STREAMING END-TO-END SPEECH RECOGNITION FOR MOBILE DEVICES

Yanzhang He", Tara N. Sainath*, Rohit Prabhavalkar, Ian McGraw, Raziel Alvarez, Ding Zhao,
David Rybach, Anjuli Kannan, Yonghui Wu, Ruoming Pang, Qiao Liang, Deepti Bhatia, Yuan Shangguan,
Bo Li, Golan Pundak, Khe Chai Sim, Tom Bagby, Shuo-yiin Chang, Kanishka Rao, Alexander Gruenstein

Google, Inc., USA

{yanzhanghe, tsainath}@google.com

ABSTRACT

End-to-end (E2E) models, which directly predict output character se-
quences given input speech, are good candidates for on-device speech
recognition. E2E models, however, present numerous challenges: In
order to be truly useful, such models must decode speech utterances
in a streaming fashion, in real time; they must be robust to the long
tail of use cases; they must be able to leverage user-specific context
(e.g., contact lists); and above all, they must be extremely accurate.
In this work, we describe our efforts at building an E2E speech recog-
nizer using a recurrent neural network transducer. In experimental
evaluations, we find that the proposed approach can outperform a
conventional CTC-based model in terms of both latency and accuracy
in a number of evaluation categories.

1. INTRODUCTION

The last decade has seen tremendous advances in automatic speech
recognition (ASR) technologies fueled by research in deep neural
networks [1]. Coupled with the tremendous growth and adoption
of smartphones, tablets and other consumer devices, these improve-
ments have resulted in speech becoming one of the primary modes
of interaction with such devices [2, 3]. The dominant paradigm for
recognizing speech on mobile devices is to stream audio from the
device to the server, while streaming decoded results back to the
user. Replacing such a server-based system with one that can run en-
tirely on-device has important implications from a reliability, latency,
and privacy perspective, and has become an active area of research.
Prominent examples include wakeword detection (i.e., recognizing
specific words or phrases) [4, 5, 6, 7], as well as large vocabulary
continuous speech recognition (LVCSR) [8, 9].

Previous attempts at building on-device LVCSR systems have
typically consisted of shrinking traditional components of the overall
system (acoustic (AM), pronunciation (PM), and language (LM)
models) to satisfy computational and memory constraints. While
this has enabled parity in accuracy for narrow domains such as voice
commands and dictation [9], performance is significantly worse than
a large server-based system on challenging tasks such as voice search.

In contrast to previous approaches, we instead focus on building
a streaming system based on the recent advances in end-to-end (E2E)
models [10, 11, 12, 13, 14]. Such models replace the traditional
components of an ASR system with a single, end-to-end trained, all-
neural model which directly predicts character sequences, thus greatly
simplifying training and inference. E2E models are thus extremely
attractive for on-device applications.

*Equal contribution

Early E2E work examined connectionist temporal classifica-
tion (CTC) [15] with grapheme or word targets [16, 17, 18, 19].
More recent work has demonstrated that performance can be im-
proved further using either the recurrent neural network transducer
(RNN-T) model [12, 20, 21] or attention-based encoder-decoder mod-
els [10, 13, 14, 22]. When trained on sufficiently large amounts of
acoustic training data (10, 000+ hours), E2E models can outperform
conventional hybrid RNN-HMM systems [21, 14]. Most E2E re-
search has focused on systems which process the full input utterance
before producing a hypothesis; models such as RNN-T [12, 20] or
streaming attention-based models (e.g., MoChA [22]) are suitable if
streaming recognition is desired. Therefore, in this work, we build a
streaming E2E recognizer based on the RNN-T model.

Running an end-to-end model on device in a production envi-
ronment presents a number of challenges: first, the model needs to
be at least as accurate as a conventional system, without increas-
ing latency (i.e., the delay between the user speaking and the text
appearing on the screen), thus running at or faster than real-time
on mobile devices; second, the model should be able to leverage
on-device user context (e.g., lists of contacts, song names, etc.) to
improve recognition accuracy [23]; finally, the system must be able
to correctly recognize the ‘long tail’ of possible utterances, which is
a challenge for an E2E system trained to produce text directly in the
written domain (e.g., call two double four triple six
five —+ call 244-6665).

In order to achieve these goals, we explore a number of improve-
ments to the basic RNN-T model: using layer normalization [24]
to stabilize training; using large batch size [25]; using word-piece
targets [26]; using a time-reduction layer to speed up training and
inference; and quantizing network parameters to reduce memory
footprint and speed up computation [27]. In order to enable con-
textualized recognition, we use a shallow-fusion approach [28, 29]
to bias towards user-specific context, which we find is on-par with
conventional models [9, 23]. Finally, we characterize a fundamental
limitation of vanilla E2E models: their inability to accurately model
the normalization of spoken numeric sequences in the correct written
form when exposed to unseen examples. We address this issue by
training the model on synthetic data generated using a text-to-speech
(TTS) system [30], which improves performance on numeric sets by
18-36% relative. When taken together, these innovations allow us
to decode speech twice as fast as real time on a Google Pixel phone,
which improves word error rate (WER) by more than 20% relative to
a conventional CTC embedded model on voice search and dictation
tasks.

P(Z)z\xlv“ sle,yoy--»-ﬂmﬂ)

P(§elx1,- -+, %)
Softmax Z;

enc

hy

Encoder Pu; hil"c
|Pred. Networkll Encoder |

(a.) CTC X,
(b.) RNN-Transducer

Joint Network

Fig. 1: A schematic representation of CTC and RNNT.

2. RECURRENT NEURAL NETWORK TRANSDUCER

Before describing the RNN-T model in detail, we begin by introduc-
ing our notation. We denote the parameterized input acoustic frames
as X = (x1...Xr), where x; € R¢ are 80-dimensional log-mel
filterbank energies in this work (d = 80) and " denotes the number
of frames in x. We denote the ground-truth label sequence of length
Uasy = (y1,...,yv), where y, € Z and where Z corresponds to
context-independent (CI) phonemes, graphemes or word-pieces [26],
in this work. We sometimes also use a special symbol, yo = (sos),
which indicates the start of the sentence.

We describe the RNN-T [12, 20] model by contrasting it to a
CTC [15] model. CTC computes the distribution of interest, P(y|x),
by augmenting Z with an additional blank symbol, (b), and defining:

Plyx)=> [[P@lx1,-- %))

YEAcrc(x,y) t=1

where § = (41, ..., 91) € Acre(x,y) C {Z U (b)}* correspond
to frame-level alignments of length 7" such that removing blanks and
repeated symbols from y yields y. CTC makes a strong independence
assumption that labels are conditionally independent of one another
given acoustics. RNN-T removes this independence assumption by
instead conditioning on the full history of previous non-blank labels:

T+U

P(y|X) :Z H P(Z)i|X17"' y Xty Yo, - - -

JEARNNT(X,y) =1

7yui71) (2)

where § = (1, ..., 97+0) € Arwnr(%,y) C {Z U (0)}T Y are
alignment sequences with 7" blanks and U labels such that removing
the blanks in ¥ yields y. Practically speaking this means that the
probability of observing the ith label, ¢;, in an alignment, y, is
conditioned on the history of non-blank labels, y1 . . . yu,_, , emitted
thus far. Crucially, for both CTC and RNN-T we introduce one final
conditional independence assumption: an alignment label §j cannot
depend on future acoustic frames. This enables us to build streaming
systems that do not need to wait for the entire utterance to begin
processing.

The conditional distributions for both models are parameterized
by neural networks, as illustrated in Figure 1. Given the input features
we stack unidirectional long short-term memory (LSTM) [31] layers
to construct an encoder. For CTC the encoder is augmented with a
final softmax layer that converts the encoder output into the relevent
conditional probability distribution. The RNN-T, instead, employs
a feed-forward joint network that accepts as input the results from
both the encoder and a prediction network that depends only on
label histories. The gradients required to train both models can be
computed using the forward-backward algorithm [12, 15, 20].

3. REAL-TIME SPEECH RECOGNITION USING RNN-T

This section describes various architectural and optimization improve-
ments that increase the RNN-T model accuracy and also allow us to
run the model on device faster than real time.

3.1. Model Architecture

‘We make a number of architectural design choices for the encoder and
prediction network in RNN-T in order to enable efficient processing
on mobile devices. We employ an encoder network which consists of
eight layers of uni-directional LSTM cells [31]. We add a projection
layer [32] after each LSTM layer in the encoder, thus reducing the
number of recurrent and output connections.

Motivated by [10, 33], we also add a time-reduction layer in
the encoder to speed up training and inference. Specifically, if we
denote the inputs to the time-reduction layer as hy, hs,--- hyp,
then we concatenate together /N adjacent input frames to produce
[%1 output frames, where the ¢ + 1-th output frame is given by
[hiv;hingr; - h(i+1)N—1], thus effectively reducing the overall
frame rate by a factor of N. The computational savings obtained
using a time-reduction layer increase if it is inserted lower in the
encoder LSTM stack. Applying the time-reduction layer to either
model, which already has an input frame rate of 30ms, has different
behaiviors. Specifically, we find that it can be inserted as low as
after the second LSTM layer without any loss in accuracy for RNN-T,
whereas adding it to the CTC phoneme models (with effective output
frame rate > 60ms) degrades accuracy.

3.2. Training Optimizations

In order to stabilize hidden state dynamics of the recurrent layers, we
find it useful to apply layer normalization [24] to each LSTM layer in
the encoder and the prediction network. Similar to [21], we train with
word-piece subword units [26], which outperform graphemes in our
experiments. We utilize an efficient forward-backward algorithm [25],
which allows us to train RNN-T models on tensor processing units
(TPUs) [34]. This allows us to train faster with much larger batch
sizes than would be possible using GPUs, which improves accuracy.

3.3. Efficient Inference

Finally, we consider a number of runtime optimizations to enable
efficient on-device inference. First, since the prediction network in
RNN-T is analogous to an RNN language model, its computation
is independent of the acoustics. We, therefore, apply the same state
caching techniques used in RNN language models in order to avoid
redundant computation for identical prediction histories. In our ex-
periments, this results in saving 50-60% of the prediction network
computations. In addition, we use different threads for the encoder
and the prediction network to enable pipelining through asynchrony
in order to save time. We further split the encoder execution over
two threads corresponding to the components before and after the
time-reduction layer, which balances the computation between the
two encoder components and the prediction network. This results in
a speed-up of 28% with respect to single-threaded execution.

3.4. Parameter Quantization

In order to reduce memory consumption, both on disk and at runtime,
and to optimize the model’s execution to meet real-time requirements,
we quantize parameters from 32-bit floating-point precision into 8-bit
fixed-point, as in our previous work [9]. In contrast to [9], we now
use a simpler quantization approach that is linear (as before) but no

longer has an explicit “zero point” offset, thus assuming that values
are distributed around floating point zero. More specifically we define
the quantized vector, x4, to be the product of the original vector, x,
and a quantization factor, 6, where 6 = m The lack
of zero point offset avoids having to apply it prior to performing
operations, such as multiplication, in lower precision thus speeding-
up execution. Note that we force the quantization to be in the range
+(27 — 1). Thus, for the typical multiply-accumulate operation, the
sum of the products of 2 multiplies is always strictly smaller than
15-bits, which allows us to carry more than one operation into a 32-bit
accumulator, further speeding up inference. We leverage TensorFlow
Lite optimization tools and runtime to execute the model on both
ARM and x86 mobile architectures [35]. On ARM architectures, this
achieves a 3 x speedup compared to floating point execution.

4. CONTEXTUAL BIASING

Contextual biasing is the problem of injecting prior knowledge into
an ASR system during inference, for example a user’s favorite songs,
contacts, apps or location [23]. Conventional ASR systems perform
contextual biasing by building an n-gram finite state transducer (FST)
from a list of biasing phrases, which is composed on-the-fly with the
decoder graph during decoding [36]. This helps to bias the recog-
nition result towards the n-grams contained in the contextual FST,
and thus improves accuracy in certain scenarios. In the E2E RNN-T
model, we use a technique similar to [36], to compute biasing scores
Pc(y), which are interpolated with the base model P(y|x) using
shallow-fusion [37] during beam search:

y" = argmaxlog P(y|x) + Alog Pc(y) 3)
y

where, A is a tunable hyperparameter controlling how much the
contextual LM influences the overall model score during beam search.

To construct the contextual LM, we assume that a set of word-
level biasing phrases are known ahead of time, and compile them
into a weighted finite state transducer (WFST) [38]. This word-level
WEST, G, is then left-composed with a “speller” FST, .S, which trans-
duces a sequence of graphemes or word-pieces into the corresponding
word, to obtain the contextual LM: C' = min(det(S o G)). In order
to avoid artificially boosting prefixes which match early on but do
not match the entire phrase, we add a special failure arc which re-
moves the boosted score, as illustrated in Figure 2. Finally, in order to
improve RNN-T performance on proper nouns, which is critical for
biasing, we train with an additional 500M unsupervised voice search
utterances (each training batch is filled with supervised data 80% of
the time and unsupervised data 20% of the time) [39]. The unsu-
pervised data is transcribed by our production-level recognizer [40]
and filtered to contain high-confidence utterances with proper nouns
only. Note that training with this data does not change results on our
voice-search and dictation test sets, but only improves performance
on the contextual biasing results described in Table 2.

Fig. 2: Contextual FST for the word “cat”, represented at the subword
unit level with backoff arcs.

5. TEXT NORMALIZATION

Conventional models are trained in the spoken domain [41, 42],
which allows them to convert unseen numeric sequences into

the written domain during decoding (e.g., navigate to two
twenty one b baker street — navigate to 221b
baker street), which alleviates the data sparsity issue. This
is done by training a class-based language model where classes
such as ADDRESSNUM replace actual instances in the training
data, and training grammar WFSTs that map these classes to all
possible instances through hand-crafted rules. During decoding,
the recognizer first outputs hypotheses in the spoken domain with
the numeric part enclosed in the class tags (<addressnum> two
twenty one b </addressnum>), which is then converted to
written domain with a hand-crafted set of FST normalization rules.

For our purposes, it would be possible to train the E2E model
to output hypotheses in the spoken domain, and then to use either
a neural network [42] or an FST-based system [41] to convert the
hypotheses into the written domain. To keep overall system size as
small as possible, we instead train the E2E model to directly output
hypotheses in the written domain (i.e., normalized into the output
form). Since we do not observe a sufficiently large number of audio-
text pairs containing numeric sequences in training, we generate a set
of 5 million utterances containing numeric entities. We synthesize
this data using a concatenative TTS approach with one voice [43] to
create audio-text pairs, which we augment to our training data (each
batch is filled with supervised data 90% of the time and synthetic
data 10% of the time).

6. EXPERIMENTAL DETAILS
6.1. Data Sets

The training set used for experiments consists of 35 million English
utterances (~ 27, 500 hours). The training utterances are anonymized
and hand-transcribed, and are representative of Google’s voice search
and dictation traffic. This data set is created by artificially corrupting
clean utterances using a room simulator, adding varying degrees of
noise and reverberation such that the overall SNR is between 0dB
and 30dB, with an average SNR of 12dB [44]. The noise sources are
from YouTube and daily life noisy environmental recordings. The
main test sets we report results on include 14.8K voice search (V)
utterances extracted from Google traffic, as well as 15.7K dictation
utterances, which we refer to as the IME test set.

To evaluate the performance of contextual biasing, we report
performance on 4 voice command test sets, namely Songs (requests
to play media), Contacts-Real, Contacts-TTS (requests to call/text
contacts), and Apps (requests to interact with an app). All sets except
Contacts-Real are created by mining song, contact or app names from
the web, and synthesizing TTS utterances in each of these categories.
The Contacts-Real set contains anonymized and hand-transcribed
utterances extracted from Google traffic. Only utterances with an
intent to communicate with a contact are included in the test set.
Noise is then artificially added to the TTS data, similar to the process
described above [44].

To evaluate the performance of numerics, we report results on
a real data numerics set (Num-Real), which contains anonymized
and hand-transcribed utterances extracted from Google traffic. In
addition, we include performance on a synthesized numerics set
(Num-TTS), which uses Parallel Wavenet [30] with 1 voice. No
utterance / transcript from the numerics test set appears in the TTS
training set from Section 5.

6.2. Model Architecture Details

All experiments use 80-dimensional log-Mel features, computed with
a 25ms window and shifted every 10ms. Similar to [40], at the
current frame, ¢, these features are stacked with 3 frames to the left

and downsampled to a 30ms frame rate. The encoder network consists
of 8 LSTM layers, where each layer has 2,048 hidden units followed
by a 640-dimensional projection layer. For all models in this work,
we insert a time-reduction layer with the reduction factor N = 2 after
the second layer of encoder to achieve 1.7 x improvement in overall
system speed without any accuracy loss. The prediction network
is 2 LSTM layers with 2,048 hidden units and a 640-dimensional
projection per layer. The encoder and prediction network are fed to a
joint-network that has 640 hidden units. The joint network is fed to
a softmax layer, with either 76 units (for graphemes) or 4,096 units
(for word-pieces [45]). The total size of the RNN-T model is 117M
parameters for graphemes and 120M parameters for word-pieces. For
the WPM, after quantization, the total size is 120MB. All RNN-T
models are trained in Tensorflow [46] on 8 x 8 Tensor Processing
Units (TPU) slices with a global batch size of 4,096.

In this work, we compare the RNN-T model to a strong baseline
conventional CTC embedded model, which is similar to [9] but much
larger. The acoustic model consists of a CI-phone CTC model with 6
LSTM layers, where each layer has 1,200 hidden units followed by a
400-dimensional projection layer, and a 42-phoneme output softmax
layer. The lexicon has 500K words in the vocabulary. We use a 5-
gram first-pass language model and a small and efficient second-pass
rescoring LSTM LM. Overall the size of the model after quantization
is 130MB, which is of similar size to the RNN-T model.

7. RESULTS

7.1. Quality Improvements

Table 1 outlines various improvements to the quality of RNN-T mod-
els. First, £'1 shows that layer norm [24] helps to stabilize training,
resulting in a 6% relative improvement in WER for VS and IME.
Next, by moving RNN-T training to TPUs [25] and having a larger
batch size, we can get between a 1-4% relative improvement. Finally,
changing units from graphemes to word-pieces [21] (£3) shows a
9% relative improvement. Overall, our algorithmic changes show
27% and 25% relative improvement on VS and IME respectively
compared to the baseline conventional CTC embedded model (50).
All experiments going forward in the paper will report results using
layer norm, word-pieces and TPU training (E3).

ID Model VS WER | IME WER
EO | RNN-T Grapheme 8.1% 4.9%
El +Layer Norm 7.6% 4.6%
E2 +Larger Batch 7.5% 4.4%
E3 +Word-piece 6.8% 4.0%
[BO | CTC [93% | 53% |

Table 1: RNN-T model improvements. All models are unquantized.
7.2. Contextual Biasing

Table 2 shows results using the shallow-fusion biasing mechanism.
We report biasing results with just supervised data (#4) and also
including unsupervised data (£6). We also show biasing performance
for the CTC conventional model in B1. The table indicates that E2E
biasing outperforms or is on par with conventional-model biasing
on all sets, except songs likely because the out-of-vocabulary rate in
songs is 1.0%, which is higher than contacts (0.2%) or apps (0.5%).

7.3. Text normalization

Next, Table 3 indicates the performance of the baseline RNN-T (£3)
word-piece model on two numeric sets. As can be seen in the table,
the WER on the Num-TTS set is really high. A closer error analysis

ID | Model Songs | Contacts-| Contacts-| Apps
Real TS
E3 | RNN-T Word-piece | 20.0% | 15.9% 35.0% 13.1%
E4 | + Biasing 34% | 6.4% 7.1% 1.9%
E5 | E3 + Unsupervised 14.7% | 15.4% 25.0% 9.6%
E6 | + Biasing 3.0% | 5.8% 5.4% 1.7%
[BI | CTC + Biasing [24% [68% [57% [24%

Table 2: WER on contextual biasing sets. All models unquantized.

reveals that these are due to the text normalization errors: e.g., if the
user speaks call two double three four ...,the RNN-
T model hypothesizes 2 double 3 4 rather than 2334. To fix
this, we train the RNN-T model with more numeric examples (E7),
as described in Section 5, which mitigates this issue substantially, at
the cost of a small degradation on VS and IME. However, we note that
this still outperforms the baseline system with a separate FST-based
normalizer [9] (B0) on all sets.

ID | Model A} IME | Num-Real | Num-TTS
E3 | RNN-T Word-piece | 6.8% | 4.0% | 6.7% 22.8%
E7 | + numerics TTS 7.0% | 41% | 6.9% 4.3%

| BO [CTC [9.3% [5.3% [8.4% [6.8%

Table 3: WER on numeric sets. All models are unquantized.
7.4. Real Time Factor

In Table 4, we report WER and RT90, i.e. real time factor (processing
time divided by audio duration) at 90 percentile, where lower values
indicate faster processing and lower user-perceived latency. Com-
paring E2 and E7, we can see that the RNN-T word-piece model
outperforms the grapheme model in both accuracy and speed.

Quantization speeds up inference further: asymmetric quantiza-
tion (E8) improves RT90 by 28% compared to the float model (E'7)
with only a 0.1% absolute WER degradation; symmetric quantization
(E'9), which assumes that weights are centered around zero, only
introduces additional small degradation on VS WER, but leads to a
substantial reduction in RT90 (64% compared to the float model),
which is twice as fast as real time. Moreover, quantization reduces
model size by 4x. Our best model (£9) is also faster than the conven-
tional CTC model B2, while still achieving accuracy improvements
of more than 20%.

ID | Model VS IME | RT90
E2 | RNN-T Grapheme (Float) 75% | 4.4% | 1.58
E7 | RNN-T Word-piece (Float) 7.0% | 4.1% | 1.43
E8 | + Asymmetric Quantization 71% | 42% | 1.03
E9 | + Symmetric Quantization 73% | 42% | 0.51

| B2 [CTC + Symmetric Quantization [9.2% [5.4% [0.86 ‘

Table 4: Quantization results on WER and RT90.
8. CONCLUSIONS

We present the design of a compact E2E speech recognizer based on
the RNN-T model which runs twice as fast as real-time on a Google
Pixel phone, and improves WER by more than 20% over a strong
embedded baseline system on both voice search and dictation tasks.
This is achieved through a series of modifications to the RNN-T model
architecture, quantized inference, and the use of TTS to synthesize
training data for the E2E model. The proposed system shows that
an end-to-end trained, all-neural model is very well suited for on-
device applications for its ability to perform streaming, high-accuracy,
low-latency, contextual speech recognition.

(1]

[2]

[3

[uar

[4]

[3]

[6]

[7]

[8]

[91

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]

(20]

(21]

(22]

9. REFERENCES

G. Hinton, L. Deng, D. Yu, G. E. Dahl, A. Mohamed, N. Jaitly, A. Senior,
V. Vanhoucke, P. Nguyen, T. N. Sainath, and B. Kingsbury, “Deep neural
networks for acoustic modeling in speech recognition: The shared views
of four research groups,” IEEE Signal Processing Magazine, vol. 29, no.
6, pp. 82-97, Nov 2012.

J. Cohen, “Embedded speech recognition applications in mobile phones:
Status, trends, and challenges,” in Proc. ICASSP, 2008, pp. 5352-5355.

J. Schalkwyk, D. Beeferman, F. Beaufays, B. Byrne, C. Chelba, M. Co-
hen, M. Kamvar, and B. Strope, “Your Word is my Command”: Google
Search by Voice: A Case Study, pp. 61-90, Springer US, 2010.

T. N. Sainath and C. Parada, “Convolutional neural networks for small-
footprint keyword spotting,” in Proc. Interspeech, 2015.

S. O. Arik, M. Kliegl, R. Child, J. Hestness, A. Gibiansky, C. Fougner,
R. Prenger, and A. Coates, “Convolutional recurrent neural networks
for small-footprint keyword spotting,” in Proc. Interspeech, 2017.

Y. He, R. Prabhavalkar, K. Rao, W. Li, A. Bakhtin, and 1. Mc-
Graw, “Streaming small-footprint keyword spotting using sequence-to-
sequence models,” in Proc. ASRU, Dec 2017, pp. 474—481.

R. Alvarez and H.J. Park, “End-to-End streaming keyword spotting,” in
Proc. ICASSP, 2019.

A. Waibel et al., “Speechalator: Two-way speech-to-speech translation
on a consumer PDA,” in Proc. Eurospeech, 2003.

I. McGraw, R. Prabhavalkar, R. Alvarez, M. G. Arenas, K. Rao, D. Ry-
bach, O. Alsharif, H. Sak, A. Gruenstein, F. Beaufays, and C. Parada,
“Personalized speech recognition on mobile devices,” in Proc. ICASSP,
2016, pp. 5955-5959.

W. Chan, N. Jaitly, Q. V. Le, and O. Vinyals, “Listen, attend and spell,”
CoRR, vol. abs/1508.01211, 2015.

D. Bahdanau, J. Chorowski, D. Serdyuk, P. Brakel, and Y. Bengio, “End-
to-End Attention-based Large Vocabulary Speech Recognition,” in Proc.
ICASSP, 2016.

A. Graves, “Sequence transduction with recurrent neural networks,”
CoRR, vol. abs/1211.3711, 2012.

S. Kim, T. Hori, and S. Watanabe, “Joint CTC-attention based end-to-
end speech recognition using multi-task learning,” in Proc. ICASSP,
2017, pp. 4835-4839.

C. C. Chiu, T. N. Sainath, Y. Wu, R. Prabhavalkar, P. Nguyen, Z. Chen,
A. Kannan, R. J. Weiss, K. Rao, N. Jaitly, B. Li, and J. Chorowski,
“State-of-the-art speech recognition with sequence-to-sequence models,”
in Proc. ICASSP, 2018.

A. Graves, S. Fernandez, F. Gomez, and J. Schmidhuber, “Connectionist
Temporal Classification: Labeling Unsegmented Sequenece Data with
Recurrent Neural Networks,” in Proc. ICML, 2006.

A. Graves and N. Jaitly, “Towards end-to-end speech recognition with
recurrent neural networks,” in Proc. ICML, 2014, pp. 1764—1772.

A. Hannun, C. Case, J. Casper, B. Catanzaro, G. Diamos, E. Elsen,
R. Prenger, S. Satheesh, S. Sengupta, A. Coates, and A. Y. Ng, “Deep
speech: Scaling up end-to-end speech recognition,” .

Y. Miao, M. Gowayyed, and F. Metze, “Eesen: End-to-end speech
recognition using deep rnn models and wfst-based decoding,” in Proc.
ASRU, 2015, pp. 167-174.

H. Soltau, H. Liao, and H. Sak, “Neural speech recognizer: Acoustic-
to-word Istm model for large vocabulary speech recognition,” in Proc.
Interspeech, 2017, pp. 3707-3711.

A. Graves, A.-R. Mohamed, and G. Hinton, “Speech recognition with
deep neural networks,” in Proc. [CASSP, 2012.

K. Rao, H. Sak, and R. Prabhavalkar, “Exploring architectures, data and
units for streaming end-to-end speech recognition with rnn-transducer,”
in Proc. ASRU, 2017, pp. 193-199.

C.-C. Chiu and C. Raffel, “Monotonic chunkwise alignments,” in Proc.
ICLR, 2017.

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

P. Aleksic, M. Ghodsi, A. Michaely, C. Allauzen, K. Hall, B. Roark,
D. Rybach, and P. Moreno, “Bringing Contextual Information to Google
Speech Recognition,” in in Proc. Interspeech, 2015.

J. L. Ba, R. Kiros, and G. E. Hinton, “Layer Normalization,” CoRR, vol.
abs/1607.06450, 2016.

K. Sim, A. Narayanan, T. Bagby, T.N. Sainath, and M. Bacchiani, “Im-
proving the Efficiency of Forward-Backward Algorithm using Batched
Computation in TensorFlow,” in ASRU, 2017.

M. Schuster and K. Nakajima, “Japanese and korean voice search,” in
Proc. ICASSP, 2012, pp. 5149-5152.

R. Alvarez, R. Prabhavalkar, and A. Bakhtin, “On the efficient repre-
sentation and execution of deep acoustic models,” in Proc. Interspeech,
2016.

I. Williams, A. Kannan, P. Aleksic, D. Rybach, and T. N. Sainath,
“Contextual speech recognition in end-to-end neural network systems
using beam search,” in Proc. Interspeech, 2018.

G. Pundak, T. Sainath, R. Prabhavalkar, A. Kannan, and D. Zhao, “Deep
Context: End-to-End Contextual Speech Recognition,” in Proc. SLT,
2018.

A. van den Oord, Y. Li, and I. Babuschkin et. al., “Parallel wavenet: Fast
high-fidelity speech synthesis,” Tech. Rep., Google Deepmind, 2017.

S. Hochreiter and J. Schmidhuber, “Long Short-Term Memory,” Neural
Computation, vol. 9, no. 8, pp. 1735-1780, Nov 1997.

H. Sak, A. Senior, and F. Beaufays, “Long Short-Term Memory Recur-
rent Neural Network Architectures for Large Scale Acoustic Modeling,”
in Proc. Interspeech, 2014.

H. Soltau, H. Liao, and H. Sak, “Reducing the Computational Complex-
ity for Whole Word Models,” in ASRU, 2017.

N. P. Jouppi et al., “In-datacenter performance analysis of a tensor
processing unit,” in Proc. International Symposium on Computer Archi-
tecture (ISCA), 2017.

R. Alvarez, R. Krishnamoorthi, S. Sivakumar, Y. Li, A. Chiao,
P Warden, S. Shekhar, S. Sirajuddin, and Davis. T, “In-
troducing the Model Optimization Toolkit for TensorFlow,”
https://medium.com/tensorflow/introducing-the-model-optimization-
toolkit-for-tensorflow-254acalba0a3, Accessed: 2018-10-22.

K.B. Hall, E. Cho, C. Allauzen, F. Beaufays, N. Coccaro, K. Nakajima,
M. Riley, B. Roark, D. Rybach, and L. Zhang, “Composition-based
on-the-fly rescoring for salient n-gram biasing,” in Interspeech, 2015.
A. Kannan, Y. Wu, P. Nguyen, T. N. Sainath, Z. Chen, and R. Prab-
havalkar, “An analysis of incorporating an external language model into
a sequence-to-sequence model,” in Proc. ICASSP, 2018.

Mehryar Mohri, Fernando Pereira, and Michael Riley, “Weighted finite-
state transducers in speech recognition,” Computer Speech & Language,
vol. 16, no. 1, pp. 69-88, 2002.

B. Li, T.N. Sainath, R. Pang, and Z. Wu, “Semi-supervised Training for
End-to-End models via Weak Distillation,” in Proc. ICASSP, 2019.

G. Pundak and T. N. Sainath, “Lower Frame Rate Neural Network
Acoustic Models,” in Proc. Interspeech, 2016.

L. Vasserman, V. Schogol, and K.B. Hall, “Sequence-based class tagging
for robust transcription in ast,” in Proc. Interspeech, 2015.

R. Sproat and N. Jaitly, “An RNN Model of Text Normalization,” in
Proc. Interspeech, 2017.

X. Gonzalvo, S. Tazari, C. Chan, M. Becker, A. Gutkin, and H. Silen,
“Recent Advances in Google Real-time HMM-driven Unit Selection
Synthesizer,” in Interspeech, 2016.

C. Kim, A. Misra, K. Chin, T. Hughes, A. Narayanan, T. N. Sainath, and
M. Bacchiani, “Generated of large-scale simulated utterances in virtual
rooms to train deep-neural networks for far-field speech recognition in
google home,” in Proc. Interspeech, 2017.

Mike Schuster and Kaisuke Nakajima, “Japanese and Korean voice
search,” Proc. ICASSP, 2012.

M. Abadi et al., “TensorFlow: Large-Scale Machine Learn-
ing on Heterogeneous Distributed Systems,” Available online:
http://download.tensorflow.org/paper/whitepaper2015.pdf, 2015.

