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Abstract—Online bipartite matching is one of the most
fundamental problems in the online algorithms literature.
Karp, Vazirani, and Vazirani (STOC 1990) introduced an
elegant algorithm for the unweighted bipartite matching
that achieves an optimal competitive ratio of 1−1/e. Aggar-
wal et al. (SODA 2011) later generalized their algorithm
and analysis to the vertex-weighted case. Little is known,
however, about the most general edge-weighted problem
aside from the trivial 1/2-competitive greedy algorithm. In
this paper, we present the first online algorithm that breaks
the long-standing 1/2 barrier and achieves a competitive
ratio of at least 0.5086. In light of the hardness result of
Kapralov, Post, and Vondrák (SODA 2013) that restricts
beating a 1/2 competitive ratio for the more general prob-
lem of monotone submodular welfare maximization, our
result can be seen as strong evidence that edge-weighted
bipartite matching is strictly easier than submodular
welfare maximization in the online setting.

The main ingredient in our online matching algorithm is
a novel subroutine called online correlated selection (OCS),
which takes a sequence of pairs of vertices as input and
selects one vertex from each pair. Instead of using a fresh
random bit to choose a vertex from each pair, the OCS
negatively correlates decisions across different pairs and
provides a quantitative measure on the level of correlation.
We believe our OCS technique is of independent interest
and will find further applications in other online optimiza-
tion problems.

Keywords-bipartite matching; negative correlation; on-
line algorithm; primal-dual algorithm

I. INTRODUCTION

Matchings are fundamental graph-theoretic objects
that play an indispensable role in combinatorial op-
timization. For decades, there have been tremendous
and ongoing efforts to design more efficient algorithms
for finding maximum matchings in terms of their
cardinality, and more generally, their total weight. In
particular, matchings in bipartite graphs have found
countless applications in settings where it is desirable
to assign entities from one set to those in another
set (e.g., matching students to schools, physicians to
hospitals, computing tasks to servers, and impressions
in online media to advertisers). Due to the enormous
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growth of matching markets in digital domains, efficient
online matching algorithms have become increasingly
important. In particular, search engine companies have
created opportunities for online matching algorithms to
have a massive impact in multibillion-dollar advertising
markets.

Motivated by these applications, we consider the
problem of matching a set of impressions that arrive
one by one to a set of advertisers that are known in
advance. When an impression arrives, its edges to the
advertisers are revealed and an irrevocable decision has
to be made about to which advertiser the impression
should be assigned. Karp, Vazirani, and Vazirani [28]
gave an elegant online algorithm called RANKING to
find matchings in unweighted bipartite graphs with a
competitive ratio of 1− 1/e. They also proved that this is
the best achievable competitive ratio. Later, Aggarwal et
al. [1] generalized their algorithm to the vertex-weighted
online bipartite matching problem and showed that the
1− 1/e competitive ratio is still attainable.

The edge-weighted case, however, is much more neb-
ulous. This is partly due to the fact that no competitive
algorithm exists without an additional assumption. To
see this, consider two instances of the edge-weighted
problem, each with one advertiser and two impressions.
The edge weight of the first impression is 1 in both
instances, and the weight of the second impression is 0
in the first instance and W in the second instance, for
some arbitrarily large W . An online algorithm cannot
distinguish between the two instances when the first
impression arrives, but it has to decide whether or not
to assign this impression to the advertiser. Not assigning
it gives a competitive ratio of 0 in the first instance, and
assigning it gives an arbitrarily small competitive ratio
of 1/W in the second. This problem cannot be tackled
unless assigning both impressions to the advertiser is
somehow an option.

In display advertising, assigning more impressions to
an advertiser than they paid for only makes them happier.
In other words, we can assign multiple impressions
to any given advertiser. However, instead of achieving
the weights of all the edges assigned to it, we only
acknowledge the maximum weight (i.e., the objective
equals the sum of the heaviest edge weight assigned
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to each advertiser). This is equivalent to allowing
the advertiser to dispose of previously matched edges
for free to make room for new, heavier edges. This
assumption is known as the free disposal model. In the
display advertising literature [10, 30], the free-disposal
assumption is well received and widely applied because
of its natural economic interpretation. Finally, edge-
weighted online bipartite matching with free disposal
is a special case of the monotone submodular welfare
maximization problem, where we can apply known 1/2-
competitive greedy algorithms [12, 31].

A. Our Contributions

Despite thirty years of research in online matching
since the seminal work of Karp et al. [28], finding an
algorithm for edge-weighted online bipartite matching
that achieves a competitive ratio greater than 1/2 has
remained a tantalizing open problem. This paper gives
a new online algorithm and answers the question affir-
matively, breaking the long-standing 1/2 barrier (under
free disposal).

Theorem 1. There is a 0.5086-competitive algorithm
for edge-weighted online bipartite matching.

Given the hardness result of Kapralov, Post, and Von-
drák [26] that restricts beating a competitive ratio of 1/2
for monotone submodular welfare maximization, our
algorithm shows that edge-weighted bipartite matching
is strictly easier than submodular welfare maximization
in the online setting.

From now on, we will use the more formal terminolo-
gies of offline and online vertices in a bipartite graph
instead of advertisers and impressions. One of our main
technical contributions is a novel algorithmic ingredient
called online correlated selection (OCS), which is an
online subroutine that takes a sequence of pairs of
vertices as input and selects one vertex from each pair.
Instead of using a fresh random bit to make each of its
decisions, the OCS asks to what extent the decisions
across different pairs can be negatively correlated, and
ultimately guarantees that a vertex appearing in k pairs
is selected at least once with probability strictly greater
than 1− 2−k. We give a short introduction to OCS in
Section III and defer all other details to the full version
of this paper [7].

Given an OCS, we can achieve a better than 1/2 com-
petitive ratio for unweighted online bipartite matching
with the following (barely) randomized algorithm. For
each online vertex, either pick a pair of offline neighbors
and let the OCS select one of them, or choose one offline
neighbor deterministically. More concretely, among the
neighbors that have not been matched deterministically,
find the least-matched ones (i.e., those that have appeared

in the least number of pairs). Pick two if there are at least
two of them; otherwise, choose one deterministically.

Although the competitive ratio of the algorithm above
is far worse than the optimal 1 − 1/e ratio by Karp et
al. [28], it benefits from improved generalizability. To
extend this algorithm to the edge-weighted problem,
we need a reasonable notion of “least-matched” offline
neighbors. Suppose one neighbor’s heaviest edge weight
is either 1 or 4 each with probability 1/2, another
neighbor’s heaviest edge is 2 with certainty, and their
edge weights with the current online vertex are both 3.
Which one is less matched? To remedy this, we use the
online primal-dual framework for matching problems
by Devanur, Jain, and Kleinberg [5], along with an
alternative formulation of the edge-weighted online
bipartite matching problem by Devanur et al. [4]. In
short, we account for the contribution of each offline
vertex by weight-levels, and at each weight-level we
consider the probability that the heaviest edge matched
to the vertex has weight at least this level. This is the
complementary cumulative distribution function (CCDF)
of the heaviest edge weight, and hence we call this the
CCDF viewpoint. Then for each offline neighbor, we
utilize the dual variables to compute an offer at each
weight-level, should the current online vertex be matched
to it. The neighbor with the largest net offer aggregating
over all weight-levels is considered the “least-matched”.
We introduce the online primal-dual framework and the
CCDF viewpoint in Section II. Then we formally present
our edge-weighted matching algorithm in Section IV,
followed by its analysis. In [7, Appendix B] we include
hard instances that show the competitive ratio of our
algorithm is nearly tight.

B. Related Works

The literature of online weighted bipartite matching
algorithms is extensive, but most of these works are
devoted to achieving competitive ratios greater than 1/2
by assuming that offline vertices have large capacities or
that some stochastic information about the online vertices
is known in advance. Below we list the most relevant
works and refer interested readers to the excellent survey
of Mehta [34]. We note that there have recently been
several significant advances in more general settings,
including different arrival models and general (non-
bipartite) graphs [18, 13, 14, 19, 21].

Large Capacities: The capacity of an offline vertex
is the number of online vertices that can be assigned to
it. Exploiting the large-capacity assumption to beat 1/2
dates back two decades ago to Kalyanasundaram and
Pruhs [25]. Feldman et al. [10] gave a (1 − 1/e)-
competitive algorithm for Display Ads, which is equiva-
lent to edge-weighted online bipartite matching assuming
large capacities. Under similar assumptions, the same



competitive ratio was obtained for AdWords [35, 2], in
which offline vertices have some budget constraint on
the total weight that can be assigned to them rather than
the number of impressions. From a theoretical point of
view, one of the primary goals in the online matching
literature is to provide algorithms with competitive ratio
greater than 1/2 without making any assumption on the
capacities of offline vertices.

Stochastic Arrivals: If we have knowledge about
the arrival patterns of online vertices, we can often
leverage this information to design better algorithms.
Typical stochastic assumptions include assuming the
online vertices are drawn from some known or unknown
distribution [11, 27, 6, 16, 33, 24], or that they arrive in a
random order [15, 3, 9, 32, 36, 20]. These works achieve
a 1−ε competitive ratio if the large capacity assumption
holds in addition to the stochastic assumptions, or at least
1 − 1/e for arbitrary capacities. Korula, Mirrokni, and
Zadimoghaddam [29] showed that the greedy algorithm
is 0.505-competitive for the more general problem of
submodular welfare maximization if the online vertices
arrive in a random order, without any assumption on the
capacities. The random order assumption is particularly
justified because Kapralov et al. [26] proved that beating
1/2 for submodular welfare maximization in the oblivious
adversary model implies NP = RP.

II. PRELIMINARIES

The edge-weighted online matching problem considers
a bipartite graph G = (L,R,E), where L and R are
the sets of vertices on the left-hand side (LHS) and
right-hand side (RHS), respectively, and E ⊆ L×R is
the set of edges. Every edge (i, j) ∈ E is associated
with a nonnegative weight wij ≥ 0, and we can assume
without loss of generality that this is a complete bipartite
graph, i.e., E = L × R, by assigning zero weights to
the missing edges.

The vertices on the LHS are offline in that they are
all known to the algorithm in advance. The vertices on
the RHS, however, arrive online one at a time. When an
online vertex j ∈ R arrives, its incident edges and their
weights are revealed to the algorithm, who must then
irrevocably match j to an offline neighbor. Each offline
vertex can be matched any number of times, but only the
weight of its heaviest edge counts towards the objective.
This is equivalent to allowing a matched offline vertex i,
say, to j, to be rematched to a new online vertex j′

with edge weight wij′ > wij , disposing of vertex j and
edge (i, j) for free. This assumption is known as the
free disposal model.

The goal is to maximize the total weight of the
matching. A randomized algorithm is Γ-competitive
if its expected objective value is at least Γ times the
offline optimal in hindsight, for any instance of edge-

weighted online matching. We refer to 0 ≤ Γ ≤ 1 as the
competitive ratio of the algorithm.

A. Complementary Cumulative Distribution Function
Viewpoint

Next we describe an alternative formulation of the
edge-weighted online matching problem due to Devanur
et al. [4] that captures the contribution of each offline
vertex i ∈ L to the objective in terms of the comple-
mentary cumulative distribution function (CCDF) of the
heaviest edge weight matched to i. We refer to this
approach as the CCDF viewpoint.

For any offline vertex i ∈ L and any weight-level
w ≥ 0, let yi(w) be the CCDF of the weight of the
heaviest edge matched to i, i.e., the probability that i
is matched to at least one online vertex j such that
wij ≥ w. Then, yi(w) is a non-increasing function of w
that takes values between 0 and 1. Observe that yi(w) is
a step function with polynomially many pieces, because
the number of pieces is at most the number of incident
edges. Hence, we will be able to maintain yi(w) in
polynomial time.

The expected weight of the heaviest edge matched
to i then equals the area under yi(w), i.e.:∫ ∞

0

yi(w) dw . (1)

This follows from an alternative formula for the expected
value of a nonnegative random variable involving only
its cumulative distribution function.

We illustrative this idea with an example in Figure 1.
Suppose an offline vertex i has four online neighbors j1,
j2, j3, and j4 with edge weights w1 < w2 < w3 < w4.
Further, suppose that j1 is matched to i with certainty,
while j2, j3, and j4 each have some probability of being
matched to i. (The latter events may be correlated.) Next,
suppose a new neighbor arrives whose edge weight is
also w3. The values of yi(w) are then increased for
w1 < w ≤ w3 accordingly, and the total area of the
shaded regions is the increment in the expected weight
of the heaviest edge matched to vertex i.

B. Online Primal-Dual Framework

We analyze our algorithms using a linear program (LP)
for edge-weighted matching under the online primal-dual
framework. Consider the standard matching LP and its
dual below. We interpret the primal variables xij as the
probability that edge (i, j) is the heaviest edge matched
to vertex i. The primal and dual LPs are:
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Figure 1: Complementary cumulative distribution function (CCDF) viewpoint. The first function is the CCDF of
vertex i, and the second function demonstrates how the CCDF of vertex i is updated.

maximize
∑
i∈L

∑
j∈R

wijxij

subject to
∑
j∈R

xij ≤ 1 ∀ i ∈ L∑
i∈L

xij ≤ 1 ∀ j ∈ R

xij ≥ 0 ∀i ∈ L,∀ j ∈ R

minimize
∑
i∈L

αi +
∑
j∈R

βj

subject to αi + βj ≥ wij ∀ i ∈ L,∀j ∈ R
αi ≥ 0 ∀ i ∈ L
βj ≥ 0 ∀ j ∈ R

Let P denote the primal objective. If xij is the probability
that edge (i, j) is the heaviest edge matched to i, then P
also equals the objective of the algorithm. Let D denote
the dual objective.

Online algorithms under the online primal-dual frame-
work maintain a matching as well as a dual assignment
(although not necessarily feasible) at all times subject
to the conditions summarized below.

Lemma 2. Suppose an online algorithm simultaneously
maintains primal and dual assignments such that for
some constant 0 ≤ Γ ≤ 1, the following conditions hold
at all times:

1) Approximate dual feasibility: For any i ∈ L
and any j ∈ R, we have αi + βj ≥ Γ · wij .

2) Reverse weak duality: The objectives of the
primal and dual assignments satisfy P ≥ D.

Then, the algorithm is Γ-competitive.

Proof: The values Γ−1αi and Γ−1βj form a feasible
dual assignment whose objective equals Γ−1D. By weak
duality, the objective of any feasible dual assignment
upper bounds the optimal (i.e., D is at least Γ times

the optimal). Applying the second condition proves the
lemma.

Online Primal-Dual in the CCDF Viewpoint: In
light of the CCDF viewpoint, for any offline vertex i ∈ L
and any weight-level w > 0, we introduce and maintain
new variables αi(w) that satisfy:

αi =

∫ ∞
0

αi(w) dw . (2)

Accordingly, we rephrase approximate dual feasibility
in Lemma 2 in the CCDF viewpoint as:∫ ∞

0

αi(w) dw + βj ≥ Γ · wij . (3)

Concretely, at each step of our primal-dual algorithm,
αi(w) is a piecewise constant function with possible
discontinuities at the weight-levels w ∈ {wij ∈ E :
online vertex j has arrived}. Initially, all of the αi(w)’s
are the zero function. Then, as each online vertex
j ∈ R arrives, if j is potentially matched to an offline
candidate i ∈ L, the function values of αi(w) are
systematically increased according to the dual update
rules in Section IV-A. In contrast, each dual variable βj
is a scalar value that is initialized to zero and increased
only once during the algorithm, at the time when j
arrives.

III. ONLINE CORRELATED SELECTION: AN
INTRODUCTION

This section introduces our novel ingredient for online
algorithms, which we believe to be widely-applicable
and of independent interest. To motivate this technique,
consider the following thought experiment in the case
of unweighted online matching, i.e., wij ∈ {0, 1} for
any i ∈ L and any j ∈ R.

Deterministic Greedy: We first recall why all
deterministic greedy algorithms that match each online
vertex to an unmatched offline neighbor are at most 1/2-
competitive. Consider an instance with a graph that has
two offline and two online vertices. The first online vertex
is adjacent to both offline vertices, and the algorithm



deterministically chooses one of them. The second online
vertex, however, is only adjacent to the previously
matched vertex.

Two-Choice Greedy with Independent Random Bits:
We can avoid the problem above by matching the first
online vertex randomly, which improves the expected
matching size from 1 to 1.5. In this spirit, consider the
following two-choice greedy algorithm. When an online
vertex arrives, identify its neighbors that are least likely
to be matched (over the randomness in previous rounds).
If there is more than one such neighbor, choose any
two, e.g., lexicographically, and match to one with a
fresh random bit. Otherwise, match to the least-matched
neighbor deterministically. We refer to the former as a
randomized round and the latter as a deterministic round.
Since each randomized round uses a fresh random bit,
this is equivalent to matching to neighbors that have been
chosen in the least number of randomized rounds and
in no deterministic round. Unfortunately, this algorithm
is also 1/2-competitive due to upper triangular graphs.
We defer this standard example to the full version of
the paper [7, Appendix B].

Two-choice Greedy with Perfect Negative Correla-
tion: The last algorithm in this thought experiment is
an imaginary variant of two-choice greedy that perfectly
and negatively correlates the randomized rounds so that
each offline vertex is matched with certainty after being
a candidate in two randomized rounds. This is infeasible
in general. Nevertheless, if we assume feasibility then
this algorithm is 5/9-competitive, as shown in an earlier
version of this paper [22]. In fact, it is effectively the 2-
matching algorithm of Kalyanasundaram and Pruhs [25],
by having two copies of each online vertex and allowing
offline vertices to be matched twice.

Question 1. Can we use partial negative correlation to
retain feasibility and break the 1/2 barrier?

We answer this question affirmatively by introducing
an algorithmic ingredient called online correlated selec-
tion (OCS), which allows us to quantify the negative
correlation among randomized rounds. We analyze the
two-choice greedy algorithm powered by OCS in the
unweighted case in [7, Appendix A]. In this extended
abstract, we present tools to generalize that approach to
edge-weighted online bipartite matching, and achieve the
first algorithm with a competitive ratio that is provably
greater than 1/2.

Definition 1 (γ-semi-OCS). Consider a set of ground
elements. For any γ ∈ [0, 1], a γ-semi-OCS is an online
algorithm that takes as input a sequence of pairs of
elements, and selects one per pair such that if an element
appears in k ≥ 1 pairs, it is selected at least once with

probability at least:

1− 2−k(1− γ)k−1 .

Using independent random bits is a 0-semi-OCS, and
the perfect negative correlation in the thought experiment
corresponds to a 1-semi-OCS, although it is typically
infeasible. Our algorithms satisfy a stronger definition,
which considers any collection of pairs containing
an element i. This stronger definition is useful for
generalizing to edge-weighted online bipartite matching.

In the following definition, a subsequence (not nec-
essarily contiguous) of pairs containing element i is
consecutive if it includes all the pairs that contain ele-
ment i between the first and last pair in the subsequence.
Further, two subsequences of pairs are disjoint if no
pair belongs to both of them. For example, consider
the sequence ({a, i}, {b, i}, {c, d}, {e, i}, {i, z}). The
subsequences ({a, i}, {b, i}) and ({i, z}) are consecutive
and disjoint, but subsequence ({a, i}, {b, i}, {i, z}) is not
consecutive because it does not include the pair {e, i}.

Definition 2 (γ-OCS). Consider a set of ground ele-
ments. For any γ ∈ [0, 1], a γ-OCS is an online algorithm
that takes as input a sequence of pairs of elements, and
selects one per pair such that for any element i and
any disjoint subsequences of k1, k2, . . . , km consecutive
pairs containing i, i is selected in at least one of these
pairs with probability at least:

1−
m∏
`=1

2−k`(1− γ)k`−1 .

Theorem 3. There exists a 13
√
13−35
108 > 0.1099-OCS.

We defer the design and analysis of this OCS to the
full version of the paper [7, Section 5]. Instead, we will
describe a weaker 1/16-OCS, which is already sufficient
for breaking the 1/2 barrier in edge-weighted online
bipartite matching. We also include a formal construction
and proof for the 1/16-OCS in the full version.

Proof Sketch of a 1/16-OCS: Consider two se-
quences of independent random bits. The first set is
used to construct a random matching among the pairs,
where any two consecutive pairs (with respect to some
element) are matched with probability 1/16. Concretely,
each pair is consecutive to at most four other pairs, one
before it and one after it, for each of its two elements.
For each pair, choose one of its consecutive pairs, each
with probability 1/4. Two consecutive pairs are matched
if they choose each other.

The second random sequence is used to select an
element from each pair. For any unmatched pair, choose
one of its elements with a fresh random bit. For any
two matched pairs, use a fresh random bit to choose an
element from the first pair, and then make the opposite



selection for the later one (i.e., select the common
element if it is not selected in the earlier pair, and
vice versa). Observe that even if two matched pairs are
identical, there is no ambiguity in the opposite selection.

Next, fix any element i and any disjoint subsequences
of k1, k2, . . . , km consecutive pairs containing i. We
bound the probability that i is never selected. If any
two of the pairs are matched, i is selected once in the
two pairs. Otherwise, the selections from the pairs are
independent, and the probability that i is never selected
is
∏m

`=1 2−k` . Applying the law of total probability to
the event that i is in a matched pair, it remains to upper
bound the probability of having no such matched pairs
by
∏m

`=1(1− 1/16)k`−1. Intuitively, this is because there
are k`−1 choices of two consecutive pairs within the `-th
subsequence, each of which is matched with probability
1/16. Further, these events are negatively dependent and
therefore, the probability that none of them happens is
upper bounded by the independent case.

IV. EDGE-WEIGHTED ONLINE MATCHING

This section presents an online primal-dual algorithm
for the edge-weighted online bipartite matching problem.
The algorithm uses a γ-OCS as a black box, and its
competitive ratio depends on the value of γ. For γ = 1/16
(as sketched in Section III) it is 0.505-competitive. For
γ ≈ 0.1099 (as in Theorem 3) it is 0.5086-competitive,
which proves our main result about edge-weighted online
matching.

A. Online Primal-Dual Algorithm

The algorithm is similar to the two-choice greedy in
the previous section. It maintains an OCS with the offline
vertices as the ground elements. For each online vertex,
the algorithm either (1) matches it deterministically
to one offline neighbor, (2) chooses a pair of offline
neighbors and matches to the one selected by the OCS,
or (3) leaves it unmatched. We refer to the first case
as a deterministic round, the second as a randomized
round, and the third as an unmatched round.

How does the algorithm decide whether it is a
randomized, deterministic or unmatched round, and
how does it choose the candidate offline vertices? We
leverage the online primal-dual framework. When an
online vertex j arrives, it calculates for every offline
vertex i how much the dual variable βj would gain
if j is matched to i in a deterministic round, denoted
as ∆D

i βj , and similarly ∆R
i βj for a randomized round.

Then it finds i∗ with the maximum ∆D
i βj , and i1, i2 with

the maximum ∆R
i βj . If both ∆R

i1
βj + ∆R

i2
βj and ∆D

i∗βj
are negative, it leaves j unmatched. If ∆R

i1
βj + ∆R

i2
βj

is nonnegative and greater than ∆D
i∗βj , it matches j in a

randomized round with i1 and i2 as the candidates using
its OCS. Finally, if ∆D

i∗βj is nonnegative and greater

than ∆R
i1
βj +∆R

i2
βj , it matches j to i∗ in a deterministic

round. See Algorithm 1 for the formal definition of the
algorithm.

It remains to explain how ∆D
i βj and ∆R

i βj are
calculated. For any offline vertex i ∈ L and any weight-
level w > 0, let ki(w) be the number of randomized
rounds in which i has been chosen and has edge weight
at least w. The values of ki(w) may change over time,
so we consider these values at the beginning of each
online round. The increments to the dual variables αi(w)
and βj depend on the values of ki(w) via the following
gain-sharing parameters, which we determine later using
a factor-revealing LP to optimize the competitive ratio.
The gain-sharing values are presented at the end of this
section in Table I.
• a(k) : Amortized increment in the dual variable
αi(w) if i is chosen as one of the two candidates
in a randomized round in which its edge weight is
at least w and ki(w) = k.

• b(k) : Increment in the dual variable βj due to an
offline vertex i at weight-level w ≤ wij if j is
matched in a randomized round with i as one of
the two candidates and ki(w) = k.

Note that these gain-sharing values a(k) and b(k) are
instance independent (i.e., they do not depend on the
underlying graph) and defined for all k ∈ Z≥0. We
interpret these parameters according to a gain-splitting
rule. If i is one of the two candidates to be matched
to j in a randomized round, the increase in the expected
weight of the heaviest edge matched to i equals the
integration of yi(w)’s increments, for 0 < w ≤ wij ,
which can be related to the values of the ki(w)’s. We then
lower bound the gain due to the increment of yi(w) using
the definition of a γ-OCS and split the gain into two
parts, a(ki(w)) and b(ki(w)). The former is assigned to
αi(w) and the latter goes to βj .

In fact, we prove at the end of this subsection the
following invariant about how the dual variables αi(w)
are incremented:

αi(w) ≥
∑

0≤`<ki(w)

a(`) . (4)

Next, define ∆R
i βj to be:∫ wij

0

b (ki(w)) dw − 1

2

∫ ∞
wij

∑
0≤`<ki(w)

a(`) dw . (5)

We should think of ∆R
i βj as the increase in the dual

variable βj due to offline vertex i, if i is chosen as one
of the two candidates for j in an randomized round. The
first term in Eqn. 5 follows from the interpretation of b(k)
above (and would be the only term in the unweighted
case). The second term is designed to cancel out the extra
help we get from the αi(w)’s at weight-levels w > wij



Algorithm 1 Online primal-dual edge-weighted bipartite matching algorithm.

State variables:
• ki(w) ≥ 0 : The number of randomized rounds in which i is a candidate and its edge weight is at least w;
ki(w) =∞ if it has been chosen in a deterministic round in which its edge weight is at least w.

On the arrival of an online vertex j ∈ R:
1) For every offline vertex i ∈ L, compute ∆R

i βj and ∆D
i βj according to Eqn. (5) and (6).

2) Find i1, i2 with the maximum ∆R
i βj .

3) Find i∗ with the maximum ∆D
i βj .

4) If 0 > ∆R
i1
βj + ∆R

i2
βj and ∆D

i∗βj , leave j unmatched. (unmatched)
5) If ∆R

i1
βj + ∆R

i2
βj ≥ ∆D

i∗βj and 0, let the OCS pick one of i1 and i2. (randomized)
6) If ∆D

i∗βj > ∆R
i1
βj and 0, match j to i∗. (deterministic)

7) Update the ki(w)’s accordingly.

in order to satisfy approximate dual feasibility for the
edge (i, j). Concretely, if j is matched in a randomized
round to two candidates at least as good as i, our choice
of b(k)’s ensures approximate dual feasibility between i
and j (i.e., the following inequality holds):∫ ∞

0

αi(w) dw + 2 ·∆R
i βj ≥ Γ · wij .

Finally, for some 1 < κ < 2, define ∆D
i βj

def
= κ·∆R

i βj
to be:

κ

∫ wij

0

b (ki(w)) dw − κ

2

∫ ∞
wij

∑
0≤`<ki(w)

a(`) dw . (6)

For concreteness, readers can assume κ = 1.5. The
competitive ratio, however, is insensitive to the choice
of κ as long as it is neither too close to 1 nor to 2.
On the one hand, κ > 1 ensures that if the algorithm
chooses a randomized round with offline vertex i1 and
another vertex i2 as the candidates, the contribution
from i2 to βj must be at least a κ−1 fraction of what i1
offers; otherwise, the algorithm would have preferred a
deterministic round with i1 alone. On the other hand,
we have κ < 2 because otherwise a randomized round
would always be inferior to a deterministic round. We
further explain the definitions of ∆R

i βj and ∆D
i βj in

Subsection IV-C, and we demonstrate how their terms
interact when proving that the dual assignments always
satisfy approximate dual feasibility.

Primal Increments: We have defined the primal
algorithm and, implicitly, how the dual algorithm updates
the βj’s. It remains to define the updates to αi(w)’s.
Before that, we first need to characterize the primal
increment since the dual updates are driven by it. Recall
that by the CCDF viewpoint:

P =
∑
i∈L

∫ ∞
0

yi(w) dw .

Since it is difficult to account for the exact CCDF
yi(w) due to complicated correlations in the selections,
we instead consider a lower bound for it given by the
γ-OCS. A critical observation here is that the decisions
made by the primal-dual algorithm are deterministic,
except for the randomness in the OCS. In particular, its
choices of i1, i2, i∗ and the decisions about whether a
round is unmatched, randomized, or deterministic are
independent of the selections in the OCS and therefore
deterministic quantities governed solely by the input
graph and arrival order of the online vertices. Hence,
we may view the sequence of pairs of candidates as
fixed.

For any offline vertex i and any weight-level w > 0,
consider the randomized rounds in which i is a candidate
and has edge weight at least w. Decompose these
rounds into disjoint collections of, say, k1, k2, . . . , km
consecutive rounds. By Definition 2, vertex i is selected
by the γ-OCS in at least one of these rounds with
probability at least:

yi(w)
def
= 1−

m∏
`=1

2−k` (1− γ)
k`−1 . (7)

Accordingly, we will use the following surrogate primal
objective:

P =
∑
i∈L

∫ ∞
0

yi(w) dw .

Lemma 4. The primal objective is lower bounded by
the surrogate, i.e., P ≤ P.

It will often be more convenient to consider the following
characterization of yi(w):
• Initially, let yi(w) = 0.
• If i is matched in a deterministic round in which

its edge weight is at least w, let yi(w) = 1.
• If i is chosen in a randomized round in which its

edge weight is at least w, further consider w′, its



edge weight in the previous round involving i; let
w′ = 0 if it is the first randomized round involving i.
Then, decrease the gap 1− yi(w) by a (1− γ)/2
factor if w′ ≥ w, i.e., if it is the second or later
pair of a collection of consecutive pairs containing i
with edge weight at least w; otherwise, decrease
1 − yi(w) by 1/2 to account for the −1 in the
exponent of 1− γ in Eqn 7.

Lemma 5. For any offline vertex i and any weight-level
w > 0, we have:

1− yi(w) ≥ 2−ki(w) (1− γ)
max{ki(w)−1,0} .

Proof: Initially, 1 − yi(w) equals 1. Then it de-
creases by 1/2 in the first randomized round involving i
with edge weight at least w, and by at most (1− γ) /2
in each of the subsequent ki(w)− 1 rounds.

This is equivalent to a lower bound of the increment
in yi(w) in a deterministic round.

Lemma 6. For any offline vertex i and any weight-level
w > 0, if i is matched in a deterministic round in which
its edge weight is at least w, the increment in yi(w) is
at least:

2−ki(w) (1− γ)
max{ki(w)−1,0} .

Lemma 7. For any offline vertex i and any weight-level
w > 0, if i is chosen as a candidate in a randomized
round in which its edge weight is at least w, the
increment in yi(w) is at least:

2−ki(w)−1 (1− γ)
max{ki(w)−1,0} .

Suppose further that vertex i’s edge weight is also at
least w in the last randomized round involving i. Then,
it follows that ki(w) ≥ 1 and the increment in yi(w) is
at least:

2−ki(w)−1 (1− γ)
ki(w)−1

(1 + γ) .

Proof: By definition, 1 − yi(w) decreases by a
factor of either (1− γ)/2 or 1/2 in a randomized round,
depending on whether vertex i’s edge weight is at
least w the last time it is chosen in a randomized round.
Therefore, the increment in yi(w) is either a (1 + γ)/2
fraction of 1 − yi(w), or a 1/2 fraction. Putting this
together with the lower bound for 1−yi(w) in Lemma 5
proves the lemma.

Dual Updates to Online Vertices: Consider any
online vertex j ∈ R at the time of its arrival. The
dual variable βj will only increase at the end of this
round, depending on the type of assignment. If j is left
unmatched, then the value of βj remains zero. If j is
matched in a randomized round, set βj = ∆R

i1
βj+∆R

i2
βj .

Lastly, if j is matched in a deterministic round, set
βj = ∆D

i∗βj .

Dual Updates to Offline Vertices—Proof of Eqn. (4):
Fix any offline vertex i ∈ L. Suppose that i is matched
in a deterministic round in which its edge weight is wij .
Then, for any weight-level w > wij , the value of ki(w)
stays the same, so we leave αi(w) unchanged. On the
other hand, for any weight-level w ≤ wij , the value of
ki(w) becomes ∞ by definition. Therefore, to maintain
the invariant in Eqn. (4), we increase αi(w) for each
weight-level w ≤ wij by:

∞∑
`=ki(w)

a(`) . (8)

The updates in randomized rounds are more subtle.
Suppose i is one of the two candidates in a random-
ized round in which its edge weight is wij . Further
consider i’s edge weight the last time it was chosen in a
randomized round, denoted as w′; let w′ = 0 if this is the
first randomized round involving vertex i. Then, wij and
w′ partition the weight-levels w > 0 into three subsets
A,B,C, each of which requires a different update rule
for αi(w). Concretely, the algorithm increases αi(w)
by:
a (ki(w)) ifw∈A,
a (ki(w))− 2−ki(w)−1 (1− γ)

ki(w)−1
γ ifw∈B,

2−ki(w)−1 (1− γ)
ki(w)−1

γ ifw∈C,
(9)

where

A = {w > 0 : 0 < w ≤ wij , w
′ or ki(w) = 0},

B = {w > 0 : w′ < w ≤ wij and ki(w) ≥ 1},
C = {w > 0 : w > wij and ki(w) ≥ 1}.

The first case A is straightforward—simply increase
αi(w) by a (ki(w)) to maintain the invariant in Eqn. (4).
Observe that this is the only case in the unweighted
version of the problem.

For a weight-level w that falls into the second case B
(if there is any), the increment in αi(w) is smaller than
the first case by 2−ki(w)−1(1− γ)ki(w)−1γ. This is the
difference between the lower bounds for the increments
in yi(w) in Lemma 7, depending on whether i’s edge
weight was at least w the last time it was chosen in a
randomized round. Since the increase in the surrogate
primal objective P due to vertex i and weight-level w
(when w′ < w) is less than the first case of Eqn. (9),
we subtract this difference from the increment in αi(w)
so that the update to βj is unaffected.

How can we still maintain the invariant in Eqn. (4)
given the subtraction in the second case? Observe that
if the second case happens, the same weight-level must
fall into the third case C in the previous randomized
round in which i is involved. Thus, an equal amount
is prepaid to each αi(w) in the previous round. This



give-and-take in the offline dual vertex updates becomes
clear when we prove reverse weak duality in the next
subsection.

B. Online Primal-Dual Analysis: Reverse Weak Duality

This subsection derives a set of sufficient conditions
under which the increment in the surrogate primal P is
at least that of the dual solution D. Reverse weak duality
then follows from P ≥ P ≥ D.

Deterministic Rounds: Suppose j is matched to i
in a deterministic round. Using the lower bound for the
increase of P in Lemma 6, the increase of the αi(w)’s
in Eqn. (8), and a lower bound for βj by dropping the
second term in Eqn. (6), we need:∫ wij

0

∞∑
`=ki(w)

a(`) dw + κ

∫ wij

0

b (ki(w)) dw

≤
∫ wij

0

2−ki(w) (1− γ)
max{ki(w)−1,0}

dw .

We will ensure this inequality locally at every weight-
level, so it suffices to satisfy the following for all k ≥ 0:
∞∑
`=k

a(`) + κ · b(k) ≤ 2−k (1− γ)
max{k−1,0} . (10)

Randomized Rounds: Now suppose j is matched
with candidates i1, i2 in a randomized round. We show
that the increment in P due to i1 is at least the increase
in the αi1(w)’s plus its contribution to βj (i.e., ∆R

i1
βj).

This also holds for i2 by symmetry, and together they
prove reverse weak duality.

Let w1 be the edge weight of i← i1 in this round, and
let w′1 be its edge weight the last time it was chosen in a
randomized round; set w′1 = 0 if this has not happened.
Then, w1 and w′1 partition the weight-levels w > 0
into three subsets corresponding to the three cases for
incrementing the dual variables αi(w) in a randomized
round, as in Eqn. (9)

The first case is when w ∈ A (i.e., w ≤ w1, w
′
1 or

ki(w) = 0). By Lemma 7, the increase in P due to
vertex i at weight-level w if ki(w) = 0 is at least 1/2. If
ki(w) ≥ 1 and w ≤ w1, w

′
1 then the increase is at least:

2−ki(w)−1 (1− γ)
ki(w)−1

(1 + γ) .

By the first case of Eqn. (9), the increase in αi(w) is
a(ki(w)). Finally, the contribution to the first term of
βj = ∆R

i βj + ∆R
i2
βj , at weight-level w, in Eqn. (5) is

b(ki(w)). Hence, it suffices to ensure a(0) +a(0) ≤ 1/2,
and for all k ≥ 1:

a(k) + b(k) ≤ 2−k−1 (1− γ)
k−1

(1 + γ) . (11)

The second case is when w ∈ B (i.e., w′1 < w ≤ w1

and ki(w) ≥ 1). By Lemma 7, the increment in P due
to i at weight-level w is at least 2−ki(w)−1(1−γ)ki(w)−1.

By the second case of Eqn. (9), the increase in αi(w)
is a(ki(w)) − 2−ki(w)−1(1 − γ)ki(w)−1γ. Finally, the
contribution to the first term of βj , at weight-level w,
is b(ki(w)). Hence, we must have:

a (ki(w))− 2−ki(w)−1 (1− γ)
ki(w)−1

γ + b (ki(w))

≤ 2−ki(w)−1 (1− γ)
ki(w)−1 .

Rearranging the second term to the RHS gives us the
same conditions as the second part of Eqn. (11).

The third case is when w ∈ C (i.e., w > w1 and
ki(w) ≥ 1). The increment in P due to i at weight-
level w is 0. By the last case of Eqn. (9), the increase
in αi(w) is 2−ki(w)−1(1 − γ)ki(w)−1γ. The negative
contribution from the second term of βj , at weight-
level w, is 1

2

∑
0≤`<ki(w) a(`). Hence, we need:

2−ki(w)−1 (1− γ)
ki(w)−1

γ − 1

2

∑
0≤`<ki(w)

a(`) ≤ 0 .

The first term is decreasing in ki(w) and the second is
increasing, so it suffices to consider ki(w) = 1, i.e.:

a(0) ≥ γ

2
. (12)

C. Online Primal-Dual Analysis: Approximate Dual
Feasibility

This subsection derives a set of conditions that are
sufficient for approximate dual feasibility, i.e., Eqn. (3).
Start by fixing any i ∈ L and any j ∈ R, and also the
values of the ki(w)’s when j arrives.

Boundary Condition at the Limit: First, it may
be the case that ki(w) = ∞ for all 0 < w ≤ wij

and j is unmatched. This means βj = 0 in this round
and thus, the contribution from the αi(w)’s alone must
ensure approximate dual feasibility. To do so, we will
ensure that the value of αi(w) is at least Γ whenever
ki(w) =∞. By the invariant in Eqn. (4), it suffices to
have: ∞∑

`=0

a(`) ≥ Γ . (13)

Next, we consider five different cases that depend
on whether the round of j is randomized, deterministic
or unmatched, and if i is chosen as a candidate. We
first analyze the cases when j is in a randomized round,
and then we will show that the other cases only require
weaker conditions.

Case 1—Round of j is a randomized, i is not chosen:
By definition, βj = ∆R

i1
βj+∆R

i2
βj . Since i is not chosen,

both terms on the RHS are at least ∆R
i βj . Using the

definition of ∆R
i βj in Eqn. (5) and lower bounding αi(w)

by Eqn. (4), approximate dual feasibility in Eqn. (3)
reduces to:∫ wij

0

∑
0≤`<ki(w)

a(`) dw+2

∫ wij

0

b (ki(w)) dw ≥ Γ·wij .



We will again ensure this inequality at every weight-level.
Thus, it suffices to have the following for all k ≥ 0:∑

0≤`<k

a(`) + 2 · b(k) ≥ Γ . (14)

Case 2—Round of j is randomized, i is chosen: By
symmetry, suppose WLOG that i← i2 and i1 is the other
candidate. By definition, βj = ∆R

i βj +∆R
i1
βj . Next, we

derive a lower bound only in terms of ∆R
i βj . Since the

algorithm does not choose a deterministic round with i
alone, we have ∆R

i βj + ∆R
i1
βj ≥ ∆D

i βj . Further, we
have ∆D

i βj = κ ·∆R
i βj by Eqn. (6). Combining these,

we have βj ≥ κ · ∆R
i βj . Finally, by the definition of

∆R
i βj in Eqn. (5), βj is at least:

κ ·
(∫ wij

0

b
(
ki(w)

)
dw − 1

2

∫ ∞
wij

∑
0≤`<ki(w)

a(`) dw

)
.

Lower bounding the αi(w)’s is more subtle. Recall
that ki(w) denotes the value at the beginning of the
round when j arrives. Thus, the value of ki(w) increases
by 1 for any weight-level 0 < w ≤ wij and stays the
same for any other weight-level w > wij . Therefore,
the contribution of the αi(w)’s to approximate dual
feasibility is at least:∫ wij

0

∑
0≤`≤ki(w)

a(`) dw +

∫ ∞
wij

∑
0≤`<ki(w)

a(`) dw .

Finally, since κ < 2, the net contribution from
weight-levels w > wij is nonnegative, so we can drop
them. Then approximate dual feasibility as in Eqn. (3)
becomes:∫ wij

0

 ∑
0≤`≤ki(w)

a(`) + κ · b (ki(w))

dw ≥ Γ · wij .

Thus, it suffices to ensure the inequality locally at
every weight-level, i.e., for all k ≥ 0 we need:∑

0≤`≤k

a(`) + κ · b(k) ≥ Γ . (15)

There are two differences between Eqn. (14) and
Eqn. (15). First, the summation above includes ` = k.
We can do this because i is one of the two candidates
and therefore, ki(w) increases by 1 in the round of j
for any weight-level w ≤ wij . Second, the κ coefficient
for the second term is smaller.

Case 3—Round of j is deterministic, i is not chosen:
By definition, βj = ∆D

i∗βj . Next, we derive a lower
bound in terms of ∆R

i βj . Since the algorithm does
not choose a randomized round with i and i∗ as the
two candidates, we have ∆D

i∗βj > ∆R
i∗βj + ∆R

i βj . By
Eqn. (6) and κ < 2, we have ∆R

i∗βj >
1
2 ·∆

D
i∗βj . Here,

we use the fact that ∆D
i∗βj ≥ 0, because i∗ is chosen

in a deterministic round. Putting this together gives us

βj = ∆D
i∗βj > 2 ·∆R

i βj , which is identical to the lower
bound in the first case. Therefore, approximate dual
feasibility is guaranteed by Eqn. (14).

Case 4—Round of j is deterministic, i is chosen:
For any 0 < w ≤ wij , we have ki(w) = ∞ after this
round. Therefore, approximate dual feasibility follows
from the contribution of the αi(w)’s alone due to the
invariant in Eqn. (4) and boundary condition in Eqn. (13).

Case 5—Round of j is unmatched: By definition,
βj = 0. Moreover, ∆D

i βj < 0 because the algorithm
chooses to leave j unmatched, which further implies
∆R

i βj < 0 by Eqn. (6). Therefore, we have βj ≥ 2 ·
∆R

i βj , identical to the lower bound in the first case. Thus,
approximate dual feasibility is guaranteed by Eqn. (14).

D. Optimizing the Gain-Sharing Parameters

To optimize the competitive ratio Γ in the above online
primal-dual analysis, it remains to solve for the gain
sharing parameters a(k) and b(k) via the following LP:

maximize Γ

subject to Eqn. (10), (11), (12), (13), (14), (15)

We obtain a lower bound for the competitive ratio by
solving a more restricted, finite LP. In particular, we set
a(k) = b(k) = 0, for all k > kmax for some sufficiently
large integer kmax.

We give an approximately optimal solution to the finite
LP in Table Ia with γ = 1/16, κ = 3/2, and kmax = 8,
which shows Γ > 0.505. We also tried different values
of κ = 1+ `/16, for 0 ≤ ` ≤ 16. If κ = 1 or κ = 2, then
Γ = 0.5; if κ = 1+ 15/16, then Γ ≈ 0.5026; for all other
values of κ, Γ > 0.505. Hence, the analysis is robust to
the choice of κ, so long as it is neither too close to 1
nor to 2. In Table Ib we give an approximately optimal
solution under the same setting, except we use a larger
γ = 13

√
13−35
108 > 0.1099 as in Theorem 3, which leads

to an improved competitive ratio Γ > 0.5086.1

V. CONCLUSION

This paper presents an online primal-dual algorithm
for the edge-weighted bipartite matching problem that
is 0.5086-competitive, resolving a long-standing open
problem in the study of online algorithms. In particular,
this work merges and refines the results of Fahrbach
and Zadimoghaddam [8] and Huang and Tao [22, 17]
to give a simpler algorithm under the online primal-
dual framework. Our work initiates the study of online
correlated selection, a key algorithmic ingredient that
quantifies the level of negative correlation in online
assignment problems, and we believe this technique will
find further applications in other online problems. Indeed,

1Our source code is available at https://github.com/fahrbach/focs-
2020-edge-weighted-online-bipartite-matching.

https://github.com/fahrbach/focs-2020-edge-weighted-online-bipartite-matching
https://github.com/fahrbach/focs-2020-edge-weighted-online-bipartite-matching


k a(k) b(k)

0 0.24748256 0.25251744

1 0.13684883 0.12877617

2 0.06415997 0.06035174

3 0.03009310 0.02827176

4 0.01413332 0.01322521

5 0.00666576 0.00615855

6 0.00318572 0.00282566

7 0.00158503 0.00123280

8 0.00088057 0.00044028

(a) γ = 1/16, Γ = 0.50503484

k a(k) b(k)

0 0.24566361 0.25433639

1 0.14597716 0.13150459

2 0.06497349 0.05851601

3 0.02892807 0.02602926

4 0.01289279 0.01156523

5 0.00576587 0.00511883

6 0.00260819 0.00223589

7 0.00122399 0.00093180

8 0.00063960 0.00031980

(b) γ = 13
√

13−35
108

≈ 0.109927, Γ = 0.508672

Table I: Approximately optimal solutions to the factor-revealing LP with κ = 3/2 and kmax = 8.

Huang, Zhang, and Zhang [23] recently generalized the
OCS to obtain the first online algorithm that breaks the
1/2 barrier in the general case of AdWords.
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