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Abstract— Prior work has shown that smartphone spirometry
can effectively measure lung function using the phone’s built-in
microphone and could one day play a critical role in making
spirometry more usable, accessible, and cost-effective. Although
traditional spirometry is performed with the guidance of a
medical expert, smartphone spirometry lacks the ability to
provide the patient feedback or guarantee the quality of a
patient’s spirometry efforts. Smartphone spirometry is particu-
larly susceptible to poorly performed efforts because any sounds
in the environment (e.g., a person’s voice) or mistakes in the
effort (e.g., coughs or short breaths) can invalidate the results.
We introduce two approaches to analyze and estimate the
quality of smartphone spirometry efforts. A gradient boosting
model achieves 98.2% precision and 86.6% recall identifying
invalid efforts when given expert tuned audio features, while
a Gated-Convolutional Recurrent Neural Network achieves
98.3% precision and 88.0% recall and automatically develops
patterns from a Mel-spectrogram, a more general audio feature.

I. INTRODUCTION

Spirometry is the most widely employed objective mea-
sure of lung function. It is central to the diagnosis and
management of chronic lung diseases, such as asthma,
chronic obstructive pulmonary disease (COPD), and cystic
fibrosis. However, a standard spirometer is too expensive
and cumbersome to be accessible at home, particularly in
low resource regions. To address this issue, work from
Larson et al, SpiroSmart [1], [2], has shown it is possible to
perform a spirometry test using only the audio data from the
microphone of a standard smartphone. Typically, spirometry
is done under the supervision of a medical professional to
provide the patient with feedback on their technique to ensure
there are no errors in their spirometry effort. However, this
requires a nontrivial investment of time and money from
both the patient and the doctor. For smartphone spirometry to
be truly inexpensive and ubiquitous, it must be independent
of a medical professional and must therefore automatically
determine the validity of efforts using purely the audio data
from the smartphone.

Prior work has shown that errors in standard spirometry
efforts can be detected automatically using an expert engi-
neered algorithm. Melia et al. [3] achieved a specificity of
95% and a sensitivity of 96% in this regard using the flow-
versus-volume curve. However, they performed their analysis

*Varun Viswanath, Jake Garrison, and Shwetak Patel are with the
University of Washington

1S. Patel is Faculty and J. Garrison is a Masters Student in the Department
of Electrical Engineering, University of Washington, Seatle, WA 98105,
USA

2S. Patel is Faculty and V. Viswanath is an Undergraduate student in the
Paul G. Allen School of Computer Science and Engineering, University of
Washington, Seattle, WA 98105, USA

Fig. 1. A patient performs a smartphone spirometry effort. The app using
our proposed method recognizes that there was too much background noise,
so it rejected the effort from analysis.

on 1022 spirometry curves from a traditional spirometer
while our work is focused on data from a smartphone
spirometer. In our analysis, precision corresponds to the
positive predictive value, and recall to sensitivity.

SpiroSmart is a smartphone app developed by the Ubi-
comp Lab from the University of Washington to measure
lung function. To use SpiroSmart, a patient holds a smart-
phone an arm’s-length in front of their mouth and then
forcefully exhale a full breath. The smartphone records the
exhale audio. The microphone acts as an uncalibrated flow
sensor because sound is a pressure wave, and pressure is
related to flow.

Our work, like that of Melia et al., aims to provide
automatic feedback to a patient as they perform a smartphone
spirometry effort. An effort should be excluded from analysis
if it is incorrectly performed or contains confounding noise.
We introduce and compare several approaches to analyze
the quality and validity of smartphone spirometry efforts.
The first approach uses classical machine learning on an
assortment of expert defined sound processing features that
have been extracted from the audio recording of the patient’s
effort. The second approach uses neural networks on a time
frequency representation of the audio to automatically find
more complex patterns from the general audio features. Our
secondary aim is to evaluate how suitable each model is
to be run on a smartphone. An ideal model takes as little
memory as possible to store while also evaluating validity in
as little time as possible. Given these constraints, the Gated-
CRNN model performs the best; it achieves 98.3% precision
and 88.0% recall on the evaluation dataset of only valid and



invalid smartphone spirometry efforts.

II. METHODS

A. Dataset

Our original dataset contained 26,304 audio samples that
were collected from patients from clinics primarily in India.
The Institutions Ethical Review Board approved all exper-
imental procedures involving human subjects. The audio
recordings were recorded with an iPhone 5 at a sampling rate
of 44.1 kHz with no compression. The data was collected by
having the patient hold the smartphone vertically an arm’s-
length in front of their mouth, take a deep breath, and then
forcefully exhale while holding the phone in place.

A team labeled these recordings as either correctly per-
formed, incorrectly performed, or inaudible. We removed the
1,166 audio recordings that contained inaudible spirometry
efforts, and were left with 20,505 valid efforts and 4,633
invalid efforts. In order to balance the number of valid and
invalid efforts, we collected 11,023 audio samples from a
subset of a cough dataset generated at our university[4],
the Urban sound dataset[5], and speech from VoxForge
dataset. Coughs, urban sounds, and human speech all in-
validate spirometry efforts. These audio samples also help
our model generalize better to unseen invalid cases. In sum-
mary, our final dataset comprises 36,161 recordings: 20,505
correctly performed the spirometry efforts, 4,633 incorrectly
performed the efforts, and 11,023 contained noises that
would invalidate a spirometry effort resulting in a more
balanced dataset of 20,505 valid attempts and 15656 invalid
recordings.

B. Approach #1: Classical Machine Learning Models

Our first approach uses machine learning models trained
on an assortment of time-series features selected by an expert
with knowledge of spirometry and sound processing tech-
niques. These features include the peak loudness, loudness
at different times, the spectral envelope, the duration, the
number of peaks, and the coefficients of fitting a polynomial
equation to the audio envelope. We also generate a down-
sampled Mel-spectrogram, a time frequency representation of
audio data that is commonly used for speech analysis. The
Mel-spectrogram features were computed by downsampling
the audio to 16 kHz and then computing 64 Mel’s over
a window size of 1024 samples with an overlap of 400
samples. The resulting features were downsampled to 8 time
slices × 4 Mels. The final input vector has 142 values.

We designed six machine learning models to train on these
features: a Naı̈ve Bayes classifier [6], a K-Nearest Neighbors
classifier, a logistic regression model with L1 regularizer,
a logistic regression model with L2 regularizer, a Random
Forest classifier[7], and a gradient boosting model[8].

In order to solidify our selection of expert features and
provide insight as to which features most impacted the
outcome, we performed a rigorous feature selection process
by analyzing the weights and decision trees learned by our
models. We found the following features to be most effective
at classifying an effort; Exhale duration, initial loudness,

TABLE I
ARCHITECTURES OF NEURAL NETWORK MODELS

VGG style value G-CRNN value
2D Conv Layers 4 1D Conv Layers 3
Number of Filters 32 / layer Number of Filters 64/32/16
Filter Size (7, 7) Kernel Size 2
Pool Size (2, 2) Stride Size 2
Fully Conn. Layers 4 Recurrent GRU layers 1
layer size 1

2
/ layer number of units 16

room noise and envelope polynomial coefficients. This out-
come makes sense given that a valid spirometry effort has a
finite duration range, anything too long or too short can be
rejected with confidence. Valid efforts also have a loud burst
at the beginning and a small amount of background room
noise. Finally the polynomial coefficients of the envelope
are valuable because they effectively summarize the overall
shape of the amplitude envelope.

C. Approach #2: Convolutional Neural Networks

Our second approach uses convolutional neural networks
trained on the Mel-spectrogram described earlier, but without
the downsampling at the final step. In other words, the net-
work was trained on a Mel-spectrogram with 128 time slices
× 64 Mels of an audio signal sampled at 16 kHz. We use
the full-resolution Mel-spectrogram for the neural network
approach because such networks automatically downsample
the spectrogram and build complex relations between their
values.

We built two Neural Network models that only use
the Mel-spectrogram features. One is a nine-layer VGG
style convolutional neural network commonly used in im-
age classification[9], and the other is a three-layer Gated-
Convolutional Recurrent neural network[10]. The nine-layer
VGG style CNN has three repetitions of two convolutional
layers followed by a dense layer and a dropout layer. The
Gated-CRNN has three convolutional layers followed by
a Gated recurrent unit (GRU). Both models use stochastic
gradient descent and have dropout of 0.3.

The VGG CNN model trains faster than the Gated-CRNN
because it does not contain recurrent cells and can thus be
parallelized, despite the larger number of parameters. The
Gated-CRNN, having only 3 1D convolution layers and thus
fewer parameters, requires much less memory and fewer
computations for inference resulting in a much more suitable
model for mobile phone usage.

D. Model Training

We first trained the two approaches on their respective
features as described earlier. Then, to provide a more fair
comparison between the classical models and the neural nets
in regards to their feature spaces, we trained each approach
on it’s respective spectrogram. We had the machine learning
models use a downsampled version of the spectrogram the
neural networks use because we wanted to keep the input
feature vector small, and because Mel-spectrograms have
redundant information that can be downsampled without los-
ing insight. The neural networks perform this downsampling



automatically because of the max pooling layers in their
architectures’.

We trained on 85% of the dataset, the other 15% was set
aside for evaluation using four fold cross-validation as well
as parameter grid search to finalize hyperparameters for the
classical models.

III. RESULTS
A. Evaluation Datasets

We use two different evaluations datasets. The first eval-
uation dataset contains a balanced number of valid and
invalid smartphone spirometry efforts and includes 5% of the
total data. The second evaluation dataset contains a balanced
number of valid and invalid audio samples. The invalid audio
samples include both poor smartphone spirometry efforts
and non-smartphone spirometry effort sounds from the other
datasets mentioned. This dataset includes 15% of the total
data and is a superset of the first evaluation dataset.

B. Analysis

For our analysis, we frame our accuracy metrics according
to the identification of an invalid test; in other words, record-
ings that involve a poor smartphone spirometry effort or too
much noise are assigned into the positive class. As shown
in Table II, both approaches tend to have higher precision
than recall. This means that if an audio sample is predicted
to be invalid, it is more likely to contain invalidating sound.
However, if a particular audio sample is invalid, it’s less
likely to be predicted to contain an error. For our application
we want to ensure that we minimize the number of invalid
examples that are not identified, even if it means rejecting
some well performed efforts because it is better to have a
patient perform an effort again than allow an erroneous effort
to be used for medical diagnosis.

TABLE II
PRECISION, RECALL OF MODELS ON LARGE EVALUATION DATASET

CONTAINING A MIX OF NOISE SAMPLES AND SMARTPHONE

SPIROMETRY EFFORTS

All Features Mel-Spectrogram
Precision Recall Precision Recall

Naı̈ve Bayes 0.943 0.725 0.821 0.717
K-Nearest Neighbors 0.969 0.812 0.970 0.829

Log Reg (L1) 0.963 0.902 0.928 0.824
Log Reg (L2) 0.936 0.875 0.927 0.837

Random Forest 0.978 0.905 0.966 0.886
Gradient Boosting 0.978 0.916 0.965 0.889

VGG CNN NA NA 0.978 0.927
Gated-CRNN NA NA 0.967 0.928

The best-performing model is the Gated-CRNN; it has
multiple advantages over the other models. It has a recurrent
layer that can take better advantage of temporal locality than
any of the other models. It uses 1-dimensional convolutions
that not only find patterns across the time domain more
effectively than the 2-Dimensional convolutions in the VGG
CNN, but also pool the Mel-spectrograms down to a reason-
able feature map. Additionally, it applies attention to each

TABLE III
PRECISION, RECALL OF MODELS ON SMALL EVALUATION DATASET

CONTAINING ONLY SMARTPHONE SPIROMETRY EFFORTS

All Features Mel-Spectrogram
Precision Recall Precision Recall

Naı̈ve Bayes 0.872 0.347 0.805 0.524
K-Nearest Neighbors 0.965 0.478 0.944 0.523

Log Reg (L1) 0.975 0.690 0.944 0.581
Log Reg (L2) 0.947 0.720 0.938 0.586

Random Forest 0.989 0.732 0.961 0.661
Gradient Boosting 0.978 0.758 0.963 0.614

VGG CNN NA NA 0.970 0.805
Gated-CRNN NA NA 0.983 0.88

time slice via GRU cells, allowing the model to isolate the
specific patterns over time that characterize good versus bad
smartphone spirometry efforts.

The Gradient Boosting model is the strongest of the
classical machine learning models, but Random Forest model
also performs well in comparison to the other classical
machine learning models. This is likely because they both
build decision trees that inherently form complex chains
of relationships between features. However, neither decision
tree model performs as well as the neural networks because
they don’t intrinsically tend to take advantage of temporal
or frequency locality whereas a CNN finds such patterns
by sliding a convolution over the matrix of features ordered
in time and frequency. The decision tree models were just
as likely to associate features from the first and last time
slices as the first and second time slices, resulting in complex
feature relationships that are less likely to reveal pertinent
information about the signal. Nevertheless, we selected the
Gradient Boosting model as the best classical machine learn-
ing model because of its precision and recall as well as it’s
shallow decision tree takes less memory and performs faster
inference than the Random Forest model’s heavy, fully grown
tree.

Fig. 2. An Example of the Mel-Spectrogram for a well performed
smartphone spirometry effort

The small evaluation dataset is more challenging for all of
the models. This is to be expected since spirometry efforts
have a very specific shape; a sharp burst followed by a decay
to almost nothing at the end. In the large evaluation dataset,
most models relied on the very early and very late time slices
in the spectrogram to verify the burst or decay to quickly



identify the invalid non-smartphone spirometry sounds. On
the other hand, in the small evaluation dataset, models
need more nuanced features to analyze the patterns in the
middle time slices to identify poorly performed smartphone
spirometry efforts. Poorly performed efforts are defined by
abnormalities in the decay that must be represented by a
relationship over multiple time slices [11]. The variety and
subjectivity of the rules that define invalid spirometry efforts
is what makes this dataset and this problem challenging.
Both the neural networks and the decision tree based models
stand out on the small dataset, but because decision trees do
not use temporal or frequency locality to develop feature
relationships, the neural networks perform the best.

When only given the Mel-spectrogram features rather than
the full suite of expert crafted features, the classical machine
learning models performed worse on average. The most sim-
plistic models actually performed better in the small dataset,
but this is likely because the smaller input vector allowed
it to find more consistent patterns. Otherwise, the classical
machine learning models perform worse without the features
designed with sounds processing and biophysical spirometry
expertise. The Gradient Boosting model performed best
because its decision trees can extract similar information to
the expert designed features. Overall, the classical machine
learning models struggled to extract adequate information
to consistently identify poorly performed efforts when only
using the Mel-spectrogram features.

IV. CONCLUSION

The classical machine learning models were using features
that sound processing experts with understanding of the
biophysics of spirometry designed and the neural networks
still extracted more critical information in the features they
built than these experts with domain knowledge. The neural
network’s performance is likely attributed to their ability
to develop higher complexity features such as relationships
between different frequency values over multiple slices of
time. The classical machine learning models form shallow re-
lationships between much smaller sets of time and frequency
regions and fail to capture the changes in frequency over time
that distinguish poorly performed spirometry efforts.

The two neural networks were fundamentally different in
a couple ways. The Gated-CRNN performs a 1-dimensional
convolution where the window moves across several time
slices while the VGG CNN performs 2-Dimensional con-
volutions across both time and frequency. This causes the
Gated-CRNN to build features that are time dependent
while the VGG CNN does not necessarily have this time
dependency. The features that truly capture what it means
for an effort to be invalid must build complex relationships
over different time slices because spirometry efforts contain
a sharp peak in the early time slices and then decay through
the middle and later time slices. Thus this gives the Gated-
CRNN one distinct advantage over the VGG CNN.

The other important difference is that the Gated-CRNN
applies attention gates to each time slice in the recurrent
layer. This allows the model to isolate specific patterns over

time, ignoring the more chaotic or less interesting time slices
of the signal that the VGG CNN likely clings to. These
key differences are strong reasons to select the Gated-CRNN
over the VGG CNN, in addition to its faster evaluation and
its more efficient memory consumption which make it more
suitable for mobile spirometry.

Although there is still room for improvement, our work
has shown that neural networks can extract more information
from potentially muddled signals than traditional methods us-
ing domain-specific, expert-designed features, that a Gated-
CRNN taking less memory and using fewer parameters
can perform validity checking more effectively than a very
deep convolutional neural network, and that it is possible
to provide the necessary expert level validity feedback for
smartphone-based spirometry efforts.

We are actively integrating the results of this work in our
larger effort in developing a smartphone spirometer. We plan
to classify the type of error in an invalid Spirometry effort
similarly to how a clinician may coach the patient. With this
improvement, the patient can have an idea on how to improve
their results, for example the model may tell the patient to
head to a quieter room, or exhale for longer. In addition,
we aim to optimize our model for offline mobile use so it
can be used in environments lacking fast Internet. This work
is essential for ensuring the quality of mobile spirometry to
match those of clinical spirometers.
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