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Abstract

Inspired by many applications of bipartite match-
ing in online advertising and machine learning,
we study a simple and natural iterative propor-
tional allocation algorithm: Maintain a priority
score βa for each node a ∈ A on one side of the
bipartition, initialized as βa = 1. Iteratively allo-
cate the nodes i ∈ I on the other side to eligible
nodes in A in proportion of their priority scores.
After each round, for each node a ∈ A, decrease
or increase the score βa based on whether it is
over- or under- allocated. Our first result is that
this simple, distributed algorithm converges to a
(1 − ε)-approximate fractional b-matching solu-
tion in O( logn

ε2 ) rounds. We also extend the pro-
portional allocation algorithm and convergence
results to the maximum weighted matching prob-
lem, and show that the algorithm can be naturally
tuned to produce maximum matching with high
entropy. High entropy, in turn, implies additional
desirable properties of this matching, e.g., it satis-
fies certain diversity and fairness (aka anonymity)
properties that are desirable in a variety of applica-
tions in online advertising and machine learning.

1. Introduction
Generalized bipartite matching or bipartite b-matching is
one of the fundamental problems in computer science.
Canonical applications include resource allocation prob-
lems such as ad allocation in online advertising, job/server
allocation in cloud computing, organ/donor matching, and
product recommendation under resource constraints. It has
also been utilized as an algorithmic tool in a variety of do-
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mains, including computer vision (Belongie et al., 2002),
estimating text similarity (Pang et al., 2016), string matching
for protein structure alignment (Krissinel & Henrick, 2004),
document clustering (Dhillon, 2001); and as a subroutine
in several machine learning tasks (Huang & Jebara, 2007;
Jebara & Shchogolev, 2006).

The focus of this paper is on large-scale matching problems
such as those arising in online advertising. In online adver-
tising settings, a set of advertisers A provide their targeting
domains to determine what subset of impressions I they
are interested in. This can be modeled as a bipartite graph
G(A, I,E). The advertisers also set capacity/targeting con-
straints on the number of impressions they want their ads to
be shown to, referred to as capacity (or budget) constraints.
It is assumed that each advertiser a has a capacity constraint
Ca. The matching task is to assign each impression to at
most one eligible advertiser based on the targeting infor-
mation while respecting the capacity constraints. Typically,
the goal is to maximize either the number of matched im-
pressions, or the sum of values of the assignments if we are
awarded different values for the assignment of every pair of
impressions and advertisers.

The rapid growth in Internet advertising has introduced
many large scale matching problems for assigning billions
of impressions to advertisers on a daily basis. Classic cen-
tralized approaches to solve these problems may be irrele-
vant due to their computational and memory limitations. In
online advertising, the number of impressions are usually
much higher than the number of advertisers. Such bipartite
graphs are called lopsided bipartite graphs. The number of
impressions is often so large that these matching instances
do not fit in the memory of a single machine, and there is a
dire need of designing simple and scalable matching algo-
rithms. This is true even if we treat similar impressions as
identical copies because each impression type is “the Carte-
sian product of several features (such as geographic location,
time of day/week), domains of which have sizes typically
ranging from thousands to millions” (Bateni et al., 2017).
Similar lopsided bipartite matching problems arise in many
other domains, for example in product recommendation,
where the number of users is typically much higher than the
number of products, or document-word clustering, where
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the number of words is typically much larger compared to
the number of documents (Dhillon, 2001).

All the above motivate the problem of designing simple
and scalable algorithms for lopsided bipartite matching in
practice. One such natural algorithm that has been used in
practice is the proportional allocation algorithm: consider
the bipartite matching problem on graph G(A, I,E) with
given capacity constraints Ca for a ∈ A. Proportional allo-
cation algorithm is as follows: Maintain a priority score βa
for each a ∈ A, initialized as βa = 1. Iteratively allocate
each node i ∈ I to an eligible node a ∈ A in proportion of its
score βa. After each round, increase or decrease βa based
on over- or under- allocation of node a, for each a ∈ A.
Repeat until this algorithm converges to a stable solution.
This is a natural and easy to implement algorithm, used in
practice to compute b-matching in a distributed fashion for
large-scale problems. This is especially useful when the
graph is lop-sided, so that the number of advertisers, and
hence, the number of priority scores to be maintained and
communicated are relatively small.

Our first result is that this simple iterative algorithm con-
verges to a (1 − ε)-approximate fractional b-matching so-
lution in O( logn

ε2 ) rounds. To this end, we first present a
combinatorial proof of our result for the unweighted case.
Then, we present a primal-dual interpretation via convex
programing duality. We formulate a convex program for the
problem of maximizing the cardinality/weight of matching
in a bipartite graph, with the entropy of the matching as a
regularizer in the objective. Interestingly, it turns out that
the priority scores in the proportional allocation algorithm
correspond to the dual variables of this convex program.
And, the proportional allocation rule corresponds to the
complimentary primal solution, for any given values of the
dual variables. This formulation helps us extend the pro-
portional allocation algorithm and convergence results to
edge-weighted graphs.

More importantly, an implication of this formulation is that
the proportional allocation algorithm naturally produces
high entropy matchings. In fact, we formally demonstrate
that we can set certain parameters of the algorithm to en-
sure convergence to an almost optimal matching with high
entropy. High entropy, in turn, implies additional desirable
properties of this matching. First of all, by maximizing en-
tropy, the allocation achieves higher diversity both from the
advertisers’ point of view and from the users’ perspective.
From advertisers’ perspective, they see a more diverse set
of impressions which translates to reaching out to a more
diverse demographics. From impressions’ perspective, each
user will also see a more diverse set of ads. The connection
between entropy and various diversity measures has been
confirmed by several papers (Qin & Zhu, 2013; Ahmed
et al., 2017; Noia et al., 2017). Besides achieving higher di-

versity, high entropy allocations are also believed to be more
fair (e.g., (Venkatasubramanian, 2010) and (Lan et al., 2010)
propose high entropy as an important fairness criteria).

Furthermore, one can argue that the proportional allocation
algorithm achieves better fairness due to its symmetry and
anonymity properties (Lan et al., 2010). It is also likely
to be more robust to changes in demand patterns (due to
its increased randomized allocation criteria). Below, we
further discuss the merits of proportional allocation in com-
parison to other related online and distributed algorithms
for bipartite matching.

1.1. Related work

Graph matching and assignment problems are some of the
most well studied problems in combinatorial optimization.
There is considerable work on fast exact algorithms, as
well as faster approximate algorithms, for matching prob-
lems. Notable examples include (1− ε) approximation in
O(mε log(1/ε)) time by (Duan & Pettie, 2014) for weighted
graphs, where m is the number of edges in the graph. For
maximum cardinality matching, many classic algorithms
(e.g., (Hopcroft & Karp, 1971) ) can achieve this.

Motivated by the large-scale applications of matching in
advertising and other e-commerce applications, recently
there has been a focus on distributed algorithms. In these
applications, it is desirable to have algorithms which run in
potentially logarithmic rounds or phases, with each phase in-
volving simple computations that can be distributed1 and/or
parallelized. Some recent literature includes the work by
(Bahmani et al., 2014) in the MapReduce framework, which
improves upon previous work of (Ahn & Guha, 2013) and
(Bahmani et al., 2012). The proportional allocation algo-
rithm provides a much simpler alternative approach for such
distributed large-scale settings, especially in case of large
lop-sided bipartite graphs. Arguably, this heuristic is com-
parable in its simplicity and ease of implementation to the
greedy heuristic, which only allows a 2-factor approxima-
tion. In contrast, as proven in this paper, the proportional
allocation converges to optimal solution in logarithmic num-
ber of rounds.

Another closely related work is by Charles et al. (2010) on
fast streaming algorithms for bipartite matching in lopsided
graphs. Proportional allocation has several significant bene-
fits over the method proposed there, including high entropy
matching, amenability to distributed implementation, and
simple concise representation through priority scores of ad-
vertisers (i.e., one score for each node on the smaller side in
the lop sided graphs) only.

We also note that iterative approximation algorithms have
been developed for the more general problem class of pack-

1i.e., allow the graph to be stored in a distributed manner
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ing and covering (Plotkin et al., 1995; Awerbuch & Khan-
dekar, 2009; Garg & Konemann, 2007). In fact, many of
these algorithms belong to the class of multiplicative weight
update (MWU) methods(Arora et al., 2012). The MWU
methods operate by maintaining weights wa for each ad-
vertiser, similar to our priority scores. These weights are
updated in a multiplicative manner based on the amount
of over-allocation or under-allocation in every round. The
weights are then used as Lagrangian dual variables to com-
bine the packing (capacity) constraints, so that the pack-
ing problem reduces to a knapsack problem. The impres-
sion allocation then roughly reduces to greedily selecting
impression-advertiser mappings with highest ratio ri,a/wa.
Besides having a simpler score update rule (constant factor
updates) and a simpler, distributed assignment rule (propor-
tional allocation), the proportional allocation algorithm is
naturally designed to yield higher entropy solutions com-
pared to these methods. Intuitively, this is because pro-
portional allocation rule essentially does a softmax over
(ri,a − βa): imagine the case when weights ri,a are dis-
tinct but infinitesimally close to each other, then the above-
mentioned greedy approach will select the top Ca impres-
sions for every advertiser, where as the softmax will give
almost uniform distribution. In fact, we formally show that
softmax is the optimal form of primal decision for maximiz-
ing entropy along with weight of the matching.

Extensions of such primal-dual approaches have also been
proposed for online packing problems motivated by the Dis-
play Ads Allocation (DA) problem (Gupta & Molinaro, 2016;
Agrawal & Devanur, 2015; Devanur et al., 2011; Agrawal
et al., 2009; Feldman et al., 2009; 2010; Vee et al., 2010),
and the Budgeted Allocation (AdWords) problem (Mehta
et al., 2007; Devanur & Hayes, 2009). In the online setting,
the impressions arrive one by one in sequential time steps,
and should either be immediately assigned to one of the ad-
vertisers with remaining budget, or discarded. In these algo-
rithms, the dual variables or advertiser weights are updated
periodically over time either by solving an LP (Agrawal
et al., 2009; Feldman et al., 2009; 2010; Devanur & Hayes,
2009), or by multiplicative weight updates (Gupta & Moli-
naro, 2016; Agrawal & Devanur, 2015; Devanur et al., 2011).
These weights are then used as thresholds for making assign-
ments of impressions arriving online. Besides the concerns
mentioned above for MWU methods, the weight updates in
these online algorithms must be performed sequentially, and
therefore are not amenable to parallel implementations.

1.2. Organization of the paper.

In Section 2, we formulate the generalized bipartite match-
ing problems considered in this paper. In Section 3, we
present the proportional allocation algorithm for the maxi-
mum cardinality case, as well as its simple extension to the
problem of finding maximum weighted matching with high-

entropy. In Section 4, we prove our main results (Theorem
1 and Theorem 2) regarding efficient convergence of both
these versions of the proportional allocation algorithm. The
proof of Theorem 2 also provides an interesting primal-dual
interpretation of the proportional allocation algorithm.

2. Problem Formulation
Here, we formulate the generalized bipartite matching prob-
lems, aka bipartite b-matching problems, considered in this
paper. Throughout the paper, we use the terminology from
online advertising, with the two sides of the bipartite graph
being ‘impressions’ and ‘advertisers’.

Maximum cardinality matching. A set A of advertisers
and a set I of impressions are given. For each advertiser
a ∈ A, there is a set of impressions Na ⊆ I that can be
potentially assigned to a. Similarly for any i ∈ I, we define
Ni ⊆ A to be the set of advertisers that impression i can
be matched to. These connections can be represented with
a bipartite graph G of edge set E = {(i, a) : i ∈ I, a ∈
Ni} = {(i, a) : a ∈ A, i ∈ Na}. Each advertiser a has
capacity Ca denoting maximum number of impressions she
is interested to be matched to.

The goal is to find a subset of edges M ⊆ E such that:

• Each impression is incident to at most one edge in M .
This property ensures that each impression is assigned
to at most one advertiser.

• Each advertiser a is incident to at most Ca edges in M
respecting its capacity.

while maximizing the cardinality of M . Such an edge set
M is referred to as a maximum cardinality matching.

A maximum cardinality fractional matching is defined as an
assignment {xi,a} ∈ [0, 1]E that maximizes

∑
(i,a)∈E xi,a

while satisfying capacity constraints, i.e.,∑
i∈I

xi,a ≤ Ca, ∀a ∈ A, (1)∑
a∈A

xi,a ≤ 1, ∀i ∈ I (2)

Maximum weighted matching. We also consider the
more general problem of maximum weighted matching.
Here, for each edge e = (i, a) ∈ E, a weight ri,a has
been specified. The goal is to find a subset of edges
M ⊆ E such that the capacity constraints for each ad-
vertiser and impression are satisfied, while maximizing to-
tal weight

∑
(i,a)∈M ri,a of the matching. For fractional

matching {xi,a}(i,a)∈E, similarly the goal is to maximize∑
(i,a)∈E xi,ari,a, while satisfying constraints in (1) and (2).

High entropy matching. The proportional allocation al-
gorithm proposed in this paper naturally gives a high en-
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Algorithm 1 PropAlloc : A proportional allocation algo-
rithm for maximum cardinality matching
Input: G = (A, I,E), {Ca}a∈A; parameter ε ∈ (0, 1),

number of rounds R.
Initialization: Set βa = 1, for all a ∈ A.

for rounds ` = 1, 2, . . . , R do
Step 1: For each impression i, set assignment

xi,a =
βa∑

a′∈Ni βa′
,∀a ∈ Ni

Step 2: For each advertiser a, update βa as follows:

Alloca ≤ Ca
(1 + ε)

=⇒ βa := (1 + ε)βa

Alloca ≥ (1 + ε)Ca =⇒ βa :=
βa

(1 + ε)

where Alloca :=
∑
i∈Na xi,a.

end for
for each a with Alloca > Ca do

Set xi,a := Ca
Alloca xi,a,∀i ∈ Na

end for

tropy fractional matching, while also maximizing cardinal-
ity/weight of the matching. To formally study this property
of the algorithm, we consider an alternate objective of maxi-
mizing a combination of weight and entropy of the matching.
Specifically, given a parameter λ ≥ 0, the goal here is to
find a fractional matching {xi,a}(i,a)∈E that maximizes∑

(i,a)∈E

ri,axi,a + λ
∑

(i,a)∈E

xi,a log(1/xi,a) (3)

while satisfying capacity constraints in (1) and (2). The sec-
ond term in the above is the entropy of assignment {xi,a}.

3. Proportional allocation algorithm
We propose the multi round distributed algorithm PropAlloc
that finds an almost optimum fractional matching, and then
prove how the fractional matching can be transformed into
an (integral) matching without much loss if the capacities
of advertisers are large.

Algorithm PropAlloc intends to find priority score βa for
each advertiser a ∈ A such that if the impressions are as-
signed proportional to these priorities, we achieve an almost
optimum allocation. Formally, impression i will be assigned
to advertiser a ∈ Ni with probability βa∑

a′∈Ni
βa′

. Algorithm

PropAlloc then computes the expected number of impres-
sions each advertiser a receives as follows.

Alloca =
∑
i∈Na

βa∑
a′∈Ni βa′

(4)

Algorithm 2 PropAlloc + : A proportional allocation algo-
rithm for high-entropy maximum weight matching
Input: G = (A, I,E), {Ca}a∈A, weights {ri,a}(i,a)∈E, pa-

rameter λ; parameter ε ∈ (0, 1), number of rounds R.
Initialization: Set βa = (1 + ε)−R, for all a ∈ A.

for rounds ` = 1, 2, . . . , R do
Step 1: For each impression i, set assignment

xi,a =

{
βaDi,a,λ if

∑
a′∈Ni βa′Di,a′,λ ≤ 1

βaDi,a,λ∑
a′∈Ni

βa′Di,a′,λ
otherwise

whereDi,a,λ = e
ri,a
λ −1

Step 2: For each advertiser a, update βa as follows:

Alloca ≤ Ca
(1 + ε)

=⇒ βa := (1 + ε)βa

Alloca ≥ (1 + ε)Ca =⇒ βa :=
βa

(1 + ε)

where Alloca :=
∑
i∈Na xi,a.

end for
for each a with Alloca > Ca do

Reduce xi,a for impressions i ∈ Na with xi,a ≥ Ca
|Na| ,

until
∑
i∈Na xi,a ≤ Ca.

end for

Intuitively, if the expected allocation Alloca exceeds the
capacity Ca, it means advertiser a has been over-allocated,
so the overflow of impressions Alloca − Ca are going to
be discarded without contributing anything to the objective
function. On the other hand, if the expected allocation
Alloca does not reach the capacity Ca, it means advertiser a
has been under-allocated, so the there is a Ca−Alloca extra
capacity left to be potentially exploited. Both of the above
situations introduce some room for improving the priority
variables. Algorithm PropAlloc initializes all βa variables
to the same value (for instance 1), and then updates βa for
each a ∈ A in each round as follows.

• If Alloca ≤ Ca
(1+ε) =⇒ βa := (1 + ε)βa.

In other words increase priority of a by a multiplicative
factor of 1 + ε.

• If Alloca ≥ (1 + ε)Ca =⇒ βa := βa
1+ε .

In other words decrease priority of a by a multiplicative
factor of 1 + ε.

• Otherwise, do not change the priority of a.

Algorithm PropAlloc consists of R rounds of computing
Alloc variables based on the priorities, {βa}a∈A, and then
updating the priorities with above rules. After all these
rounds, PropAlloc computes the fractional matching re-
specting all capacity constraints as follows. For every im-
pression i ∈ I and each advertiser a ∈ Ni, we set the
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assignment xi,a to be the probability that i is assigned to a
based on the current priority values. That is,

xi,a =
βa∑

a′∈Ni βa′

These assignments always respect the constraints (1) on
impressions, since the total assignment of each impres-
sion i ∈ I, given by

∑
a∈Ni xi,a, is equal to 1. But, there

might be advertisers that receive more total assignment than
their capacities. To adjust for these over-allocations, at the
end of R rounds, the assignments to these advertisers can
be reduced in any manner. For each advertiser, a ∈ A
with Alloca > Ca, we can scale down the assignments
of all edges incident on a by a factor of Alloca

Ca to make
sure that the capacity constraints are all respected. There-
fore, the total weight of the fractional matching is equal to
MatchWeight =

∑
a∈A min{Alloca,Ca}.

The proportional allocation algorithm is summarized in Al-
gorithm 1. We show that a logarithmic number of rounds
suffices to converge to an almost optimum fractional allo-
cation, and then find an integral assignment based on that.
Further, among the maximum cardinality matching, the
proportional allocation algorithm naturally finds matchings
with high entropy. To formalize this observation, below we
give a simple extension of the algorithm for the joint ob-
jective of maximizing entropy and weight of the matching,
combined with a parameter λ. In fact Algorithm 1 will be a
special case of the new algorithm for λ ≈ 0, ri,a = 1,∀i, a.

Algorithm for high-entropy weighted matching. Given
weights {ri,a}(i,a)∈E, and a parameter λ > 0, a simple ex-
tension of the proportional allocation algorithm computes
maximum weight matching with high entropy. This al-
gorithm maintains and updates priority scores {βa} in a
similar manner to Algorithm 1. However, to account for
weights and entropy parameter λ, given the priority scores,
the assignments xi,a are now computed as follows: let
Di,a,λ := e

ri,a
λ −1, then,

xi,a =

{
βaDi,a,λ if

∑
a′∈Ni βa′Di,a′,λ ≤ 1

βaDi,a,λ∑
a′∈Ni

βa′Di,a′,λ
otherwise

The new algorithm is summarized in Algorithm 2. Note
that the main change is in Step 2. Further, at the end of R
rounds, earlier in Algorithm 1 we could allow any kind of
adjustment to assignments of over-allocated advertisers. But,
since entropy is of consideration here, in Algorithm 2 we
make a slightly more careful adjustment: we only remove
impressions with large assignment value, i.e., impressions
i ∈ Na with xi,a ≥ Ca

|Na| .

Note that these modifications keeps the simple distributed
structure of the algorithm intact: given priority scores of

advertisers, the impressions can be allocated in a distributed
manner in proprtion of these scores.

4. Analysis
4.1. Main results

First, we show that after enough number of rounds, the frac-
tional matching achieved by PropAlloc (refer to Algorithm
1 is almost optimal.

Theorem 1. For any δ ∈ (0, 1], there exists2 an ε > 0 such
that algorithm PropAlloc with parameter ε returns a (1−δ)-
approximate fractional matching after R = O( log(n/δ)

δ2 )
rounds. Here, n is the number of advertisers.

Further, we provide a primal-dual interpretation of the pro-
portional allocation algorithm to show that PropAlloc +

(refer to Algorithm 2) can achieve any desired tradeoff be-
tween weight of the matching and entropy of the matching.

Theorem 2. For any δ ∈ (0, 1], λ > 0, there exists an
ε > 0 such that algorithm PropAlloc + with parame-
ter ε returns a fractional matching that achieves (1 − δ)-
approximation for the weight-entropy objective in (3), after
R = O

(
rmax

rmin

(1+λ log N̄))2

λδ

)
rounds.

Here, rmax = max(i,a)∈E ri,a, rmin = min(i,a)∈E ri,a,
N̄ = maxa∈A

|Na|
Ca .

Remark 1. Any feasible fractional allocation can be
adapted as a randomized allocation algorithm since the
sum of edge weights per impression does not exceed 1 and
they can be interpreted as allocation probabilities. In ex-
pectation, this gives a feasible integral allocation. Further,
using concentration bounds (e.g., Lemma 13 of (Bansal
& Sviridenko, 2006)), with high probability, the capacity
constraints will not be violated by more than a factor of
Õ(1 + 1√

Ca
) for any advertiser a. Therefore, if advertisers

have large enough capacities, the fractional matching can
be rounded to an integral solution with negligible loss.

4.2. A combinatorial analysis of PropAlloc (Proof of
Theorem 1)

We focus on the β variables when the algorithm terminates
(after the end of round R). The minimum value the priority
variables can take after R rounds is βmin = 1

(1+ε)R
, and

any a ∈ A can take one of the following 2R + 1 potential
priority values:

βa ∈ {βmin, (1 + ε)βmin, · · · , (1 + ε)2Rβmin}

For each 0 ≤ k ≤ 2R, let Lk be the set of advertisers
with priority value (1 + ε)kβmin, i.e. Lk := {a|βa =
(1 + ε)kβmin}. Since these sets form a hierarchy of priority

2It suffices to set ε = δ/5.
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values, we call them level sets. We note that some of these
sets may be empty. There are two main sources of possible
suboptimality in the fractional matching that PropAlloc
finds:

• Over-allocation: If Alloca is greater than Ca, Alloca−
Ca matched impressions will not be counted towards
the objective.

• Under-allocation: If Alloca is less than Ca, an extra
capacity of Ca − Alloca is left to be exploited for
advertiser a.

In the following, we show that for advertisers in most of
the level sets, both of the above over-allocation and under-
allocation losses are negligible.

Lemma 1. For any a ∈ ∪2R−1
k=0 Lk, the under-allocation

Ca−Alloca is at most 3εCa. Similarly for any a ∈ ∪2R
k=1Lk,

the over-allocation Alloca − Ca is at most 3εCa.

Proof. Due to the symmetry of the two claims, we only
prove the former. Since a is not in level set L2R, there was a
time that we did not increase βa. Let t be the last round that
βa was not increased. At this point, Alloca

Ca was at least 1
(1+ε) .

For t = R, this completes the proof. Otherwise, we focus
on round t+ 1 ≤ R. Recall, Alloca =

∑
i∈Na

βa∑
a′∈Ni

βa′
.

If βa is unchanged at round t, the numerator of each term
also remains unchanged. The denominator terms are in-
creased at most by a factor of (1 + ε). So in total, Alloca
is not decreased by more than a factor of (1 + ε) yielding
the lower bound Alloca

Ca ≥
1

(1+ε)2 at round t+ 1. In the other
case, βa is decreased at round t, so the numerator of each
term is also reduced by a factor of (1 + ε). In total, the ratio
Alloca

Ca is decreased by a factor of at most 1
(1+ε)2 at round

t + 1. Note that the reduction of βa at round t means the
ratio Alloca

Ca was at least 1 + ε, and therefore at least 1
1+ε at

round t+ 1. So independent of whether βa was reduced or
not, Alloca

Ca will be at least 1
(1+ε)2 at round t+ 1.

By definition of t, βa is increased in all rounds after t. With
a similar argument, we know that Alloca

Ca does not decrease
at any of these rounds. So the ratio Alloca

Ca remains at least
1

(1+ε)2 ≥ 1 + 3ε for ε ≤ 1 till the last round.

Lemma 1 shows that every advertiser is either changed in
one direction (reducing or increasing β) in all rounds, or its
fractional allocation will be almost equal to its capacity. The
latter helps us prove optimality, and the former only contains
advertisers in level sets L0 and L2R. Next, we prove two
main claims: on lower bounding the weight of the fractional
matching, MatchWeight =

∑
a∈A min{Alloca,Ca}, and

on upper bounding the optimum value in terms of the level
sets. These are stated as Claim 1.

Claim 1. For any two indices 1 ≤ ` and `+ log(n/ε)/ε ≤
`′ ≤ 2R, we have:

• MatchWeight, is at least:

(1− 4ε)
(∑`

k=0

∑
a∈Lk Ca + |N(∪2R

k′=`′+1Lk′)|
)

(5)

where N(S) for any subset S of advertisers is the union
of their neighborhoods ∪a∈SNa.

• The weight of the optimum fractional matching does
not exceed:(∑`′

k=0

∑
a∈Lk Ca + |N(∪2R

k′=`′+1Lk′)|
)

(6)

Proof. The proof of the second statement is very similar to
folklore graph theoretic results like Konig’s Theorem (Ah-
madi & Hall). The number of matched impressions in the
optimum allocation consists of two main classes: those
matched to advertisers in ∪`′k=0Lk, and those assigned to
advertisers in ∪2R

k=`′+1Lk. The former cannot be more than
the sum of capacities of the associated advertisers which is
the first term in the upper bound. The latter is a subset of
all neighbors of advertisers in ∪2R

k=`′+1Lk and therefore at
most |N(∪2R

k′=`′+1Lk′)|.

To prove the first statement of the Claim, we categorize
assigned impressions in MatchWeight into two categories.
Using Lemma 1, the impressions assigned to advertisers in
L0, L1, · · · , L` almost fill up their capacities and therefore
sum up to at least (1−3ε)

∑`
k=0

∑
a∈Lk Ca which is larger

than the first term of the lower bound.

The second term represents all neighbors of advertisers in
L`′+1, · · · , L2R. To avoid double counting, we show that
any impression that has a neighbor in ∪2R

k′=`′+1Lk′ will not
be assigned to any advertiser in ∪`k=0Lk w.h.p. (≥ 1− ε).

Consider impression i that is a neighbor of a′ ∈ Lk′ for
some k′ ≥ `′ + 1. Because `′ is at least `+ log(n/ε)/ε, we
have βa′ ≥ n

ε βa for any a ∈ Lk with k ≤ `. Therefore
the probability of i being assigned to a is at most ε/n times
the probability it being assigned to a′. Since there could be
potentially at most n candidates like a, the probability of i
being assigned to any advertiser in ∪`k=0Lk is at most ε. So
every impression in N(∪2R

k=`′+1Lk) will be assigned to some
advertiser in∪2R

k=`+1Lk with probability at least 1−ε. Using
Lemma 1, at least 1− 3ε fraction of every such impression
will be counted towards MatchWeight. So in total, we get
at least 1−4ε for each impression in N(∪2R

k′=`′+1Lk′) which
concludes the proof of the Claim.

Proof of Theorem 1. Given Claim 1, there are two main
gaps between the lower bound of (5) and the upper bound
of (6): the 1 − 4ε factor and the sum

∑`′

k=`+1

∑
a∈Lk Ca.

We show that the latter gap is small for some value of ` and
`′ = `+ log(n/ε)/ε.
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Summing this gap over different values of ` yields∑2R−log(n/ε)/ε
`=0

∑`+log(n/ε)/ε
k=`+1

∑
a∈Lk Ca

≤ (log(n/ε)/ε)
∑2R
k=1

∑
a∈Lk Ca

Therefore there exists an 0 ≤ ` ≤ 2R − log(n/ε)/ε such
that its associated gap

∑`+log(n/ε)/ε
k=`+1

∑
a∈Lk Ca is at most

log(n/ε)/ε
2R−log(n/ε)/ε+1

∑2R
k=1

∑
a∈Lk Ca ≤ ε

∑2R
k=1

∑
a∈Lk Ca

where the last inequality holds when R is at least
log(n/ε)/ε2.

Using Lemma 1, for every a ∈ ∪2R
k=1Lk, the over-allocation

Alloca − Ca is at most 3εCa. Therefore MatchWeight is
at least (1 − 3ε)

∑2R
k=1

∑
a∈Lk Ca. This means the gap

associated for some ` is at most εMatchWeight/(1 − 3ε).
Using Claim 1, we have MatchWeight ≥ (1− 4ε)(OPT −
εMatchWeight/(1 − 3ε)) yielding a final approximation
factor of at least 1 − 5ε. Then, the theorem statement
can be obtained by setting δ = ε/5, R = log(n/ε)/ε2 =
O(log(n/δ)/δ2).

4.3. Primal-dual interpretation: Proof of Theorem 2

Consider the matching problem with weights {ri,a}(i,a)∈E.
Given any λ > 0, let OPTλ denote the optimal value of the
following convex optimization problem that maximizes a
combination of weight of matching and entropy:

maximize
∑

(i,a)∈E ri,axi,a+ λ
∑
i,a xi,a log(1/xi,a)

subject to
∑
a∈Ni xi,a ≤ 1, i ∈ I∑
i∈Na xi,a ≤ Ca, a ∈ A

xi,a ≥ 0 ∀(i, a) ∈ E
(7)

We show that in R = rmax

rmin

(1+λ log(N̄))2

δλ iterations, where

N̄ = maxa
|Na|
Ca , the proportional allocation algorithm with

ε ≤ rmin

rmax

1

8(2 + λ log(N̄))
δ,

finds an assignment {xi,a}i,a satisfying:

OPTλ ≤ (1 + δ)
∑
i,a ri,axi,a + λ

∑
i,a xi,a log(1/xi,a)

Following upper bound on OPTλ can be obtained using
Lagrangian duality for the convex program (7). This also
provides a dual-based interpretation of the decision xi,a with
priority scores {βa} emerging as an exponential function of
the corresponding dual variables for the advertisers’ capacity
constraints.

Lemma 2. Given any {γa ≥ 0}a, let

x∗i,a =


e
−γa
λ Di,a,λ∑

a′∈Ni
e
−γ
a′
λ Di,a′,λ

,
∑
a′∈Ni e

−γ
a′
λ Di,a′,λ ≥ 1

e
−γa
λ Di,a,λ otherwise.

(8)

(recallDi,a,λ = e
ri,a
λ −1). Then,

OPTλ ≤
∑

(i,a)∈E

ri,ax∗i,a − λx∗i,a log(x∗i,a)

+
∑
a∈A

γa(Ca −
∑
i∈Na

x∗i,a) (9)

Proof. Using Lagrangian duality for (7)

OPTλ = min
γ≥0,z≥0

max
x≥0

L(x, γ, z)

where

L(x, γ, z) :=

 ∑
i,a ri,axi,a − λxi,a log(xi,a)

+
∑
i zi(1−

∑
a∈Ni xi,a)

+
∑
a γa(Ca −

∑
i∈Na xi,a)


Also, for any {γa ≥ 0, zi ≥ 0}

OPTλ ≤ maxx≥0 L(x, γ, z)

Now,
∂

∂xi,a
L(x, γ, z) = ri,a − λ− λ log(xi,a)− zi − γa

so for any zi ≥ 0, γa ≥ 0,

x∗i,a = e−γa/λ−zi/λe
ri,a
λ −1

satisfies x∗i,a ≥ 0, ∂
∂xi,aL(x, γ, z) = 0, and therefore it

is a maximizer of L(x, γ, z), and from above we have
OPTλ ≤ L(x∗, γ, z). Now, set zi as follows: IF∑
a∈Ni e

−γa/λDi,a,λ ≥ 1, set e
zi
λ =

∑
a∈Ni e

−γa
λ Di,a,λ

where Di,a,λ = e
ri,a
λ −1. Otherwise, set zi = 0. Then,

substituting zi, x∗i,a is as given in (8). Further, for all i,
zi(
∑
a∈Ni x∗i,a − 1) = 0, substituting which we get

L(x∗, γ, z) =
∑
i,a

rax∗i,a − λx∗i,a log(x∗i,a)

+
∑
a

γa(Ca −
∑
i∈Na

x∗i,a)

and therefore, using OPTλ ≤ L(x∗, γ, z) we obtain the
upper bound in (9).

Corollary 1. Let {xRi,a}(i,a)∈E be the assignments and
{βRa }a∈A be the priority scores at the end of R iterations
of Algorithm 2, then

OPTλ ≤
∑

(i,a)∈E

ri,axRi,a − λxRi,a log(xRi,a)

−
∑
a∈A

λ log(βRa )(Ca −
∑
i∈Na

xRi,a) (10)

Proof. We can observe this using Lemma 2, by substituting
γa = λ log(1/βRa ). Since initial value of βa is (1 + ε)−R,
and there is a increase of at most (1 + ε)R factor, we have
that βa ≤ 1, so that γa = λ log(1/βRa ) ≥ λ log(1) = 0.
Therefore, it is a valid assignment of γa.
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Primal-dual interpretation of PropAlloc + . From the
above discussion, observe that there is a one-to-one mapping
between the priority scores βa and dual variables γa. On
setting βa = e

−γa
λ , we obtained that the assignments made

by our algorithm are same as complimentary solution {x∗i,a}
given by (8). This provides a primal dual interpretation of
the proportional allocation algorithm. The proportional allo-
cation algorithm is essentially updating the dual variables
based on the feasibility (over-allocation/under-allocation)
of the primal complimentary solution.

Now, using observations similar to those made in Lemma
1 in the previous section, it is easy to see that algorithm
PropAlloc + satisfies the following property.

Lemma 3. For any a ∈ A, unless βa was increased in all
iterations or decreased in all iterations, at the end of R
iterations of Algorithm 2, Alloca :=

∑
i∈Na xi,a ∈ [(1 +

ε)−2Ca, (1 + ε)2Ca].

We are now ready to prove Theorem 2. Here we provide an
outline, with detailed proof in the supplementary material.

Proof of Theorem 2 (Sketch). Without loss of generality,
let’s assume that rmax is 1. This can be obtained by dividing
all ri,a by rmin. rmin in the processed instance is then in
fact the ratio of rmin and rmax of the original instance. Let
xRi,a and βRa denote the value of assignments and priority
scores at the end of R iterations of Algorithm 2 (before the
processing in the last step was done to handle over-allocated
advertisers). And, let xMi,a denote the feasible assignments
obtained after the processing in the last step of the algorithm.
Let weight(M) :=

∑
i,a∈E ri,axMi,a denote the weight of

this feasible fractional matching M .

Initially, βa = (1 + ε)−R. From Lemma 3, for every a,
either

∑
i∈Na xRi,a ∈ [(1 + ε)−2Ca, (1 + ε)2Ca], i.e., the

advertiser budget constraint is approximately satisfied; or,
we will have that βa was continuously increased/decreased
by (1+ε) factor for allR iterations, so that βRa is either 1 or
(1 + ε)−2R. Let us call the first set of advertisers where the
budget constraint is approximately satisfied as E . For these
advertisers, |Ca−

∑
i∈Na xi,a| ≤ 3εCa for any ε ≤ 1. Also,

βRa ≥ (1 + ε)−2R. Among the second set, let O be the set
of advertisers a ∈ A with βRa = (1 + ε)−2R. Here, βa was
continuously decreased in order to decrease the allocation,
and these advertisers will be over-allocated in the end. For
the remaining a /∈ E , a /∈ O, we have βRa = 1.

Using the upper bound from (10), and substituting the value
of βRa ,

OPTλ ≤
∑
i,a

ri,axRi,a +
∑
a∈O

2Rελ(Ca −
∑
i∈Na

xRi,a)

+
∑
a∈E

2Rελ(3εCa)− λ
∑
i,a

xRi,a log(xRi,a)

The terms for a /∈ O, a /∈ E do not appear in above because
log(1/βRa ) = log(1) = 0 for those a. Next, we relate the
above upper bound to the weight and entropy of the feasible
fractional matching M . First, we substitute R as:

R = 1
2ελ

(
1 + λ log(N̄)

)
, (11)

(where N̄ = maxa
Ca
|Na| ) to decompose the above upper

bound on OPTλ as:

OPTλ ≤
∑
i,a

ri,axRi,a +
∑
a∈O

(Ca −
∑
i∈Na

xRi,a) (12)

+λ log(N̄)
∑
a∈O

(Ca −
∑
i∈Na

xRi,a)− λ
∑
i,a

xRi,a log xRi,a(13)

+
∑
a∈E

3ε
(
1 + λ log(N̄)

)
Ca (14)

Now, matching M was created by removing
∑
i∈Na xRi,a −

Ca edges from {xRi,a} for every over-allocated advertiser
a ∈ O. Therefore, the second term in (12) accounts for
the weight (since rmax = 1) of all edges removed, except
for those in a ∈ E . Since a ∈ E can be over-allocated by
at most 3εCa, we can show that for small ε, almost all the
decrease in the weight is accounted for, and (12) is close to
weight(M):

(12) ≤ (1 + δ
2 )weight(M), when

ε =
rmin

8(2 + λ log(N̄))
δ, (15)

Similarly, we show that the first term in (13) accounts for
any increase in entropy due to removal of edges from xRi,a,
so that

(13) ≤ λEntropy(xMi,a) := λ
∑
i,a xRi,a log(1/xRi,a)

Here, we utilize the fact that in Algorithm 2 does not de-
crease very small assignments: it only decreases assignment
of edges while xRi,a ≥ Ca/|Na|. Finally, for small ε, the last
part (14) is negligible compared to weight(M). Specifically,
for the choice of ε in (15),

(14) ≤ δ
2 weight(M).

Combining these observations,

OPTλ ≤ (1 + δ)weight(M) + λEntropy(M)

Finally, from (11), substituting value of ε from (15), we
have the number of iterations

R =
1

2ελ

(
1 + λ log(N̄)

)
≤ 8

rmin
(1 + λ log(N̄))2

λδ

Then, the theorem statement is obtained on substituting back
rmin/rmax for rmin.
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