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ABSTRACT
The content on the web is in a constant state of flux. New entities,
issues, and ideas continuously emerge, while the semantics of the
existing conversation topics gradually shift. In recent years, pre-
trained language models like BERT greatly improved the state-
of-the-art for a large spectrum of content understanding tasks.
Therefore, in this paper, we aim to study how these languagemodels
can be adapted to better handle continuously evolving web content.

In our study, we first analyze the evolution of 2013 – 2019 Twitter
data, and unequivocally confirm that a BERT model trained on past
tweets would heavily deteriorate when directly applied to data from
later years. Then, we investigate two possible sources of the deteri-
oration: the semantic shift of existing tokens and the sub-optimal
or failed understanding of new tokens. To this end, we both explore
two different vocabulary composition methods, as well as propose
three sampling methods which help in efficient incremental train-
ing for BERT-like models. Compared to a new model trained from
scratch offline, our incremental training (a) reduces the training
costs, (b) achieves better performance on evolving content, and (c)
is suitable for online deployment. The superiority of our methods
is validated using two downstream tasks. We demonstrate signifi-
cant improvements when incrementally evolving the model from a
particular base year, on the task of Country Hashtag Prediction, as
well as on the OffensEval 2019 task.
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1 INTRODUCTION
Our world is changing, and so are our languages [1, 21]. New en-
tities, issues, and words are emerging rapidly. This is reflected in
periodic entry additions to online dictionaries. For instance, during
the Covid-19 pandemic, new words like “Covid” and “Zoom” have
been added to the Oxford English Dictionary (OED)1. In addition,
the usage and context of the existing words is constantly evolving
to better describe our times and customs. For instance, “flattening
the curve”, which was previously an esoteric scientific term, re-
cently became a commonplace phrase with its own sub-entry in
the OED. This continuous language evolution is even more evident
on the web and in social media content.

Prior works show that new words and semantic evolution pose a
crucial challenge in many NLP tasks, leading to a significant perfor-
mance drop for word embedding based models (eg, word2vec [30])
[24, 32]. In recent years, pre-trained transformer based language
models like BERT [11] greatly improved the state-of-the-art for a
large spectrum of NLP tasks, but the study of their capability to
handle dynamic content has been limited. One relevant study by
Lazaridou et al. [25] shows that Transformer-XL [10], a left-to-right
language model trained on current data, still performs poorly on
future instances for news and scientific articles. A natural question
is, can a bidirectional language model like BERT be successfully
adapted to continuously evolving content?

To answer this question, we first analyze the evolution of 2013 –
2019 Twitter data, and unequivocally confirm that a BERT model
trained on past tweets would heavily deteriorate when directly
applied to data from later years. We further investigate the two
possible causes for deterioration, namely, new tokens and semantic
shift of existing tokens. We show (see Figure 2) that there is a huge
vocabulary shift over the years, eg, the most frequent words for
2014 and 2019 change by 18.31% and 37.49%, respectively, compared
to 2013, and the most frequent wordpieces [46] (subwords used by
BERT) shift by roughly the same extent (see Figure 3). Given this
churn, wordpiece representations are likely to be sub-optimal with
new data, leading to a decrease in the effectiveness of the learned
representations.

Therefore, we propose to dynamically update the wordpiece vo-
cabulary, by adding emerging wordpieces and removing stale ones,
aiming at keeping the vocabulary up-to-date, while maintaining its
constant size for ensuring efficient model parameterization. In ad-
dition, we examine two different vocabulary composition methods
for Twitter hashtags: (a) feeding each hashtag after stripping “#” to
the WordPiece tokenizer and (b) retaining whole popular hashtags
as tokens in the wordpiece vocabulary, as they may capture some
of the current zeitgeist semantics. We notice that keeping popular

1https://public.oed.com/updates/new-words-list-july-2020/

 

This work is licensed under a Creative Commons Attribution International 4.0 License. 

KDD ’21, August 14–18, 2021, Virtual Event, Singapore. 
© 2021 Copyright held by the owner/author(s). 
ACM ISBN 978-1-4503-8332-5/21/08. 
https://doi.org/10.1145/3447548.3467162  

https://doi.org/10.1145/3447548.3467162
https://doi.org/10.1145/3447548.3467162
https://public.oed.com/updates/new-words-list-july-2020/
https://creativecommons.org/licenses/by/4.0/


Figure 1: Overview of System Architecture for Incremental Training of a Production Model.

whole hashtags in the vocabulary could bring over 25% gain across
different metrics for hashtag sensitive tasks.

To examine the semantic shift, we select a few country hashtags
as a case study. By comparing their top co-occurring hashtags and
words, we show that the semantics of the country hashtags shift
over the years. We, thus, propose to incrementally pre-train BERT
with new data as it appears, so that the model can adapt to the
language evolution. However, simply using all new data can be
very costly, as training BERT is computationally expensive [38]. To
reduce the amount of the required training data, we propose three
effective sampling approaches to iteratively mine representative
examples that contain new tokens, or tokens which potentially
exhibit large semantic shifts, for incremental learning.

Our incremental learning reduces the training cost by 76.9%
compared to training an entirely new model, while also achieving
better prevention of model deterioration as new content emerges.
We evaluate the model performance on two downstream tasks on a
large Twitter dataset – Country Hashtag Prediction and offensive
tweet prediction (OffensEval 2019 task [48]). We demonstrate sig-
nificant improvements for our incremental training methods which
use effective sampling over baselines in these evaluations.

To deploy our model in production, we first generate model vo-
cabulary using a particular year’s data, pre-train the model, and
fine-tune it using task data. Figure 1 gives an overview of our pro-
posed architecture. We continuously monitor the MLM loss on
real-time data stream and on detecting performance deterioration
for the current model, we draw hard examples from a weighted data
store using an effective sampling strategy described in Section 4.3.
We update the model vocabulary and incrementally train the model
using the hard examples. The model is further fine-tuned and de-
ployed. In this way, the entire life-cycle of dynamic model updates

(vocabulary update, pre-training, and fine-tuning) can occur while
continuously serving live traffic.

To summarize, the main contributions of this work are as follows:

• To the best of our knowledge, we are the first to study dy-
namic BERT modeling for continuously evolving content.

• We propose a simple yet effective method to dynamically
update BERT model vocabulary.

• We observe that keeping popular whole hashtags in model
vocabulary can benefit certain tasks and validate our dy-
namic BERT modeling technique based on two different
model vocabulary compositions.

• We propose three different sampling methods for more ef-
ficient incremental BERT training based on hard example
mining.

• One of our proposed methods can also be used to determine
when incremental training should be triggered in real-world
applications.

2 RELATEDWORK
As language evolves, new words are emerging and the semantics of
existing words are drifting [1, 21]. In this section, we first discuss
how the prior work addresses these two challenges in language
modeling, and then summarize the existing work on incremental
learning (which is applied in our work in the context of dynamic
language modeling).

2.1 Handling NewWords
New words that are out of vocabulary (OOV) pose great challenges
to many NLP tasks [32]. The model performance could be signif-
icantly hurt by a high OOV rate, especially for morphologically



rich languages and domains with dynamic vocabularies (eg, so-
cial media) [20]. Simply designing a language model with overly
large vocabularies cannot completely resolve the OOV issue, as
new words are always emerging, while also being parametrically
expensive [29, 37].

In language modeling, several approaches have been proposed
to address this issue. As the embeddings of new words do not exist
in the training data, one line of work replaces all new words by a
special token (eg, "UNK") with shared embeddings [16] or assigns
unique random embeddings to each new word [12]. In a separate
line of studies, researchers break-down a word to more fine-grained
units, including characters [2, 20, 28, 32, 49], character-based n-
grams [7, 41, 45], and subwords (eg, wordpiece [46] and byte-pair-
encodings [22, 37]). This could reduce OOV rate since these fine-
grained units are less likely to be unseen at the training stage. From
modeling aspect, these prior works leverage the morphological
structure for learning embeddings, and often adopt a pooling layer
(eg, CNN, LSTM) to combine the embeddings of fine-grained units
to construct the word embeddings. One limitation of this direction
is that some words can not be inferred from their subunits (eg, a
person’s name or a Twitter hashtag).

The third line of research attempts to explicitly generate OOV
word embeddings “on the fly” from context such as the definitions
of the OOV word in a dictionary [3] and example sentences that
contain the OOV word [15, 17, 19, 26]. Most works adopt a sim-
ple pooling approach, eg, summation [15], mean pooling [3, 19]
to aggregate the embeddings of the contextual words as the OOV
word embeddings, while Hu et al. [17] propose an attention-based
hierarchical context encoder to encode and aggregate both context
and subword information. In a multilingual setting, Wang et al. [44]
adopt joint and mixture mapping methods from pre-trained embed-
dings of low resource languages to that of English at subword level
to address this.

In our work, we adopt the Transformer-based language model
BERT [11], which uses wordpieces as the basic units. Though the
prior work shows that subword representation is a useful strategy
for dealing with new words, we show that there is still a significant
model downgrade for ever evolving content like Twitter. We, thus,
propose to dynamically update the vocabularies by swapping the
stale tokens with the popular emerging ones.

2.2 Semantic Shift over Time
The semantics of existing words keep evolving. Kutuzov et al. [24]
conduct a comprehensive review on this topic, and we only briefly
discuss the most relevant works here. As case studies, early works
choose a few words to discuss their semantic drifts over widely
different time periods [6, 42, 43]. The more recent works aim to
automatically detect word semantic changes where the semantics
of words are in distributional representation (eg, word-context
matrix) [9, 13, 36] or, recently more popular, distributed representa-
tion (ie, word embeddings) [14]. These works usually train different
word representation models with documents from different time
slices, and then compare the word semantic representations over
time using cosine distance to quantify the semantic change.

As each word embedding model is trained separately, the learned
embeddings across time may not be placed in the same latent
space [24]. Several approaches have been proposed to resolve this

alignment issue as a second step [14, 23, 50]. For instance, Kulkarni
et al. [23] use a linear transformation that preserves general vector
space structure to align learned embeddings across time-periods
and Hamilton et al. [14] use orthogonal Procrustes to perform em-
bedding alignments while preserving cosine similarities.

Other works attempt to simultaneously learn time-aware em-
beddings over all time periods and resolve the alignment prob-
lem [4, 35, 47]. Yao et al. [47] propose to enforce alignment through
regularization, Bamler et al. [4] develop a dynamic skip-grammodel
that combines a Bayesian version of the skip-gram model [5] with a
latent time series, and Rudolph et al. [34] propose dynamic embed-
dings built on exponential family embeddings to capture sequential
changes in the representation of the data.

Though there are plenty of prior works, most of them are based
on non-contextualized embeddings and limited work has been done
for Transformer-based language models. The most relevant work is
by [25] who demonstrate that Transformer-XL [10] (a left-to-right
autoregressive language model) handles semantic shifts poorly
in news and scientific domains, and highlight the importance of
adapting language models to continuous stream of new information.
In this work, we aim to bridge this gap and propose to detect and
adapt to semantic drift using BERT in a training framework based
on the incremental learning research.

2.3 Incremental Learning
Incremental learning is a family of machine learning methods that
use continuous input data (eg, data streams) to expand the capabil-
ity of an existing model, such as gradually increasing the number of
classes for a classifier. One challenge that incremental learning faces
is catastrophic forgetting, namely a dramatic performance decrease
on the old classes when training data with new classes is being
added incrementally [8]. This is even more evident for the deep
learning models [33, 39]. Training a model from scratch with both
old and new data seems to remedy this issue but is expensive in
terms of computational resources as well as carbon emissions [40].
To mitigate this, one line of work proposes to select a representa-
tive memory from the old data and then, incrementally train the
model with both memory and the new data [8]. Other works utilize
distillation loss [18] aiming at retaining the knowledge from old
classes, and combining this with the standard cross-entropy loss to
learn to classify the classes [8, 27].

In our work, we adopt an incremental learning framework to
build the dynamic BERT model based on continuously evolving
content where the emerging vocabulary entries can be considered
as new classes. Different from typical incremental learning, the
semantics of existing words (ie, old classes) may also change over
time. As such, we propose to intentionally update/forget the infor-
mation of old classes that have an obvious semantic drift. This work
is also different from the BERTweet model described in [31] which
is pre-trained with data over several years (2012 – 2019), whereas
our models are incrementally trained to keep their performance on
evolving content, from base models pre-trained with a particular
year’s data.

3 DYNAMIC LANGUAGE MODELING
Our language is continuously evolving, especially for the content
on the web. Can a language model like BERT that is pre-trained



on a large dataset adapt well to the evolving content? To answer
this, we use a large public Twitter corpus crawled from 2013 –
2019 for preliminary experiments and analysis. We pre-train year-
based Twitter BERT models on the Masked Language Modeling
(MLM) task, using the tweets from a particular year. All of them
are base models (12 layers) and initialized using the public BERT
pre-trained on Wikipedia and books [11]. For model evaluation, we
use two downstream tasks, Country Hashtag Prediction (predicting
the associated country hashtag for a tweet from 16 pre-selected
country hashtags) and OffensEval 2019 [48] (a shared task from
SemEval 2019 to predict if a tweet is offensive or not). The data
for Country Hashtag Prediction is curated from the 2014 and 2017
tweets in our dataset, while OffensEval is using tweets posted in
2019. The dataset and experiments are detailed in Section 5.

Our results unequivocally show that BERT pre-trained on past
tweets heavily deteriorates when directly applied to data from later
years. Take the results of 2017 Country Hashtag Prediction as an ex-
ample (Table 1). The 2016 model achieves 0.418 in Micro-F1, 0.265 in
Macro-F1, and 0.411 in Accuracy, which is significantly worse than
the 2017 model (0.561 in Micro-F1, 0.493 in Macro-F1, and 0.550 in
Accuracy). This suggests the necessity to keep the model informed
of the evolving content. To gain more insights, we investigate two
possible causes for the performance deterioration: (a) vocabulary
shift and (b) semantic shift of existing words, and propose dynamic
modeling solutions to address these two challenges.

Table 1: Results on 2017 Country Hashtag Prediction.

Model Micro-F1 Macro-F1 Accuracy
Base Model 2016 0.418 ± 0.003 0.265 ± 0.002 0.411 ± 0.003
Base Model 2017 0.561 ± 0.003 0.493 ± 0.003 0.550 ± 0.003

Figure 2: Vocabulary shift (%) for natural words using the
top 40k tokens. Corresponding figures for wordpieces and
hashtags can be found in Appendix A.A.

3.1 Vocabulary Shift
Vocabulary is the foundation for language models. Vocabulary can
consist of natural words and more fine-grained units like subwords
(eg, wordpieces), character-based n-grams, or even single char-
acters. Out of vocabulary (OOV) tokens pose great challenge to
language models as their embeddings do not exist in the model

training [20, 32]. To deal with this, a common practice is to map
the OOV tokens to a special “UNK” token such that all OOV tokens
share the same embeddings. Obviously, shared embeddings lose
specificity and are not informative. Prior works [20, 32, 45, 46, 49]
show that fine-grained units are effective in reducing OOV rate as
a new/unseen word could still be broken down into existing tokens
in the vocabulary. A natural question is, can wordpieces that are
adopted by BERT adapt well to the new words on Twitter? To this
end, we conduct wordpiece vocabulary shift analysis. Moreover,
we perform similar analysis for natural words and hashtags. We
first describe the three token variants in detail:

• Natural Words These are innate vocabulary tokens com-
monly used by humans. Their change directly reflects changes
in the general language.

• Subword Segments WordPiece [11] and SentencePiece [22]
are arguably the two most popular methods for machine lan-
guage tokenization. They both break-down natural words
into subwords, and they attest the fact that subword segmen-
tations are not only more effectively utilized by machines,
but can also reduce the size of the vocabulary. In this paper,
we adopt the WordPiece method but our discussions can be
applied to any tokenization method.

• Hashtags These are special tokens that start with a “#” sym-
bol, widely used on social media platforms like Twitter, Face-
book, and Instagram. Compared to natural words, hashtags
have a higher change rate. A hashtag can be a label of a
message, or can be directly a part of the message content.
Hashtags are extremely important for dynamic content mod-
eling, since they often indicate the key topics of the social
media post.

Based on our 2013 – 2019 Twitter dataset, we create the top 40K
vocabulary for natural words, wordpieces, and hashtags in each
year. All tokens are lowercased in pre-processing. For wordpieces,
the WordPiece tokenizer is applied to each year’s tweets separately.
We then compare these vocabularies and plot their shift rates for
natural words in Figure 2, and for wordpieces and hashtags in
Figure 3 in Appendix A.A. The shift is defined as:

1.0 − |𝑉𝑜𝑐𝑎𝑏_1
⋂
𝑉𝑜𝑐𝑎𝑏_2 |

|𝑉𝑜𝑐𝑎𝑏_1
⋃
𝑉𝑜𝑐𝑎𝑏_2 |

We see that all three types of tokens have huge vocabulary shifts.
Among them, hashtags exhibit the largest year-over-year shifts:
2014 and 2019 change by 58.75% and 78.31%, respectively, compared
to 2013. Since hashtags are the topic indicators for the posts, these
huge shifts also validate that the content on Twitter is drastically
evolving. Natural words change by 18.31% and 37.49% for 2014 and
2019, respectively, compared to 2013. Wordpieces follow similar
trends, changing 19.63% and 38.47% in 2014 and 2019, respectively,
compared to 2013.

Note that our analysis is based on the top 40K tokens. It is
likely that using a larger vocabulary may reduce the year-to-year
shifts/OOV rates. However, the memory limitation and computa-
tional cost prohibit extremely large vocabulary for mainstream
pre-trained language models. Most models are only able to keep
tens of thousands of tokens in the model vocabulary. For instance,
the original BERT uses 30K wordpieces [11]. Using large vocabular-
ies would make models parametrically expensive and render them
infeasible for real-world applications/deployment.



3.2 Sub-optimal Tokenization for NewWords
Though the year-to-year vocabulary discrepancies are huge, we
observe that the actual wordpiece OOV rate is low when applying
a model to data from later years. For instance, with the wordpiece
vocabulary curated from 2013 tweets, the OOV rate for 2014 data is
0.54%. The reason is that the WordPiece tokenizer could still decom-
pose a new/unseen word from later years into known subwords or
even characters. However, this does not necessarily guarantee that
the semantics of the new word is well preserved. For instance, the
words “griezmann” and “#unesco” from 2014 data are tokenized into
the wordpieces {“gr”, “##ie”, “##zman”, “##n”} and {“#un”, “##es”,
“##co”}, respectively, using the 2013 vocabulary. It is difficult for
BERT to capture the correct semantics from these wordpieces.

To further investigate this, we replace the wordpiece vocabulary
of a 2017 model with the vocabulary from 2013 data, and retrain
the model on 2017 data. For the 2017 Country Hashtag Prediction
task, we observe that using an out-dated vocabulary decreases the
model performance by 6.57% (in terms ofMicro-F1), relative to using
the vocabulary from the same year. This confirms that subword
representation like wordpieces is not an optimal solution to handle
new words in rapidly evolving content.

3.3 Vocabulary Composition for Hashtags
As hashtags often mark the topics in the posts, we believe that
understanding hashtags is key to the language model quality. Hash-
tags can consist of a single word (eg, “#amazon”), multiple words
(eg, “#wordcup2014”), or some characters indicating an abbreviation
(eg, “#nfl”). There are two straightforward approaches to incorpo-
rate hashtags into the modeling. One is to strip the “#” and treat
hashtags as normal natural words, feeding them to the WordPiece
tokenizer. It is very likely that many hashtags, especially those
that have multiple words, are segmented into subwords or even
characters. The strong topical information may be lost due to the
segmentation. Hashtag “#ItsComingHome”, which means winning
the Football World Cup is such an example. The WordPiece tok-
enizer decomposes it into three wordpieces “Its”, “Coming”, and
“Home”, which, however, poses difficulty for the model to relate
these three wordpieces to their original meaning. To alleviate this,
the second method to model hashtags is to include popular hashtags
(with “#’) as intact tokens in the wordpiece vocabulary and only
tokenize rarer ones as ordinary words.

We compare the two hashtag vocabulary composition approaches
on the aforementioned downstream tasks – Country Hashtag Pre-
diction and OffensEval. From Table 2, we see that including hash-
tags in the vocabulary largely boosts the model performance for
the 2017 Country Hashtag Prediction task (using a model trained
from scratch with 2017 data), improving the Micro-F1 from 0.314
to 0.561. On the other hand, for OffensEval (using a model trained
from scratch with 2019 data), including hashtags does not bring
any gains and slightly hurts the model performance as shown in
Table 3.

We attribute these different effects to the nature of the two
tasks. For the Country Hashtag Prediction task, the model needs
to understand the topics covered in the post well, and then make
a prediction about the associated country. Hashtag tokens carry
more contextual information than ordinary words. For instance, a

country hashtag could carry semantics of events associated with
this country and, would not just be limited to a regular country
name that indicates a geographic location. Therefore, differentiating
hashtags and regular words in the vocabulary is beneficial for this
task. On the other hand, for the task of OffensEval, the dataset
itself does not contain many hashtags, and most hashtags are not
informative to determine whether a tweet is offensive or not. As
such, including intact hashtags in the vocabulary is not beneficial.

Based on these results, in the remainder of the paper, for the
task of Country Hashtag Prediction, we will include popular whole
hashtags in model vocabulary; for the task of OffensEval, we will
break-down all hashtags into wordpieces, after stripping “#”.

Table 2: Performance using different Hashtag Vocabulary
Composition for 2017 Country Hashtag Prediction.

Vocabulary Composition Micro-F1 Macro-F1 Accuracy
Include Whole Hashtags 0.561±0.003 0.493±0.003 0.550±0.003
Break-down Hashtags 0.314±0.002 0.156±0.001 0.308±0.003

Table 3: Performance using different Hashtag Vocabulary
Composition for OffensEval 2019.

Vocabulary Composition F1 AUC-ROC
Include Whole Hashtags 0.491 ± 0.015 0.567 ± 0.015
Break-down Hashtags 0.506 ± 0.010 0.636 ± 0.011

3.4 Dynamic Updates to Model Vocabulary
As we discussed in Section 3.1, wordpieces are not effective in
handling rapidly evolving content that exhibits large vocabulary
shifts. Instead of leveraging a static vocabulary, we argue that it is
vital to dynamically update model vocabulary to reflect the evolv-
ing content. To this end, we propose a simple yet highly effective
algorithm to add the most frequent new wordpieces and remove
the outdated ones (ie, least likely to occur in the new wordpieces)
from the vocabulary. We detail this approach in Algorithm 1 in
Appendix A.B. For hashtag sensitive tasks like Country Hashtag
Prediction, we also add/remove popular/unpopular whole hashtags
in the vocabulary. Our goal is to keep the vocabulary up-to-date,
while maintaining its constant size for ensuring efficient model
parameterization.

After replacing the outdated tokens with new ones, we continu-
ously train the model with data sampled from the new timestamp.
We will detail the training strategies in Section 4. Our later ex-
periments show that this vocabulary updating approach is very
beneficial for model performance (detailed in Section 5).

3.5 Token Semantic Shift
Aside from emerging words, it is well known that the semantics
of existing words keep evolving [6, 24, 42, 43]. To measure the
semantic shift, one intuitive way is to compare their embeddings
learned in different years. However, since each year’s BERT model
was trained separately and their semantic space may not be well
aligned, direct comparisons may not be meaningful. Instead, we
turn to the contextual words as a proxy of semantic representation.



We use country hashtags in our Country Hashtag Prediction
task as a case study. We pick 1,000 most frequently co-occurring
words for the hashtags from 2014 and 2017 dataset, to confirm that
the semantics are shifting significantly. Taking the three country
hashtags “#china”, “#uk”, and “#usa” as examples, we compute the
rates of shift in top contextual words for these hashtags as 44.07%,
45.80%, and 65.59%, respectively. These significant shifts can be ex-
plained by the widely varying topics seen for 2014 and 2017 for the
respective countries. For instance, for the hashtag “#usa”, many of
the top topics (eg, “#worldcup”, “ronaldo”) for 2014 revolve around
the Football World Cup, whereas in 2017, several top topics (eg,
“#maga”, “#theresistance”) concern important developments in the
US politics. Table 7 in Appendix A.F further shows five of the top
co-occurring words for these hashtags that are representative of
the topics and events. As with the prior work, we propose to con-
tinuously train the model with updated data to handle the semantic
shift which is detailed in the following section.

4 EFFECTIVE SAMPLING FOR
INCREMENTAL TRAINING

For our proposed approach, we aim to dynamically update the vo-
cabulary – adding new tokens and removing obsolete ones – and
adapt the semantics of the tokens to reflect the evolving content.
In addition to these vocabulary shifts, new web and social con-
tent is being continuously created en masse, eg, on an average,
500 million tweets are posted everyday and 200 billion tweets are
created per year2. These motivate us to adopt an incremental learn-
ing framework to build our dynamic BERT model. As with typical
incremental training [8, 18], we need to learn new knowledge (eg,
the semantics for new words) while retaining the model’s existing
knowledge (eg, keeping the meanings of words that do not have a
semantic shift). In our case, however, we also need to intentionally
update model’s existing knowledge on those tokens which have a
semantic shift.

One key component of incremental training is to select proper
data to further train the model [8]. Naively, we could use all tweets
from the latest year to continuously train the model built previously.
However, training models like BERT are known to be computation-
ally expensive, particularly with a large dataset such as an entire
year of tweets. To reduce the training cost and make the incremen-
tal training feasible, one simple approach is to randomly sample
some sizable data from the new year’s tweets as the training dataset.
However, a random sample may not fully capture the evolution of
the language.

We, thus, propose three sampling approaches to mine representa-
tive tweets that contain evolving content (eg, new tokens or tokens
that are likely to have undergone semantic shift), which is in the
spirit of active learning. Our intuition is that new instances tend
to contain evolving content if the current model performs poorly
on them, or their embeddings have changed dramatically since the
training of the last model. We detail the three approaches below. All
three approaches run iteratively to detect representative examples
and keep improving the model. In addition, we would like to high-
light that the application of our proposed methods is not limited

2https://www.dsayce.com/social-media/tweets-day

to continuously evolving content, but can also be applied to any
scenario in which knowledge shift happens.

4.1 Token Embedding Shift Method
We leverage the change of a token’s embedding as a signal for evolv-
ing language. In each iteration, we compute the cosine distance
between a token’s embedding from the updated model and its pre-
ceding version. For the first iteration of training, we compare the
incremental model vocabulary with the base model’s vocabulary to
identify new tokens. We give higher weights to tweets containing
new tokens when sampling. For successive iterations, we identify
top 𝑋 tokens which exhibit the largest shift in their embeddings
between the current model and its preceding version, where 𝑋 is
domain dependent (ie, how fast the vocabulary evolves between
successive time-periods). When sampling, we assign large weights
to the tweets that contain tokens with large embedding shift. In ad-
dition, we observe that tokens in a short tweet tend to have a larger
embedding shift. Therefore, we linearly combine embedding cosine
distance and normalized tweet length as the sampling weight.

Algorithm 2 in Appendix A.E details this iterative approach. In
the first iteration, we randomly sample some tokens if the vocab-
ulary does not change; otherwise, we pick tokens that are newly
added to the vocabulary. In the later iterations, we use tokens’ shift
in embeddings to perform a weighted random sampling and then,
continuously train themodel.We repeat this process for𝑛 iterations,
where 𝑛 is a tunable parameter.

4.2 Sentence Embedding Shift Method
Similar to the token embedding shift method, we measure the em-
bedding shift via cosine distance for a sentence (ie, a tweet) between
the updated model and its previous version. Following the con-
vention, we consider the [CLS] token embedding as the sentence
embedding. Again, longer sentences are assigned a larger weight be-
cause short sentences tend to have larger embedding variances. We
use the combination of embedding cosine distance and tweet length
to perform weighted random sampling, and iteratively update the
model for 𝑛 iterations (detailed in Algorithm 2 in Appendix A.E).

4.3 Token MLM Loss Method
Token Masked Language Modeling (MLM) loss is a pre-training loss
proposed by BERT. It measures whether a model can successfully
predict a token when the token is masked out from the model’s
input. Different from its original form in BERT pre-training, we can
apply it to either a pre-trained or a fine-tuned model to identify
tweets with token semantic shift. Here, we modify the task defi-
nition to fit our use-case. We don’t mask out any tokens from the
model input. Instead, we take the last layer of the pre-trained BERT,
directly mask out tokens from that layer, and then use the surround-
ing tokens from the same layer to predict the masked tokens. The
benefit of doing this is as follows: when a model (fine-tuned on
some task(s)) is being served online, we don’t need to change either
the model’s input or output to calculate the new MLM loss. When
the fine-tuned model is inferred, we just need to take the last layer
of the pre-trained model (not that of the fine-tuned model) and
compute the losses. The model’s online serving quality won’t be af-
fected and the token MLM loss calculation is not only light-weight,

https://www.dsayce.com/social-media/tweets-day


but can also be piggy-backed to model serving. This method can
also run iteratively using the proposed Algorithm 2 (Appendix A.E).

Deployed Model. Figure 1 shows the conceptual architecture of a
production system based on our incremental training method. The
initial model is pre-trained using vocabulary and tweets derived
from a particular “base” time-period. This base model is further
fine-tuned with task specific data and deployed to serve real-time
traffic. For incremental training, “Token MLM Loss” sampling strat-
egy is used to mine representative tweets because of its strong
performance and unique benefits (elaborated in Section 6).

During model serving, token MLM loss is additionally computed
and stored with the data. Whenever there is a significant MLM loss
increase on the new data, a new incremental training epoch will be
triggered. We draw hard examples from the new data, update the
model vocabulary, and incrementally pre-train with these examples.
We then fine-tune the model for the specific task, and deploy the
resulting model. We continue to train new epochs as needed, to
keep the model up-to-date with the evolving data stream.

5 EXPERIMENTS
In this section, we evaluate our proposed dynamic modeling and
efficient incremental training strategies on rapidly evolving Twitter
content. We choose to use Twitter data for our experiments as it
is one of the large scale publicly available datasets. We describe
the experimental settings for model pre-training, training cost sav-
ings, two downstream tasks for model evaluation, and conclude by
discussing the experimental results.

5.1 Pre-training
We describe the data and detail its pre-processing in Appendix A.C.
In all our experiments, we use a 12 layer BERT and MLM loss as
our pre-training objective. To simplify our discussion, we define
two types of models:

• Base Model This is a fully trained model with one year’s
tweets. We initialize it using the original BERT-Base model
[11]. Its vocabulary is updated once from the original BERT-
Base model vocabulary using Algorithm 1 (Section 3.4) ex-
cept that we do not remove any tokens from the original
vocabulary (as its size is around 30k). In other words, base
model vocabulary is the union of BERT-Base model vocabu-
lary and optimized wordpieces (and hashtags if the vocabu-
lary composition includes whole hashtags) from that year.

• Incremental Model This is a model incrementally trained
based on the previous year’s base model. Its vocabulary is
iteratively updated from the prior year’s base model vocabu-
lary, again using Algorithm 1 (Section 3.4). We initialize the
embeddings for common tokens for the incremental model
from the corresponding embeddings of the base model and
randomly initialize the embeddings for the newly added
tokens, when we start training.

Note that we opt to train incremental models using the previous
year’s base model only and not using the data accumulated over
several past years. This simulates the effectiveness of continuously
adapting a trained model in a production setting (serving online
traffic).

For both models, we keep the vocabulary size fixed at 65K. When
whole hashtags are included in the vocabulary, we reserve 15K
for them and use the rest 50K for wordpieces generated by the
WordPiece tokenizer.

For every year, we randomly split the sampled 50M tweets into
45M for training and 5M for evaluation. All base models are trained
for 2.6M steps with 45M tweets. For incremental models, we start
from a 2M step base model checkpoint from previous year, sample
some new year’s tweets and incrementally train the model for
additional 600k steps. This strict setting to have both kinds of
models trained for identical number of steps (2.6M) aims to ensure
a fair comparison between their results.

For incremental training, we implement two simple sampling
methods as baselines to compare against our proposed sampling
approaches (Section 4):

• Uniform Random Sampling We draw a sample uniformly at
random from the new year’s tweets.

• Weighted Random SamplingWe draw a random sample weig-
hted by the number of wordpiece tokens in the tweet. Since
longer tweets tend to be more informative and contain evolv-
ing content, we favor longer tweets than shorter ones in the
sampling. This method shows some empirical benefits in our
experiments.

Each baseline samples 24M tweets from the 45M pool to con-
tinuously train a model starting with a base model from previous
year for an additional 600K steps. An incremental model is trained
iteratively, ie, sampling new tweets using our proposed sampling
methods and updating the model in each iteration. We empirically
use three iterations, and in each iteration train the model for 200K
steps with newly sampled tweets in this iteration together with
all tweets sampled in the previous iterations. To be specific, we
draw a sample of 10M, 8M, and 6M tweets for the first, second and,
third iterations, respectively. All sampling is performed without
replacement. Our incremental models will see 24M unique tweets
in total (other than the 45M examples used for training the base
model), which is the same amount of tweets used for baseline sam-
pling models. We describe the hyperparameters used for training
in Appendix A.D.

5.2 Training Cost Savings
Compared to training a base model from scratch (2.6M steps), our
proposed architecture for training an incremental model in Figure 1
significantly reduces the training cost. Since the cost of incremental
training is only 600k steps, we save 2M steps which yields a cost
savings of 76.9% relative to the base model.

5.3 Evaluation
As briefly described in Section 3, we assess the model performance
with two downstream tasks:

• Country Hashtag Prediction (2014 and 2017): This task aims
to predict the associated country hashtag for a tweet from a
pre-defined country list (detailed in Appendix A.G).
Note that training multiple end-to-end models for all years is
resource intensive in terms of both compute and time. Hence,
these two years which form a representative subset of all
years (2013 – 2019) were chosen for our experiments.



• OffensEval 2019: OffensEval is one of the tasks under Se-
mEval aimed at identifying if tweets are offensive (detailed
in Appendix A.H).

We expect Country Hashtag Prediction to be more sensitive to
topical content like hashtags and semantically shifted words, while
the OffensEval task (similar to other NLP tasks like sentiment anal-
ysis) is less so. We would like to evaluate our proposed architecture
on both types of tasks.

For all the downstream tasks, we fine-tune pre-trained models
for 300K steps. As Country Hashtag Prediction is a multi-class
classification task, we report micro-F1, macro-F1, and accuracy
scores for all the models on the test set. Since OffensEval is a binary
classification task, we report F1 score and AUC-ROC.

Table 4: Results for 2014 Country Hashtag Prediction.

Model Micro-F1 Macro-F1 Accuracy
Base Model 2013 0.124 ± 0.002 0.014 ± 0.000 0.121 ± 0.001
Base Model 2014 0.467 ± 0.002 0.357 ± 0.002 0.456 ± 0.002
Uniform Random 0.583 ± 0.003 0.495 ± 0.003 0.575 ± 0.003
Weighted Random 0.586 ± 0.002 0.528 ± 0.003 0.579 ± 0.002
Token Embedding 0.628 ± 0.003 0.584 ± 0.003 0.622 ± 0.003

Sentence Embedding 0.618 ± 0.002 0.562 ± 0.003 0.610 ± 0.002
Token MLM Loss 0.618 ± 0.002 0.567 ± 0.003 0.607 ± 0.002

Table 5: Results for 2017 Country Hashtag Prediction.

Model Micro-F1 Macro-F1 Accuracy
Base Model 2016 0.418 ± 0.003 0.265 ± 0.002 0.411 ± 0.003
Base Model 2017 0.561 ± 0.003 0.493 ± 0.003 0.550 ± 0.003
Uniform Random 0.656 ± 0.002 0.583 ± 0.003 0.646 ± 0.002
Weighted Random 0.656 ± 0.002 0.585 ± 0.003 0.648 ± 0.002
Token Embedding 0.670 ± 0.003 0.598 ± 0.003 0.660 ± 0.003

Sentence Embedding 0.670 ± 0.003 0.600 ± 0.003 0.660 ± 0.003
Token MLM Loss 0.670 ± 0.003 0.598 ± 0.003 0.661 ± 0.003

Table 6: Results for OffensEval 2019.

Model F1 AUC-ROC
Base Model 2018 0.515 ± 0.013 0.623 ± 0.013
Base Model 2019 0.506 ± 0.010 0.636 ± 0.011
Uniform Random 0.606 ± 0.019 0.772 ± 0.014
Weighted Random 0.611 ± 0.017 0.783 ± 0.015
Token Embedding 0.614 ± 0.013 0.790 ± 0.013

Sentence Embedding 0.619 ± 0.017 0.783 ± 0.013
Token MLM Loss 0.618 ± 0.016 0.777 ± 0.013

5.4 Results and Analysis
Table 4 and 5 show the results for the 2014 and 2017 Country
Hashtag Prediction task, respectively. Table 6 details the results
for OffensEval 2019 task. In all the three tables, the first two rows
are the results of base models pre-trained on the tweets from the
previous year and the task year, respectively. All the other rows in
the tables contain the results of incremental models, which all use
previous year’s model as the base and incrementally train the base
model with the task year’s data.

In the three tables, the results for all models follow the same
trend, and we, thus, focus on the 2014 Country Hashtag Prediction
task (Table 4) in the following discussion. Our major findings are:

• On comparing “BaseModel 2013” and “BaseModel 2014”, it is
clear that a model trained in the past performs poorly on the
new year’s data, while adapting a model to new data could
greatly boost its performance. This validates the necessity
to keep the model informed of the evolving content.

• All incremental methods significantly outperform the base
models. For instance, our proposed “Token Embedding” sam-
pling method performs better than the “Base Model 2014”
by an absolute value of 0.161 (34.5% relatively) for Micro-F1
and 0.277 (63.6% relatively) for Macro-F1, respectively.
This suggests that the knowledge inherited from the past
year (2013 base model) is still very useful, though the incre-
mental models keep adapting to the evolving content. We
claim that the incremental models for 2014 outperform the
“Base Model 2014” as incremental models see more data: 45M
examples from base model training + 24M examples from
incremental training, whereas the base model sees only 45M
unique examples in total.

• Among the incremental models, our three proposed sampling
methods, “Token Embedding”, “Sentence Embedding”, and
“Token MLM Loss” outperform the two baseline sampling
methods by a large margin. For instance, “Token Embedding”
performs better than the “Weighted Sampling” (the stronger
baseline) by relatively 5.4% and 10.6% in Micro-F1 andMacro-
F1, respectively. This demonstrates the effectiveness of our
proposed incremental training sampling methods.

Note that the performance of “Base Model 2013” on 2014 test
data is very poor in comparison to “Base Model 2016” on 2017 test
data. We claim that this results from the larger vocabulary shift for
2014 from 2013 compared to 2017 from 2016 as seen in Figures 2
and 3. Difference in the shift between 2014 from 2013 vocabulary
and 2017 from 2016 vocabulary is +5.73%, +3.44%, and +4.83% for
natural words, wordpieces, and hashtags, respectively.

The result trends in Table 5 and 6 are very similar. The only
caveat is that for the OffensEval 2019 task, the performances of
“Base Model 2018” and “Base Model 2019” are comparable. This may
indicate that the semantic shift for offense related language is not
significant from the year 2018 to 2019. But the advantages of incre-
mental training, and the three new incremental training sampling
methods proposed by this paper are still apparent. Our proposed
methods show some gains compared to baseline methods for this
task, though they are not statistically significant. All these results
demonstrate that our proposed sampling methods are effective.

6 DISCUSSION AND FUTUREWORK
In the experiments, our three proposed sampling approaches achieve
comparable results. One natural question arises, which sampling
method is more suitable for real-world applications? We recom-
mend to adopt the “Token MLM Loss” sampling method, where
we leverage the last layer of the pre-trained BERT, mask out some
tokens and then, predict the masked tokens (detailed in Section 4.3).
This computation can be easily plugged into model online serving,
and thus, perform real-time monitoring of continuously evolving



content. When the overall MLM loss has an obvious increase, the
system could automatically initiate incremental training process.
This is more flexible and timely than updating the model at fixed
time intervals. As a future work, we will explore the benefits of
automatic incremental training and investigate our model perfor-
mance during longer periods of time and other types of evolving
news and social media content.

Modeling hashtags properly is important to the language model
quality. In our experiments, we show that keeping popular hashtags
as intact tokens in the vocabulary is very beneficial for hashtag
sensitive tasks. However, there is still a large number of less popular
hashtags being regarded as regular words, and thus, segmented
into wordpiece tokens. In future work, we plan to explore alter-
native approaches for preserving hashtag information in dynamic
language models.

7 CONCLUSION
In this paper, we first demonstrate the importance of dynamic mod-
eling for continuously evolving content. Then, starting from the
possibility of employing a dynamic vocabulary, we propose a simple
yet effective algorithm to tackle the problem of OOV new tokens
and sub-optimal tokenization. Finally, we propose three effective
sampling methods to detect the training examples which contain
updated knowledge and use these examples to enable efficient in-
cremental training. We conduct extensive experiments based on
two classification tasks, and demonstrate the importance of using
timely content when training BERT models. We also show that our
proposed sampling methods for hard example mining are not only
superior to random sampling, but are also suitable for continuous
model adaptation while serving live traffic.
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A APPENDIX
A.A Vocabulary Shift Analysis
In this section, we plot the vocabulary shifts between consecutive
years for wordpieces and hashtags for the years 2013 – 2019 using
the top 40k tokens in each category in Figure 3.

(a) Wordpieces

(b) Hashtags

Figure 3: Vocabulary shift (%) for wordpieces (regular vocab-
ulary, no hashtags) and hashtags using the top 40k tokens
for the respective categories.

A.B Model Vocabulary Update
In Algorithm 1, we outline the steps for updating the model vocab-
ulary for training, which is applicable to both base and incremental
models.

A.C Data and Pre-processing
For BERT pre-training, we use the public Twitter crawl data for
the years 2013 – 2019 available on the Internet Archive3. As a
pre-processing step, we lowercase the text and replace URLs, user
mentions, and emails with the special tokens “URL”, “@USER”,
and “EMAIL”, respectively. As each year has varied number of
3https://archive.org/details/twitterstream

Algorithm 1:Model Vocabulary Update
Result: Updated Model Vocabulary
if Model performance deteriorates and model needs update then

NewVocabulary = ∅;
Fetch recent data;
(Tokens, TokenCounts) =
WhitespaceTokenizeRegularVocabulary(Data);

(NewWordpieces, NewWordpieceCounts) =
WordpieceTokenize(Tokens, TokenCounts);

SortedNewWordpieces = DescendingSort(NewWordpieces,
NewWordpieceCounts);

NewVocabulary = CurrentVocabulary{“wordpieces”}
⋂

NewWordpieces;
SortedNewWordpieces = SortedNewWordpieces \
NewVocabulary;

for i = 1; i <= Count(CurrentVocabulary{“wordpieces”} \
NewWordpieces); i = i + 1 do

NewVocabulary = NewVocabulary
⋃

SortedNewWordpieces[i];
end
if Vocabulary contains whole hashtags then

(NewHashtags, NewHashtagCounts) =
WhitespaceTokenizeHashtags(Data);

SortedNewHashtags = DescendingSort(NewHashtags,
NewHashtagCounts);

NewVocabulary = NewVocabulary
⋃

(CurrentVocabulary{“hashtags”}
⋂

NewHashtags);
SortedNewHashtags = SortedNewHashtags \
NewVocabulary;

for i = 1; i <= Count(CurrentVocabulary{“hashtags”} \
NewHashtags); i = i + 1 do

NewVocabulary = NewVocabulary
⋃

SortedNewHashtags[i];
end

end
CurrentVocabulary = NewVocabulary;

end

tweets, we randomly sample 50M unique tweets from every year
for a fair comparison. These tweets are used for our initial analysis
(Section 3), wordpiece vocabulary generation, and BERT model
pre-training (Section 5).

A.D Hyperparameters
Following the original BERT paper [11], we mask out 15% of tokens
for pre-training which uses the MLM loss objective. As tweets are
generally short (historically, up to 140 characters; limit has been
increased to 280 characters since late 2017), we set the maximum
sequence length to be 32 wordpiece tokens and mask out a max of
5 tokens per tweet. For pre-training, we use a batch size of 256 and
a learning rate of 1.5e-4. For fine-tuning, we use a batch size of 32
and a learning rate of 5e-8. For other hyperparameters, we use the
same values as used for training the standard BERT model [11].

A.E Effective Sampling for Incremental
Training

Algorithm 2 details the steps for sampling hard examples for in-
cremental training. This applies to all three sampling methods
described in Section 4.

https://archive.org/details/twitterstream


We perform weighted random sampling where weights are deter-
mined by a linear combination of the signal under consideration (eg,
MLM loss for “Token MLM Loss” method) and normalized tweet
length in conjunction with a random component. Here, length of a
tweet is determined by the number of wordpiece tokens.

Final weights for sampling is computed as follows:

𝑢1/(𝛼𝑤𝑠+(1−𝛼)𝑤𝑡 )

where 𝑢 is a random number drawn from the uniform distribution
𝑈 (0, 1),𝑤𝑠 is the weight from the signal (dependent on the sampling
strategy),𝑤𝑡 is the normalized tweet length (1.0 if tweet_length >=
10, else 𝑡𝑤𝑒𝑒𝑡_𝑙𝑒𝑛𝑔𝑡ℎ

10 ), and 𝛼 is the parameter controlling the contri-
bution between the weight derived from the signal and normalized
tweet length (we set it to 0.5 in our experiments).

Algorithm 2: Effective Sampling for Incremental Training
Result: A model incrementally trained for n iterations
PrecedingModel = null;
CurrentModel = BaseModel;
SelectedSignal = One of TokenEmbeddingShift,
SentenceEmbeddingShift or TokenMLMLoss;

for k = 1; k <= n; k = k + 1 do
/* Assign MinWeight to m examples to sample from. */
SamplingWeights = [MinWeight] * m;
if k = 1 then

/* Note: For “SentenceEmbeddingShift”, for 1st iteration,
we just weight tweets by their length. */

if SelectedSignal == TokenEmbeddingShift then
SamplingWeights.AdjustBy(cumulative weight of new
tokens);

end
if SelectedSignal == TokenMLMLoss then

SamplingWeights.AdjustBy(MLM loss);
end

end
else

SignalValues = SelectedSignal.Shift(CurrentModel,
PrecedingModel);

SamplingWeights.AdjustBy(SignalValues);
end
SamplingWeights.AdjustBy(tweet length);
NewExamples =
WeightedRandomSample(SamplingWeights);

TrainingExamples = TrainingExamples
⋃

NewExamples;
NewModel = Train(CurrentModel, TrainingExamples);
PrecedingModel = CurrentModel;
CurrentModel = NewModel;

end

A.F Topics Associated With Country Hashtags
In Table 7, we list five of the top topics/events associated with
different country hashtags.

A.G Country Hashtag Prediction Task
For the Country Hashtag Prediction task, we collect 16 popular
country hashtags (#australia, #canada, #china, #india, #iran, #iraq,
#israel, #italy, #japan, #nigeria, #pakistan, #philippines, #russia,
#syria, #uk, #usa) from our Twitter corpus, along with their asso-
ciated tweets. Table 8 shows a few representative tweets for three

Table 7: Top Example Topics For Country Hashtags.

Hashtag 2014 2017
#china #alibaba, #mh370, #xin-

jiang, #dalailama, obama
#ai, #dangal, #lithium,
#hres401, trump

#uk #gaza, #groningen, scot-
land, obama, go2uk

#ge2017, #brexit, #bristol,
trump, ukbizz

#usa #worldcup, #obama,
#ibelievewewillwin,
ronaldo, ebola

#bama2017, #trump, #maga,
#theresistance, healthcare

of them. We use the tweets from two years, 2014 and 2017 to con-
struct two datasets, which result in 472K tweets and 407K tweets,
respectively. We remove all instances of the country hashtags and
respective country names from the tweets, and randomly split them
into 70% as training, 15% as dev, and the rest 15% as test sets.

Table 8: Example Tweets associated with Country Hashtags.

(a) 2014

Hashtag Tweets
#canada British Columbia News- Canada launches pilot program

for spouses waiting for permanent residency.. #canada
#iran #MaryamRajavi’s Biography:The #Iran of Tomorrow

#Women #Lebanon #CampLiberty #HumanRights
#usa Aaaaand it went to the shootout but TJ Oshie wins it for

#USA over Russia! What. A. Game. #Sochi2014

(b) 2017

Hashtag Tweets
#canada #NegativeRates could hit #Canada sooner thanmost expect

due to #economy’s ties to the Housing Market
#iran Guardian Council Spokesman Abbas-Ali Kadkhodaei said

#women could become candidates in the upcoming presi-
dential elections in #Iran.

#usa Fans flock to get new Chiefs gear after team captures AFC
West title #USA

A.H OffensEval Task
For our experiments, we use the OffensEval 2019 dataset [48] which
contains 14K tweets posted in 2019. The original dataset has a very
small test set (860 tweets). In order to have a sizable test set, we
move 2240 tweets (chosen randomly) from the original training
set to the test set. We further split the remainder of the original
training set into training and dev sets. Our final dataset follows the
ratio of 8/3/3 for train/dev/test. Table 9 shows a few representative
tweets for this task.

Table 9: Example Tweets for OffensEval 2019.

Class Tweets
OFFENSIVE You are a fool. Denying ones free speech is deny all of our

free speech.
NOT OFFEN-
SIVE

Tell me did restoring your computer to an earlier date
correct your problem you were having ?
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