
Designing and Operating Highly Available
Software Systems at Scale

Ramón Medrano Llamas – @rmedranollamas
03.04.2019, EPI Gijón

Proprietary + ConfidentialProprietary + Confidential

Proprietary + Confidential

What is
“Site Reliability Engineering”?

Proprietary + Confidential

Site Reliability
Engineering (SRE)

Who we are: Software Engineers on a
unique mission…

What we do: Make Google keep
working.

How we do it: A mix of proactive and
reactive engineering to make our
planet-scale systems better.

Why: Users expect Google to be always
available, fast, and operating correctly.

Proprietary + Confidential

SRE: Proactive

Design

Planning

Automation

Consulting and Launches

Disaster Games

Proprietary + Confidential

Proprietary + Confidential

SRE: Reactive

Monitoring

Debugging & Troubleshooting

Root-cause Analysis

Performance Tuning

Proprietary + ConfidentialProprietary + Confidential

Proprietary + Confidential

A Day in the Life of a
Site Reliability Engineer

Proprietary + Confidential

A “typical” day.

review code, changes, design docs.
read email. join video-conferences.
brainstorm. analyze. design. code.
meet your team in daily standup.
watch tech-talk. ask questions.
stare at system dashboards.
write road-maps and plans.
chat. eat. play. laugh.
get in the zone.

Proprietary + Confidential

An “interesting” day.

On call responsibility for whole service.
A quiet day? Start working on project.
I get paged. Part of system is down.
Check: How many users affected?
Mitigate issue to restore service.
Deep dive. Find root cause.
Analyze last changes.
Find potential culprit.
Roll back change.
Postmortem.
Quiet.

Proprietary + Confidential

Designing for Scale

Proprietary + Confidential

No Query Left Behind

In the face of adversity: While we should try,
we can’t literally serve every query, only
99.XXX% of them.

The cost of reliability: Shoots up
exponentially with number of 9s.

What can fail: Memory, CPUs, hard drives,
NICs, power supplies, cables, backhoes
digging up fiber lines, trucks crashing into
electrical substations …

Proprietary + Confidential

Suppose you just wrote a web application

and it's running on your server

with a database behind it

and you can point your web browser to it,

that means you're done, right?

The Art of Scaling

Proprietary + Confidential

Web server

Database

Our simple service Users

Proprietary + Confidential

Now, imagine your web
application has to serve
100,000,000 users from
around the world.

What needs
to change?

Proprietary + Confidential

What does 100M users mean?

100M
users

Proprietary + Confidential

What does 100M users mean?

10B
requests/day

Proprietary + Confidential

What does 100M users mean?

100k
requests/second

(average)

Proprietary + Confidential

What does 100M users mean?

200k requests/second
(peak)

Proprietary + Confidential

What does 100M users mean?

200k requests/second
(peak)

2M disk seeks per second (IOPS)

Proprietary + Confidential

What do we need
to serve them?

Lots of servers.

Probably lots of other stuff we aren’t going to talk
much about.

Also known as “warehouse-scale computing”.

Proprietary + Confidential

100M users need (at peak) 2M IOPS

at 100 IOPS per disk, that’s 20k disk drives

at 24 disks per server, that’s 834 servers

at 4 rack units (RU) per server,
and 1¾” (4.44cm) per RU, that’s

486 ft (148m)
stacked

Proprietary + Confidential

Proprietary + Confidential

Anatomy of a
large-scale web
application

Proprietary + Confidential

Disclaimer

None of the following slides depict an
actual Google service or actual Google
technologies. They are indicative of the
scale at which Google services operate,
and the technologies needed to operate
them.

All of the problems described on the
following slides are problems that need
to be solved to operate Google services.
They all fall under the umbrella of the
Site Reliability Engineering organization
at Google.

Proprietary + Confidential

Back to our
simple service

Users

Web server

Database

Proprietary + Confidential

Web server

Replication
Users

Web server

Database

Database

Proprietary + Confidential

Web server

Meshed Topology
Users

Web server

Database

Database

Not all connections shown.

Proprietary + Confidential

Simplified
Users

Web servers

Databases

One box for all replicas of
each server type.

Proprietary + Confidential

Architecture Diagram

Hierarchy of
servers talking
to each other.

Server

ServerServer Server

Server Server

ServerServer Server

Server Server

Proprietary + Confidential

Example Architecture

Names are entirely
made up, this is not
reflective of any real
system, life or dead.

Web
frontend

Search
frontendAuth Server User Prefs

Search
backend

Prefs
storage

Token ListsSynonyms Documents

Language
Detection Disambiguation

Proprietary + Confidential

Cyclic?!?

Occasionally,
servers talk to
themselves.

Server

ServerServer Server

Server Server

ServerServer Server

Server Server

Proprietary + Confidential

Shrinking (the diagram)

We will need
more space.
Much more
space.

Proprietary + Confidential

How can the world reach 1000s of servers?

Can’t publish 1000s
of IP addresses (one
per server), add an IP
load-balancer that
will balance traffic
over server.

LB

Proprietary + Confidential

Not all connections shown.

DC-nDC-2DC-1

Multiple Datacenters with Load Balancer Mesh

Local LB

Frontend LB

Local LB

Frontend LB

Local LB

Frontend LB

Proprietary + Confidential

DC-nDC-2DC-1

How do we send traffic to the Front End Load Balancers?
DNS Server is IP
Geo Location
aware.

Users
DNS Server

Proprietary + Confidential

Monitoring

Now that we get traffic to the right place, how do we
know what the servers are doing?

We need monitoring to figure out what the frontends
are doing. How loaded are they?
When are they getting overloaded?
How many requests are they handling?
Are they providing the functionality we expect?

No, we don’t actually stare at screens all day.
That’s what automated alerts are for.

Proprietary + Confidential

Service Level Indicators (SLIs)
● An indicator (SLI) is a quantitative measure of how good

some attribute of the service is.
● An attribute is a dimension the service’s users care about,

such as:
○ latency, how long the work takes
○ availability, how often the service can do work
○ correctness, whether the work is right

Proprietary + Confidential

How Good Should A Service Be?
● How {fast, reliable, available, …} a service should be is

fundamentally a product question
● “100% is the wrong reliability target for (nearly) everything”

○ cost of marginal improvements grows ~exponentially
● Can always make service better on some dimension, but

involves tradeoffs with $, people, time, and other priorities
○ Product & dev management best placed for tradeoffs

Proprietary + Confidential

Service Level Objectives
● An SLO is a mathematical relation like:

○ SLI ≤ target
○ lower bound ≤ SLI ≤ upper bound

● Error budget:
○ Difference of SLO to 100%
○ Use it for taking risk: changes, rollouts, etc.
○ Error budget allows velocity.

Proprietary + Confidential

Monitoring

DC-x

Monitoring Architecture
Servers are deeply
instrumented. Collect
stats on everything.

Users
DNS Server

Collection

Storage Retrieval

Alerting

Visualisation

Engineers

Alert if human action is
required. Visualize to help
with troubleshooting.

Proprietary + Confidential

Designing for Failure

Proprietary + Confidential

“Failure is always
 an option.”
Things that fail, from low to high impact:

● machines
● switches
● power distribution units
● routers
● fiber lines
● power substations
● imperfect software
● human error
● adversarial action / malicious behavior

We need to plan for all of these scenarios.

Proprietary + Confidential

Mitigate failure with Redundancy

Department

of Redundancy

Department

Traditional approach: If an outage of one component causes a
failure, use 2 and hope they don’t fail together.

Machine: Redundant power supplies, disk drives (raid)

Networking (redundant switches, routers)

Redundant database with two hosts.

Expensive, typically 2x plus complications.

Understand your systems – design for “defense in depth”.

Proprietary + Confidential

Failure Domain: Machine

Power supply unit (PSU) MTBF is 100,000
hours. For 10,000 machines: 1 PSU fails every
10 hours.

A myriad of other machine failure symptoms

Actions:

● Get traffic away from the failing machine
and send it to repairs

● Possibly also move data elsewhere

Proprietary + Confidential

Failure Domain:
(Network) Switch

Symptom: Dozens of machines connected to
one switch go offline at the same time.

Action:
● Get traffic away from affected machines
● and get someone to replace the switch.

If those machines hold any data, and the other
location of that data is on the same switch:
Congratulations, you've just lost actual data.

Proprietary + Confidential

Failure domain: Power
Distribution Unit

PDUs distribute power inside a datacenter.

Symptom: A large portion of your datacenter
suddenly loses power.

Might take a large number of machines with it,
as well as essential networking gear ... and
sometimes produce nice sparks.

Action: umm ... tricky.

After a catastrophic power outage, machines
(and drives) might not come up again.

Proprietary + Confidential

Failure domain:
Datacenter

Some failure modes can take out entire
datacenters:

● hurricanes
● flooding
● earthquakes
● …

These happen very rarely, but are the hardest to
deal with.

This means that being in just one region of the
world is not enough, so we need geographic
diversity.

Proprietary + Confidential

Failure Domain:
Imperfect Software

This can really ruin your day

Action:
● when in doubt, roll back
● your roll-out strategy should make this

easy and fast

Prevention: unit testing, integration testing,
canarying, black-box testing, data integrity
testing

Case study: malware blacklist outage

Proprietary + Confidential

DC-nDC-2DC-1

Back to our Datacenter Redundant Architecture
Now we can
make good use
of DNS IP Geo
Location.

Users
DNS Server

Proprietary + ConfidentialDatacenter Location Diversity

US-
East

APAC

EMEA

US-
West

Proprietary + ConfidentialDatacenter Location Diversity

US-
East

APAC
EMEA

US-
West

Users

DNS Server

Users Users

Users

Proprietary + Confidential

How to deal with failure:
Divert (“drain”) traffic away
First we wanted to get traffic to our machines, now
we want to get it away again!

because machines / datacenters / regions fail

need to figure out when to divert traffic away

see earlier slide about monitoring

can use the same mechanisms that we used for
getting traffic to machines

see earlier slides about loadbalancing

Proprietary + Confidential

Redundancy with 2 Server Instances: Steady State

Load Balancer

Server Server

50% load 50% load

100% load

Looks great, no? Each
server only needs to
handle 50% of the total
load.

Proprietary + Confidential

Redundancy with 2 Servers: Draining 1 Instance

Load Balancer

Server Server

0% load 100% load

100% load

Each server needs to be
able to handle 100% of
the load.

So we're provisioning
for 200% of expected
load.

100% overprovisioning
is very expensive.

Proprietary + Confidential

Load Balancer

ServerServer Server

33% load 33% load33% load

100% load

Redundancy with 3 Server Instances: Steady State

Now each server only
needs to handle 33% of
the total load.

Proprietary + Confidential

Load Balancer

ServerServer Server

0% load 50% load50% load

100% load

Redundancy with 3 Servers: Draining 1 Instance

Each remaining server
only needs to handle
50% of the total load.

Only needs provisioning
for 150% of load
expected, with only 50%
overprovisioning (much
better than 100% in the
2 instance case).

Conclusion:

As long as your per-server
base cost is marginal,
prefer large numbers of
smaller instances.

Proprietary + ConfidentialProprietary + Confidential

Proprietary + Confidential

Operational
Considerations

Proprietary + Confidential

Change Management

Downtime is not an option, all changes made “in
flight”. Or, take a fraction of the service down.

Think about compatibility.

Deploying new code:

● Start small, get big fast if everything works
● 1 machine, 1 rack, 1 cluster, 1 region, 1 world
● Roll back on problems, never forward
● Apply this principle globally

Proprietary + Confidential

Disaster Recovery

We talked about failures, let's talk about
disasters! Examples:

● One of your major datacenters burns down
● Software bug silently corrupts data over

months

Resolutions:
● ‘oops, my bad’ - probably not going to cut it

Prepare for emergency scenarios
● How to bring up the service somewhere

else
● How to bring back your data and verify

correctness.

Have ‘recovery plans’ not ‘backup plans’

Machines:
Cattle vs. Pets
Need to manage services running on 10000+
machines.

There are not enough smurfs to name 10000+
machines, and even if there were you wouldn't
be able to remember which service runs on
papasmurf.example.com.

So we need a database to tell us what runs
where (configuration) and a system to make
services X and Y run on machine Z if the
database says so (automation).

Business Continuity
Also called the "bus factor"

● Can you continue running your business if
person X gets run over by a bus?

New people join the team, old-timers leave.

Everybody needs to do their share of emergency
response.

Make the systems easy and safe to use, even if
you don't understand 100% of their ins and outs.

Document the rest.

THANK YOU
niobium@google.com

