Layer 10 Layer 11

Figure 4. Contribution of different layers in Omnidirectional representations for a given set of examples. On top, we plot the omnidirectional
attention maps (using OmniNetB/16-P12) of one of the heads, over all layers, when CLS token in the last layer is used as query. On the
bottom, we show the contribution of each layer to the pooling operation of the Omnidirectional module.

models in terms of their linear 5-shot accuracy on ImageNet
dataset (similar to the ablation studies in (Dosovitskiy et al.,
2020)). Figure 3 presents the performance of each model
as well as their computational cost during pre-training.

A few patterns can be observed. For both OmniNetB/32

and OmniNetB/16, the power of omnidirectional directional
representations kicks in when we work with partition sizes
of more than 2. The input resolution during pre-training is
224× 224, so for /32 and /16 models the input sequence
length to the model is 49 and 196. So when setting P = 1
or P = 2, with such sequence lengths, when using an
efficient attention engine, like Performer, which provides an
approximation of the dot-product-attention, we do not gain
a lot on the speed and we lose a bit of performance. However,
when using a larger partition size, the additional compute
with respect to the performance gain becomes reasonable.

In both /32 and /16, the computation cost is almost similar
for P =4 and P =6. With P =4, we have three omnidirec-
tional attention, each applied on 4 layers, while with P =6
we have two omnidirectional attention, each applied on 6
layers. However, P =6 gives slightly better results in terms
of accuracy and is placed on a sweeter spot in this trade-off.
With P =12, the computational costs of OmniNet increase,
but the gain in the performance helps the model to be on the
frontier of the compute-performance trade-off, when it is
compared to OmniNetB/32 and OmniNetB/16.

4.6. Visualization

OmniNet combines information from different layers via
two sequential mechanisms (§3.2.1): (1) omnidirectional
attention, where representations of all tokens in all layers

get updated with respect to each other using an efficient
attention mechanism; and (2) a pooling operation, where for
each token, we collect the best values from all layers.

In order to understand how these two mechanisms combine
information across different layers, we visualize attention
maps (Abnar & Zuidema, 2020) and pooling statistics for
a set of examples in the image recognition task. Figure 4
depicts three example inputs, where we show how OmniNet
attends to different layers, as well as each layer’s contribution
during the pooling operation.

We can see that in some layers, attention seems to detect the
objects in the image via attending to the edges or specific
parts of the object, while in other layers, the attention
mechanism uses mostly background information. It is
clear that omnidirectional attention does indeed use such
information by actively attending to layers of varying depth.

Additionally, when performing the element-wise pool opera-
tion over all the layers for each token, only a fraction of values
from each layer’s representation make it to the final represen-
tation. The bottom rows in Figure 4 illustrate this fraction for
each token (image patch) across different layers. In most ex-
amples, we observe that a majority of the representation after
the pooling operation comes from the first few layers. This
is further evidence of how OmniNet can provide an explicit
path for directing fine-grained information that is captured
by the early layers to the final output, leading to much richer
representations. For the sake of brevity, we refer readers to
the Appendix for more detailed plots for these examples as
well as other examples, which illustrate the same trends.

OmniNet: Omnidirectional Representations from Transformers

5. Conclusion
In this paper, we proposed OmniNet, which uses omnidirec-
tional attention to connect all tokens across the entire network
via self-attention. In order to manage the computational
costs of the full receptive field, the meta-learner in OmniNet
is parameterized by fast and efficient self-attention models.
The proposed method achieves stellar performance on a
myriad of language and vision tasks. Concretely, OmniNet
achieves state-of-the-art performance on WMT EnDe and
EnFr, outperforming deep 60-layer transformers. OmniNet
also demonstrates substantial improvement over ViT on
image recognition tasks.

References
Abnar, S. and Zuidema, W. Quantifying attention flow in

transformers. In Proceedings of the 58th Annual Meeting
of the Association for Computational Linguistics, 2020.

Baevski, A. and Auli, M. Adaptive input representa-
tions for neural language modeling. arXiv preprint
arXiv:1809.10853, 2018.

Bahdanau, D., Cho, K., and Bengio, Y. Neural machine
translation by jointly learning to align and translate. arXiv
preprint arXiv:1409.0473, 2014.

Bapna, A., Chen, M. X., Firat, O., Cao, Y., and Wu, Y. Train-
ing deeper neural machine translation models with trans-
parent attention. arXiv preprint arXiv:1808.07561, 2018.

Bradbury, J., Frostig, R., Hawkins, P., Johnson, M. J., Leary,
C., Maclaurin, D., Necula, G., Paszke, A., VanderPlas, J.,
Wanderman-Milne, S., and Zhang, Q. JAX: composable
transformations of Python+NumPy programs, 2018. URL
http://github.com/google/jax.

Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan,
J., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G.,
Askell, A., et al. Language models are few-shot learners.
arXiv preprint arXiv:2005.14165, 2020.

Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov,
A., and Zagoruyko, S. End-to-end object detection with
transformers. arXiv preprint arXiv:2005.12872, 2020.

Chelba, C., Mikolov, T., Schuster, M., Ge, Q., Brants, T.,
Koehn, P., and Robinson, T. One billion word benchmark
for measuring progress in statistical language modeling.
arXiv preprint arXiv:1312.3005, 2013.

Chen, M., Radford, A., Child, R., Wu, J., Jun, H., Luan,
D., and Sutskever, I. Generative pretraining from pixels.
In International Conference on Machine Learning, pp.
1691–1703. PMLR, 2020.

Choromanski, K., Likhosherstov, V., Dohan, D., Song, X.,
Gane, A., Sarlos, T., Hawkins, P., Davis, J., Mohiuddin,
A., Kaiser, L., et al. Rethinking attention with performers.
arXiv preprint arXiv:2009.14794, 2020.

Dai, Z., Yang, Z., Yang, Y., Carbonell, J., Le, Q. V., and
Salakhutdinov, R. Transformer-xl: Attentive language
models beyond a fixed-length context. arXiv preprint
arXiv:1901.02860, 2019.

Dehghani, M., Gouws, S., Vinyals, O., Uszkoreit, J., and
Kaiser, Ł. Universal transformers. arXiv preprint
arXiv:1807.03819, 2018.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. Bert:
Pre-training of deep bidirectional transformers for lan-
guage understanding. arXiv preprint arXiv:1810.04805,
2018.

Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn,
D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer,
M., Heigold, G., Gelly, S., et al. An image is worth 16x16
words: Transformers for image recognition at scale. arXiv
preprint arXiv:2010.11929, 2020.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual
learning for image recognition. In Proceedings of
the IEEE conference on computer vision and pattern
recognition, pp. 770–778, 2016.

He, R., Ravula, A., Kanagal, B., and Ainslie, J. Realformer:
Transformer likes residual attention. arXiv e-prints, pp.
arXiv–2012, 2020.

He, T., Tan, X., Xia, Y., He, D., Qin, T., Chen, Z., and Liu,
T.-Y. Layer-wise coordination between encoder and
decoder for neural machine translation. In Proceedings of
the 32Nd International Conference on Neural Information
Processing Systems, pp. 7955–7965, 2018.

Heek, J., Levskaya, A., Oliver, A., Ritter, M., Rondepierre,
B., Steiner, A., and van Zee, M. Flax: A neural
network library and ecosystem for JAX, 2020. URL
http://github.com/google/flax.

Huang, G., Liu, Z., Van Der Maaten, L., and Weinberger,
K. Q. Densely connected convolutional networks. In
Proceedings of the IEEE conference on computer vision
and pattern recognition, pp. 4700–4708, 2017.

Kolesnikov, A., Beyer, L., Zhai, X., Puigcerver, J., Yung,
J., Gelly, S., and Houlsby, N. Big transfer (bit): Gen-
eral visual representation learning. arXiv preprint
arXiv:1912.11370, 2019.

Krizhevsky, A., Hinton, G., et al. Learning multiple layers
of features from tiny images. 2009.

http://github.com/google/jax
http://github.com/google/flax

OmniNet: Omnidirectional Representations from Transformers

Kudo, T. and Richardson, J. Sentencepiece: A simple
and language independent subword tokenizer and
detokenizer for neural text processing. arXiv preprint
arXiv:1808.06226, 2018.

Kumar, M., Weissenborn, D., and Kalchbrenner, N. Coloriza-
tion transformer. arXiv preprint arXiv:2102.04432, 2021.

Langley, P. Crafting papers on machine learning. In Langley,
P. (ed.), Proceedings of the 17th International Conference
on Machine Learning (ICML 2000), pp. 1207–1216,
Stanford, CA, 2000. Morgan Kaufmann.

Liu, X., Duh, K., Liu, L., and Gao, J. Very deep trans-
formers for neural machine translation. arXiv preprint
arXiv:2008.07772, 2020.

Nilsback, M.-E. and Zisserman, A. Automated flower
classification over a large number of classes. In 2008
Sixth Indian Conference on Computer Vision, Graphics
& Image Processing, pp. 722–729. IEEE, 2008.

Ott, M., Edunov, S., Grangier, D., and Auli, M. Scal-
ing neural machine translation. In Proceedings
of the Third Conference on Machine Translation:
Research Papers, pp. 1–9, Brussels, Belgium, Oc-
tober 2018. Association for Computational Linguis-
tics. doi: 10.18653/v1/W18-6301. URL https:
//www.aclweb.org/anthology/W18-6301.

Parikh, A. P., Täckström, O., Das, D., and Uszkoreit, J.
A decomposable attention model for natural language
inference. arXiv preprint arXiv:1606.01933, 2016.

Parkhi, O. M., Vedaldi, A., Zisserman, A., and Jawahar, C.
Cats and dogs. In 2012 IEEE conference on computer vi-
sion and pattern recognition, pp. 3498–3505. IEEE, 2012.

Post, M. A call for clarity in reporting bleu scores. arXiv
preprint arXiv:1804.08771, 2018.

Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S.,
Matena, M., Zhou, Y., Li, W., and Liu, P. J. Exploring
the limits of transfer learning with a unified text-to-text
transformer. arXiv preprint arXiv:1910.10683, 2019.

So, D. R., Liang, C., and Le, Q. V. The evolved transformer.
arXiv preprint arXiv:1901.11117, 2019.

Srivastava, R. K., Greff, K., and Schmidhuber, J. Highway
networks. arXiv preprint arXiv:1505.00387, 2015.

Sun, C., Shrivastava, A., Singh, S., and Gupta, A. Revisiting
unreasonable effectiveness of data in deep learning era.
In Proceedings of the IEEE international conference on
computer vision, 2017.

Tay, Y., Tuan, L. A., Hui, S. C., and Su, J. Densely connected
attention propagation for reading comprehension. arXiv
preprint arXiv:1811.04210, 2018.

Tay, Y., Dehghani, M., Abnar, S., Shen, Y., Bahri, D., Pham,
P., Rao, J., Yang, L., Ruder, S., and Metzler, D. Long
range arena: A benchmark for efficient transformers.
arXiv preprint arXiv:2011.04006, 2020a.

Tay, Y., Dehghani, M., Bahri, D., and Metzler, D. Efficient
transformers: A survey. arXiv preprint arXiv:2009.06732,
2020b.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, Ł., and Polosukhin, I. Attention
is all you need. In Advances in neural information
processing systems, pp. 5998–6008, 2017.

Wang, S., Li, B., Khabsa, M., Fang, H., and Ma, H.
Linformer: Self-attention with linear complexity. arXiv
preprint arXiv:2006.04768, 2020.

Zaheer, M., Guruganesh, G., Dubey, A., Ainslie, J., Alberti,
C., Ontanon, S., Pham, P., Ravula, A., Wang, Q., Yang, L.,
et al. Big bird: Transformers for longer sequences. arXiv
preprint arXiv:2007.14062, 2020.

https://www.aclweb.org/anthology/W18-6301
https://www.aclweb.org/anthology/W18-6301

OmniNet: Omnidirectional Representations from Transformers

A. Detailed Experimental Setup
This section describes several details of our experiments.

A.1. Dataset Specific Setups

For all experiments, we implement code using Python and
JAX. Specifically, the main Transformer blocks and codebase
for most experiments are derived from FLAX examples. For
WMT’17, we build sentencepiece tokenizers of32K from the
dataset. WMT’17 collections are obtained from Tensorflow
datasets (TFDS). For autoregressive language modeling, the
C4 corpus is similarly found in TFDS. For both LM1B and
C4 tasks, we use a sentencepiece vocab of 32K subwords.

A.2. Efficient Transformer Hyperparameters

For Xformers (efficient transformers), we use implemen-
tations derived from FLAX5.For Linformer, we use k=32
for the low-rank down projection with shared parameters
for both key and value. For Performer, we use the default
setup from the official implementation. This corresponds
to the generalized attention with ReLU activations. We do
not use any random features. For BigBird, our codebase
similarly links to the official implementation and use the
default hyperparameters. The block size is 64 for BigBird
and the number of random blocks is 3.

B. Visualisation of Contributions of
Layers in Omnidirectional Representations

Figures 5 to 9 (in subsequent pages) show contributions
of different layers in omnidirectional representations in
terms of detailed attention maps (attention distribution
over all layers, in all heads, when the CLS token in the
omnidirectional layer is considered as the query) as well as
contribution of different layers in the pooling operation.

5https://github.com/google/flax.

https://github.com/google/flax

OmniNet: Omnidirectional Representations from Transformers

Pooling
Statistics

Attention
Maps

Figure 5. Contributions of different layers in omnidirectional representations for Example #1.

OmniNet: Omnidirectional Representations from Transformers

Pooling
Statistics

Attention
Maps

Figure 6. Contributions of different layers in omnidirectional representations for Example #2.

OmniNet: Omnidirectional Representations from Transformers

Pooling
Statistics

Attention
Maps

Figure 7. Contributions of different layers in omnidirectional representations for Example #3.

OmniNet: Omnidirectional Representations from Transformers

Pooling
Statistics

Attention
Maps

Figure 8. Contributions of different layers in omnidirectional representations for Example #4.

OmniNet: Omnidirectional Representations from Transformers

Pooling
Statistics

Attention
Maps

Figure 9. Contributions of different layers in omnidirectional representations for Example #5.

