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ABSTRACT
Hierarchical clustering is typically performed using algorithmic-

based optimization searching over the discrete space of trees. While

these optimization methods are often effective, their discreteness

restricts them from many of the benefits of their continuous coun-

terparts, such as scalable stochastic optimization and the joint op-

timization of multiple objectives or components of a model (e.g.

end-to-end training). In this paper, we present an approach for hi-

erarchical clustering that searches over continuous representations

of trees in hyperbolic space by running gradient descent. We com-

pactly represent uncertainty over tree structures with vectors in the

Poincaré ball. We show how the vectors can be optimized using an

objective related to recently proposed cost functions for hierarchical

clustering [16, 49]. Using our method with a mini-batch stochastic

gradient descent inference procedure, we are able to outperform

prior work on clustering millions of ImageNet images by 15 points

of dendrogram purity. Further, our continuous tree representation

can be jointly optimized in multi-task learning applications offering

a 9 point improvement over baseline methods.
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1 INTRODUCTION
Hierarchical clustering is a ubiquitous and often-used tool for data

analysis [44, 57], visualization [23, 43] and mining of meaningful

representations of data [8]. In hierarchical clustering, data points

are arranged as the leaves of a multi-layered tree structure with

internal nodes representingmeaningful and potentially overlapping

sub-clusters of the data.

Hierarchical clustering is often used downstream as a compo-

nent of larger systems [23, 37, 43]. It can discover tree structured

representations that are used in tasks such as personalization and

recommendation [55]. Moreover, it is also used on its own to solve

coreference and record linkage tasks [12, 15, 32, 50] in which a set

of entity mentions are clustered to discover entities.

Hierarchical clusterings are typically found using discrete algo-

rithmic methods that search over discrete tree structures [18, 27,

28, 30, 51, 54]. For example, hierarchical agglomerative clustering

greedily merges sub-trees to form a complete dendrogram. Hier-

archical clustering algorithms strive to optimize a particular cost,

objective, or probabilistic model that designates which hierarchical

partitions of the data are more favorable than others. For example,

Moseley andWang [34] give a cost, which is akin to Dasgupta’s [16]

and is well approximated by hierarchical agglomerative clustering

with average linkage, and Adams et al. [1] give a MCMC-based

inference procedure for a nested stick-breaking objective.

While these algorithms are often highly effective in practice

[16, 28, 34], their discreteness inherently restricts them from sev-

eral key advantages of continuous optimization such as scalability

and joint optimization in down-stream applications. Continuous

models are typically amenable to stochastic / mini-batch optimiza-

tion, allowing for scalability to massive datasets. For example, flat

clustering using mini-batch K-means performs very well and scales

to massive amounts of data due to its use of stochastic optimization

[42] . Furthermore, these gradient-based methods can often be im-

plemented to efficiently run on specialized hardware such as GPUs.

Importantly, it is natural for gradient-based optimization methods

to be combined for the joint optimization of multiple objectives or

components of a model for end-to-end training [46, 52]. In these

joint optimization settings, signal from the underlying task can

help inform the clustering algorithm and vice-versa.

In this paper, we present a new approach for hierarchical cluster-

ing, utilizing a embedded representation of tree structures in hyper-

bolic space, specifically the Poincaré ball. Our approach, gradient-
based hyperbolic hierarchical clustering (gHHC), represents each
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node of a discrete tree structure using as a continuous vector. Child-

parent relationships in the tree structure are based on the relative

position and norms of the embedded node representations. The

negative curvature of the hyperbolic space is widely known to ac-

curately capture parent-child relationships [19, 35, 40]. We use the

norm of vectors to model depth in the tree, requiring child nodes to

have a larger norm than their parents. The root is near the origin

of the space and the leaves near the edge of the ball. We present

an objective function that is differentiable with respect to our tree

node embeddings and perform hierarchical clustering by optimiz-

ing this objective using stochastic gradient descent. This objective

has connections to recently proposed cost functions for hierarchi-

cal clustering [16, 49]. Note the distinction between this objective

and previous work on learning representations in hyperbolic space

[19, 35, 40], which are given a tree or graph structure to embed in

hyperbolic space, and our method that discovers a meaningful tree

structure using a hierarchical clustering objective.

A key feature of our approach is scalability to large datasets

using mini-batch optimization and we present an efficient opti-

mization algorithm that scales to datasets of millions of points. We

show that our method outperforms state-of-the-art approaches on

a clustering task of ImageNet ILSVRC images [28] by 15 points of

dendrogram purity. Further, we apply our method to a multi-task

learning application and jointly optimize the clustering of the tasks

and the task specific regressors, resulting in an improvement of 9

points over baseline methods.

2 HYPERBOLIC GEOMETRY
Hyperbolic geometry is a non-Euclidean geometry, which drops

the parallel line postulate while keeping the remaining four of the

five of the postulates of Euclidean geometry. The resulting space

has constant negative curvature. As a consequence, for a fixed

dimension, the volume of any ball in such hyperbolic space grows

exponentially with its radius rather than polynomially as in the

Euclidean space (Figure 1). Another ramification of dropping the

parallel line postulate is that a small perturbation of a point x by

a vector v in the space is no longer the simple linear map x + v
as is in the case of Euclidean space. Instead, one has to carefully

derive the perturbation map (formally known as the retraction map

or exponential map), which would be important when performing

optimization with gradient-descent over parameters lying in the

hyperbolic space.

The recent attention to hyperbolic spaces can be primarily attrib-

uted to the exponential growth of volume in a ball with its radius,

which allows for a parsimonious representation of hierarchical data.

To elaborate, consider a complete binary tree. At level l , the tree

would have 2
l
nodes, i.e. the number of nodes grows exponentially

with level, or, in other words, the distance to the root of the tree.

In hyperbolic geometry this kind of tree structure can be modeled

easily (with fixed dimensions) as nodes with increasing level can be

arranged radially in a ball in hyperbolic space. Moreover, a linear

time algorithm was proposed by Sarkar [41] for embedding the tree

into hyperbolic space, while approximately maintaining the tree

distance. This type of construction is feasible as hyperbolic annulus

volume (and even the circle length) grows exponentially with its

radius. This type of construction would be infeasible in Euclidean

space where the volume growth is only polynomial. Such desirable

properties has led to use of hyperbolic space in many applications

[6, 26, 29, 31].

Formally, we consider the Poincaré ball model of hyperbolic

space, which corresponds to a Riemannian manifold with a particu-

lar metric tensor (for more details see [21, 45]). The Poincaré ball

model is defined on the set D = {x ∈ Rd : ∥x ∥ < 1}. The induced

distance between any two points x ,y ∈ D can be derived as [35]:

dD(x ,y) = cosh
−1

(
1 + 2

∥x − y∥2

(1 − ∥x ∥2)(1 − ∥y∥2)

)
. (1)

Then it follows that the induced norm of a point x ∈ D is:

∥x ∥D = dD(x , 0) = cosh
−1

(
1 + ∥x ∥2

1 − ∥x ∥2

)
= 2 tanh

−1(∥x ∥). (2)

We will use these properties of Poincaré ball in developing our

proposed method.

3 GRADIENT-BASED HIERARCHICAL
CLUSTERING

In this section, we present our proposed approach for discover-

ing hierarchical clusterings using gradient descent. Our approach

consists of three components: (1) a collection of continuous vector

embeddings (in hyperbolic space) of the nodes of a discrete tree, (2)

a mapping from the continuous embeddings to discrete trees, and

(3) and objective and corresponding gradient-based optimization

produced to update the position of these vectors given a dataset.

We refer to our approach as gradient-based hyperbolic hierarchical
clustering (gHHC).

3.1 Continuous Tree Representation
A hierarchical clustering, T , is a tree structured partitioning of a

dataset X = {x1, . . . ,xN }. Each data point xi sits at a leaf node of
the hierarchy. Internal nodes are typically thought of as represent-

ing a (flat) cluster containing their descendant leaves. Formally,

Definition 1. Hierarchical clustering [30]. A hierarchical clus-
tering, T , of a dataset {xi }Ni=1, is a set of clusters T0 ≜ {xi }

N
i=1 ∈ T

and for each Ti ,Tj ∈ T either Ti ⊂ Tj , Tj ⊂ Ti or Ti ∩ Tj = ∅. For
any clusterT ∈ T , if ∃T ′ withT ′ ⊂ T , then there exists a set {Ti }ki=1
of disjoint clusters such that

⋃k
i=1Ti = T .

The hierarchical clustering refers to a tree consisting of nodes N .

Each node corresponding to a clusterTj ∈ T . In a slight abuse of no-

tation, we will useTj to refer to both the node and its corresponding
cluster.

gHHC embeds a discrete tree structure with a continuous one

as a set of vectors Z = {z1, . . . , zk }, zj ∈ D
d
in the d dimensional

Poincaré ball. Each vector zj ∈ Z corresponds to a particular inter-

nal node internal node Tj ∈ T . Leaf nodes in T are represented by

their corresponding data points and do not have parameters in Z . In
this paper, we primarily focus on data with unit norm that sits at the

edge of the ball. Data that does not sit in the ball can be embedded

into the space using a learned or random projection or by setting

the norm of the vectors to be 1. A discrete tree structure can be

defined in terms of its child-parent edges. Following previous work

[31, 35, 40, 41], we use the norm and relative positions of vectors to
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Figure 1: Unique features of gHHC: continuous representations of trees in the Poincaré ball and uncertainty over ancestors.

model the child-parent relationships in the tree structure. Vectors

near the origin of the space are meant to indicate nodes closer to

the root of the tree structure, while nodes closer to the edge of the

ball are meant to indicate nodes closer to the leaf level of the tree.

Section 2 reviewed a key property of the Poincaré ball, which is that

there is exponentially more space moving away from the origin

of the ball, just as how the number of descendants of a node in a

discrete tree can grow exponentially. Child-parent relationships

are modeled by the distance between two embedded nodes in the

space and by the norm of the nodes. Parent nodes are those that

are both nearby to their children in the space and have smaller

norms than their children. As in previous work [35, 40], a child to

parent dissimilarity function (not a distance metric) is used that

encourages children to have a smaller norm than their parent:

dcp (Tc ,TP ) = dD(zc , zp )(1 +max{| |zp | |D − ||zc | |D, 0}). (3)

In words, if the parent has smaller norm than the child, the dis-

similarity between the child and parent nodes is their distance

in hyperbolic space. Otherwise, the dissimilarity is the distance

weighted by 1 plus the difference between the norm of the parent

and the child.

This child-parent dissimilarity function can be used to extract

a discrete tree from the embedded continuous representation of

nodes. A discrete tree is predicted by having each data point and

internal node select a parent under the condition that the parent

must have a smaller norm:

Parent(Tc ) = argmin

Tp ∈N,
| |zp | |< | |zc | |

dcp (Tc ,Tp ). (4)

This allows gHHC to create trees with non-binary branching factor.

Binary trees are more expressive in that they represent a strictly

larger set of tree consistent partitions, which are a set of roots of

disjoint subtrees that give a valid flat clustering of the dataset

[5, 22, 28]. However, trees with n-ary or non-parametric branching

factors [5, 27, 54] have a lower memory/parameter footprint as they

contain fewer internal nodes and can provide more interpretable

trees than binary trees, whichmight contain needlessly complicated

structure, especially near the leaf level.

The continuous embedding representation of a tree structure al-

lows for uncertainty to be represented in child-parent relationships.

A particular child node might have multiple candidate parents that

are nearby in the Poincaré ball. This powerful feature of our rep-

resentation allows for the embeddings to encode uncertainty over

alternative tree structures.

While our work focuses on the unnormalized child-parent dis-

similarity function dcp , we can use this to model a distribution over

tree structures by using dcp to define a distribution over parent

nodes. The probability that a child node c has a parent p is inversely

proportional to their child-parent dissimilarity.

Ppar(Tp |Tc ,Z ) ∝ exp(−dcp (TC ,TP )). (5)

The probability of a tree structure can then be computed by the

product of all of the parent-child relationships in the tree

P(T |Z ) ∝
∏
Tp ∈T

∏
TC ∈chldrn(Tp )

Ppar(Tp |Tc ,Z ). (6)

A minor point to note is that P(T |Z ) would be computed in a

way that considers only parent nodes that must have at least two

children–effectively pruning any node that has a single child ac-

cording to the definition in Eq. 4.

In this paper, we use a fixed number of internal node embed-

dings, fixing the size of the setZ . Some of these embeddings will not

contribute meaningful tree structure, by either having no descen-

dant data points or having only a single child. the nodes could be

pruned in a post-processing step. In experiments, we use a number

of internal nodes that is less than that of a binary tree structure.

3.2 Hierarchical Clustering Objectives
Given a dataset X , we would like to devise a hierarchical cluster-

ing cost function, CgHHC(X ,Z ), that we can use to optimize the

placement of the internal node embeddings, Z . The cost function
should be both faithful to the structure of the data and amenable to

stochastic optimization using gradient descent.

Our objective is inspired by recent work on cost functions for

hierarchical clustering [9–11, 13, 14, 16, 34, 49]. These objectives

measure the quality of a particular discrete tree structure arrange-

ment of a dataset given the pairwise similarities of the points. Our
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objective is aligned with the intuition of these recently proposed

cost functions– data points that are highly similar should be near

by one another in the tree structure and dissimilar points should be

placed in separate branches, only having common ancestors near

the root of the tree.

Given three data points xi , x j , and xk , such that xi and x j are the
most similar (least dissimilar) pair among the three possible pairs,

our objective will encourage trees to represent a tree consistent

partition that keeps xi and x j separate from xk . In other words, we

would like xi and x j to be merged closer to the leaves than xk , so
that, the least common ancestor of xi and x j is a descendant of the
least common ancestor of all three nodes.

We make a few mild assumptions about X . As mentioned in the

previous section, we assume that data point in X sits in Dd . Second,
we will assume that our dataset has a pairwise measure of similarity

between data points: w : X × X → R+. Such an assumption is

common throughout the clustering literature [3, 16, 28, 34]. For

notation convenience, we will refer to the similarity between xi
and x j aswi j and will use xi j to represent the pair xi ,x j and xi jk
to represent the triple xi ,x j ,xk .

We will first review two hierarchical clustering cost functions in

the literature: Dasgupta’s cost [16] and its recent extension byWang

and Wang [49]. Then we present the cost function we optimize for

our model, CgHHC(X ,T).

Dasgupta [16] presents a well-motivated cost function for hi-

erarchical clustering that encourages similar points to be nearby

in the tree structure. This cost has garnered much recent interest

[9–11, 13, 14, 17, 34, 39, 49]. The cost function is:

CD (T ) =
∑

xi j ∈X 2

wi, j |lvs (lca (xi j ))|, (7)

where lvs (n) gives a set of leaf node descendants ofn, and lca (xi j ) =
lca (xi ,x j ) gives the least common ancestor of xi and x j in the

discrete tree T . In words, Dasgupta’s cost says that one pays, for

each pair of data points, the similarity of the pair times the num-

ber of leaves of the pair’s least common ancestor. This precisely

incentivizes the aforementioned intuition. However, this objective

is not amenable for stochastic gradient methods due to its discrete

nature.

Wang and Wang [49] recently proposed a related cost function

based on a ranking of candidate configurations of the tree. The cost

is defined over triples of data points xi ,x j ,xk and incentivizes the

most similar pair among the three to have a least common ancestor

closer to the leaf level than the least common ancestor of all three

points. The cost per triplet is

triCT (xi jk ) = wi, j +wi,k +w j,k −word(i, j,k,T). (8)

word(i, j,k,T) is defined as the similarity of the pair of points that has

the deepest least common ancestor among the three possible pairs

or is zero if the three have the same least common ancestor. Inwords,

if all of tree points xi ,x j ,xk have the same least common ancestor,

the cost is the sum of all of the pairwise similarities between the

three points. Otherwise, if two points have a least common ancestor

that is deeper in the tree than the least common ancestor of all

three, then the cost is the sum of all of the pairwise similarities

between the three points except that of the pair with the deeper

least common ancestor. Formally, we writeword(i, j,k,T) as follows,

letting desc(n,m) evaluate to true if n is an descendant ofm in T

word(i, j,k,T) = wi, j I[desc(lca (xi j ), lca (xik ))]

+wi,k I[desc(lca (xik ), lca (xi j ))]

+w j,k I[desc(lca (xjk ), lca (xik ))].

The cost of a tree is the defined as:

CWang(T ,X ) =

∑
xi jk ∈X 3 triCT (xi jk )∑
xi jk ∈X 3 minC(xi jk )

, (9)

whereminC represents the lowest cost possible for the triplet:

minC(xi jk ) = min{wi, j +wi,k , wi, j +w j,k , wi,k +w j,k }.

The cost represents the ratio between the cost of the given tree and

the cost of an optimistic tree that could correctly order every triple

of points. The authors show that the tree which optimizes CD (T )

also optimizes CWang(T ). Ideally, we would hope to optimize the

expected CWang(T ) under the distribution over discrete trees in-

duced by our embedded continuous tree representation, P(T |Z ).
Noticing that the denominator of CWang(T ) is constant for a given

dataset, consider:

EP (T |Z )E(xi jk )
[
triCT (xi jk )

]
(10)

=EP (T |Z )E(xi jk )
[
wi, j +wi,k +w j,k −w

ord(i, j,k,T)
] .

Now, supposewi j > max(wik ,w jk ). We would like xi and x j to
have a different least common ancestor of xi ,x j ,xk and specifically

one that is the deepest among least common ancestors of any pair

of the three points. By the definition of word(i, j,k,T), we can up-

perbound Equation. 10 by only subtractingwi, j from the cost of all

three pairwise similarities if xi and x j in fact have a least common

ancestor that is a descendant of the least common ancestor of all

three points, i.e.,:

EP (T |Z )E(xxi jk )
[
wi, j +wi,k +w j,k (11)

−wi j I[desc(lca (xi j ), lca (xik ))]
]
.

Unfortunately, optimizing this quantity directly is computation-

ally challenging with our model and so we design a related objective.

We use a geometric heuristic to provide an approximate distribution

over least common ancestors for both xi and x j and, similarly, a

distribution over least common ancestors for all three points xi , x j ,
and xk . The distribution over least common ancestors for both xi
and x j is:

Plca(n |xi j ) ∝ exp(−max{dcp (xi ,n),dcp (x j ,n)}). (12)

We would like to encourage xi , x j , and xk to have a least common

ancestor that is different than the least common ancestor of xi , x j .
And so, in the distribution over least common ancestor for all three

points, we give 0 probability mass to the most likely least common

ancestor of xi and x j :

Plca(n |xi jk ) ∝ exp(−ξi jk,n )I[n , argmax

n′

Plca(n
′ |xi j )] (13)

ξi jk,n = max{dcp (xi ,n),dcp (x j ,n),dcp (xk ,n)}. (14)

Our objective is to minimize the expected distance between xi
and the embeddings of the nodes that are likely to be a least com-

mon ancestor of xi and x j and increase the distance between xi and
nodes that are likely to be a least common ancestor of xi , x j , and xk .
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We model this by the ranking objective: dcp (xi ,n)(Plca(n |xi ,x j ) −
Plca(n |xi ,x j ,xk )). Similar to Bayesian Personalized Ranking [38],

we optimize the sigmoid of the aforementioned score. We optimize

the analogous value for x j . We minimize the distance between xk
and nodes that are likely to be a least common ancestor of xi , x j , and
xk and maximize the distance between xk and the nodes likely to be

a least common ancestor ofxi andx j :σ (dcp (xk ,n)(Plca(n |xi ,x j ,xk )−
Plca(n |xi ,x j ))). Overall our cost is:

C
gHHC

(X , Z ) =
∑

xi jk ∈X 3

∑
n∈N

(
σ
(
dcp (xi , n)(Plca(n |xi j ) − Plca(n |xi jk ))

)
(15)

+ σ
(
dcp (xj , n)(Plca(n |xi j ) − Plca(n |xi jk ))

)
+ σ

(
dcp (xk , n)(Plca(n |xi jk ) − Plca(n |xi j ))

))
,

where σ (y) = 1

1+e−y is the sigmoid function. This objective encour-

ages trees that merge more similar points together closer to the

leaves and less similar things higher up in the tree. It encourages

at least one node to be an ancestor for xi and x j and not for xk
while encouraging another to serve as a possible ancestor for xk
as well as the other two. Furthermore, our objective is amenable to

stochastic gradient descent with respect to Z by sampling triples

of points (xi ,x j ,xk ).

3.3 Child-Parent Margin Objective
To encourage child-parent nodes to be well separated and not have

equal norms, we use a margin-based version of the objective at

inference time. We add a margin γ in dcp :

dcp (Tc , TP ;γ ) = dD(zc , zp )(1 +max{ | |zp | |D − | |zc | |D + γ , 0}), (16)

For each pair of child-parent nodes, we attempt to minimize the dis-

tance between children and parents while maintaining the margin

between their norms:

Ccp :marg(Z ,γ ) =
∑

Tc ∈N

dcp (Tc ,Parent(Tc );γ ). (17)

We alternate between optimizing this objective and the CgHHC

objective in our gradient-based inference procedure.

4 GRADIENT-DESCENT BASED INFERENCE
Given the objective in CgHHC (Eq. 15), and a dataset X , we can

perform hierarchical clustering by optimizing the objective with

respect to the representation of the tree structure Z using gradient

descent. As the objective is an expectation over triples of data points

xi , x j , xk from X , it can be optimized using mini-batch stochastic

gradient descent. This allows the model to scale to massive datasets

that do not fit in memory and can even allow for distributed opti-

mization. Each gradient adjusts the placement of internal nodes by

adjusting the relative distances to the data points xi , x j , xk .
The internal node parameters of our model Z , sit in hyperbolic

space. And so, for this reason, they cannot be optimized with stan-

dard Euclidean methods, but rather can be optimized using Rie-

mannian gradient descent [7].

4.1 Gradient-Descent on Riemannian Manifold
Since the Poincaré ball has a Riemannian manifold structure, we

need employ stochastic Riemannian optimization methods such as

RSGD [7] or RSVRG [53]. Here we provide only a very basic intu-

ition of these methods and outline the final results that we use. In

every step of gradient descent, we slightly perturb the current point

in the direction of steepest descent. Since our optimization vari-

ables lie in the Poincaré ball, we have to use the proper retraction

operator R(·), unlike Euclidean space where a simple subtraction

of scaled gradient would work, as pointed out in Section 2. That is,

the gradient update would be of the form:

Zt+1 = RZt (−η∇RCgHHC(Zt )), (18)

where η is the learning rate and ∇RCgHHC(Zt ) is the Riemannian

gradient. For the retraction operator, following [35], we use the

following first order approximation:

RZ (д) =

{
z + д, if ∥z + д∥ < 1,

(z + д)/∥z + д∥ − ϵ, else.
(19)

Finally, the Riemannian gradient ∇RCgHHC(Zt ) can be expressed

in terms of the Euclidean gradient by using the Riemannian metric

tensor for the Poincare ball. We directly state the result here:

∇RCgHHC(Zt ) =
(1 − ∥Z ∥2)2

4

∇C
gHHC(Zt ) (20)

Figure 2 shows how gHHC trees progress through SGD inference

on a toy dataset.

4.2 Practical Considerations
Rather than sampling triples uniformly at random to optimizeC

ghhc

(Eq. 15), we sample triples xi ,x j ,xk such that x j is one of the K
nearest neighbors of xi and xk is another point sampled at random.

To encourage exploration of the space of internal nodes during

optimization, we add Gumbel noise to distances so that nodes that

might not be the closest will sometimes be selected.

We also find having a good initialization of the model improves

performance as is the case with all clustering methods. We initialize

the models by first creating a set of leaf nodes. These leaf nodes

can either be selected at random from the data points or with an

approximate farthest first / k-means seeding method [2]. Then we

build an initial hierarchy over these leaf internal using hierarchical

agglomerative clustering. We heuristically embed the nodes discov-

ered by HAC back into the Poincaré ball by representing them as

the average of their descendants and scaling the representation by

a logarithmically decreasing factor based on the order of mergers

in HAC (i.e., the node that was merged in the jth of N rounds of

HAC has norm
log(N−j)
logN ). This strategy is very efficient and should

not be confused with running HAC over the whole dataset, as the

number of leaf nodes in our method is fixed. To extract a discrete

tree structure, we use the parent assignment in Equation 4. We

assign an ordering to the nodes and in the case of a two nodes

having the same norm, we break a tie using the ordering. We also

perform an additional discrete tree extraction trick. If data points

X and internal nodesM select a particular internal node n as their

parent, we create a new node n′ and assign n′ to be a child of n
along with the internal nodesM and set X to be the children of n′.
We do this so that there is always a tree consistent partition that

matches the data point to parent node assignments.
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Tree structure discovered over steps of mini-batch SGD inference
Figure 2: Data points in two dimensions sit towards the edge of the disk and are shown with colored circles. Internal nodes are
shown with colored triangles. We show how gHHC over gradient steps moves internal nodes and rectifies incorrect clustering.
The dangling internal nodes correspond to nodes not used by the model and are pruned during post-processing.

5 END-TO-END OPTIMIZATION
In this section we demonstrate the efficacy of using our continuous

representation of tree structures to perform end-to-end optimiza-

tion in downstream applications. Recall that our optimization prob-

lem seeks to find an embedding of the internal tree nodes ZT in

the hyperbolic space that minimizes the cost CдHHC (X ,Z ) given
in Eq.15 while assuming that the embedding of the data points

X , ZX , is fixed over the boundary of the hyperbolic disk. In or-

der to learn an embedding ZX , which needn’t be constrained to

be over the boundary of the hyperbolic disk, we need to define a

problem-specific cost function, C
problem

(X), and jointly optimize it

with CдHHC (X ,Z ) as follows:

min

ZT,ZX

CдHHC
(
T ,X

)
+C

problem

(
X
)
. (21)

Multi-task learning: In this case we are given a set of regres-

sion (classification) problems that are somehow related. We let Xi
denotes the dataset of task i . The goal is to arrange the tasks in a

tree structure and regularize the regression weights over the tree.

In this caseC
problem

(
X
)
=
∑
i loss(Xi ;ZXi ), where ZXi in this case

represents the regression (classification) weights of task i . As such,
when optimizing Eq.21 using the above problem specific cost, we

learn both the regression weights and the tree structure over tasks.

We note here that using the optimization algorithm in Section 4,

we sample three data points (di ,dj ,dk ) from three regression prob-

lems (i, j,k) and compute the gradient of Eq.21. In this case, this

will result in updates to the regression weights of each problem,

(ZXi ,ZX j ,ZXk ), as well as to the internal tree structure. It should

be noted that from Eq.15, the representation of each regression

weight is constrained by the location of its parent, which enforces

the desired multi-task regularization effect.

Representation learning: In this application, we want to learn

an embedding of words in the hyperbolic space and jointly discover

a tree structured clustering of the words and so use the GloVe

objective [36] for Cproblem (X).

6 EXPERIMENTS
We provide qualitative and quantitative evaluations of our method.

We evaluate ourmethod over several hierarchical clustering datasets,

We demonstrate the efficacy of our method in a downstream multi-

task learning application using end-to-end optimization. We quali-

tatively evaluate the performance of our method on representation

learning using a word-embedding task.

6.1 Hierarchical Clustering Evaluation
We evaluate the performance of our method of using continuous

trees for hierarchical clustering against state-of-the-art hierarchical

clustering methods that search over the discrete space of trees.

Following previous work [22, 28], we evaluate the quality of our

hierarchical clusterings using dendrogram purity (DP). Given a

ground truth flat clustering C⋆
of a dataset X , dendrogram purity

of a tree structure T is:

DP(T ) =
1

|P⋆ |

∑
C⋆∈C⋆

∑
(xi ,x j )∈C⋆×C⋆

pur(lca(xi ,x j ),C
⋆), (22)

whereP⋆ = {(xi ,x j )|C
⋆(xi ) = C⋆(x j )},C

⋆(x) denotes the ground
truth cluster membership of x and pur(n,C⋆) is the purity of the

cluster represented by n with respect to the cluster C (i.e. the frac-

tion of n’s descendant leaves are in the ground truth cluster C⋆
).

In words, this is the average purity of the least common ancestors

of pairs of points belonging to the same ground truth cluster. Trees

with high DP scores contain nodes that are similar to clusters in

the ground truth flat partition.

We follow the experimental setup of Kobren et al. [28] and evalu-

ate our method against the following approaches: PERCH [28] is a

state-of-the-art large scale clustering algorithm that incrementally

builds a tree structure by inserting points as a sibling of their near-

est neighbor and performing local tree re-arrangements; BIRCH
[54] is a top-down hierarchical clustering algorithm with a dynam-

ically growing tree structure; Hierarhical K-Means (HKMeans)
is a recursive application of Lloyd’s algorithm; Hierarchical Ag-
glomerative Clustering (HAC) is a widely used and exceedingly

performant method that builds a trees structure in a bottom-up

way by recursively merging the two sub-trees with the highest

similarity value according to its linkage function.

To demonstrate the effectiveness of our approach, we evaluate

the performance of our model on three classic hierarchical cluster-

ing benchmark datasets as well as on three large scale datasets [28]:

Glass samples of glass
1
; Spambase spam emails

2
; Digits samples

of handwritten digits
3
; CovType forest cover types; ALOI (Ams-

terdam Library of Object Images) contains images and is used as

an extreme classification benchmarks; ImageNet ILSVRC 2012

1
https://archive.ics.uci.edu/ml/datasets/glass+identification

2
https://archive.ics.uci.edu/ml/datasets/spambase

3
https://archive.ics.uci.edu/ml/datasets/optical\+recognition+of+handwritten+digits

https://archive.ics.uci.edu/ml/datasets/glass+identification
https://archive.ics.uci.edu/ml/datasets/spambase
https://archive.ics.uci.edu/ml/datasets/optical\+recognition+of+handwritten+digits
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Figure 3: Sampled sub-tree of the learned hierarchical tree using GloVe.We can clearly identify groups of semantically similar
words, such as ‘science’, ‘technology’, ‘language’, and ‘media’. On a higher level, we also observe that ‘science’ and ‘technology’
sub-trees, which are semantically very close, merge into a larger sub-tree. The same happens for ‘language’ and ‘media’. Some
nodes were collapsed and leaf nodes were sub-sampled to allow for better visualization of the tree.

(a) (b)

Figure 4: Sampled sub-trees of the learned hierarchical tree on the ImageNet dataset. Both images above show sampled sub-tree
of the full learned tree with 1-million leaf nodes. In 4a we can observe both how photos of the same animals were clustered
together into the lower sub-trees and that as we go up in the sub-trees, the dendrogram merges together sub-trees of similar
animal species. In 4b we see clear clusters of specific animals and animal groups, such as ‘dogs’, ‘wolves’ and ‘birds’. It’s inter-
esting to notice, for instance, how the clusters for ‘dogs’ and ‘wolves’ are close together, and how among the different clusters
of animal groups, the one closest to ‘musical instruments’ is the ‘birds’ cluster.
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Glass Digits Spambase CovType ALOI ImageNet ILSVRC

# Ground truth clusters 6 10 2 7 1000 1000

# Data points 214 200 4601 500K 108K 1.3M

Dimensionality 10 64 57 54 128 2048

gHHC (This Paper) 0.463 ± 0.0016 0.675 ± 0.015 0.614 ±0.009 0.444 ± 0.005 0.462 ± 0.0004 0.367 ± 0.0001
Perch 0.474 ± 0.017 0.614 ± 0.033 0.611 ± 0.0131 0.45 ± 0.004 0.44 ± 0.004 0.21 ± 0.017

BIRCH 0.429 ± 0.013 0.544 ± 0.054 0.595 ± 0.013 0.44 ± 0.002 0.32 ±0.002 0.11 ± 0.006

HKMeans 0.508 ± 0.008 0.586 ± 0.054 0.626 ± 0.00 0.44 ± 0.001 0.44 ± 0.001 0.11 ± 0.003

HAC-Centroid 0.47 0.594 0.628 - - -

HAC-Avg 0.501 0.7836 0.629 - - -

Table 1: DendrogramPurity. Results for competing approaches from [28] using each algorithm’s optimal setting. Bold indicates
the best performingmethod. On small-scale problems (first three datasets) HAC performs very well. As the number of ground
truth clusters, dimensionality and data points increases, our algorithm outperforms state of the art methods.

representations of each image from the last layer of the Inception

neural network.

For all datasets, we use the same settings of the hyperparameters

of gHHC. We use: a Poincaré ball of the same dimension d as the

original space of the data, a learning rate of 0.01, a batch size of 100,

training episodes of length 5000. For the Glove dataset, Adam [25] is

to optimize the embedding of points in Dd . Similarly for the Digits

dataset, which requires learning a representation in hyperbolic

space. For the first three, we use a number of internal nodes = 64,

for CovType we use 5000, and for the ALOI and ImageNet we use

40K and 20K internal nodes respectively. For baselines we report

the best results obtained using hyperparameter settings from [28].

Table 1 presents the results for this experiment. As evident, HAC

is optimal for small-scale problems, however, its quadratic complex-

ity prevents is from scaling to the rest of the large scale datasets.

Furthermore, among all scalable clustering methods, our method

consistently performs competitively, and significantly outperforms

state of the art over the ImageNet dataset by around 15 points. We

should note here that for CovType and Spambase, there is no signif-

icant winner. For ALOI, PERCH used a complete binary tree while

our method used only 40K internal nodes. For ImageNet, both meth-

ods used a reduced number of nodes, PERCH uses 25K while our

used 20K nodes. We hypothesize that our increased performance

is due to gHHC’s ability to update internal nodes in mini-batch

fashion without making the incremental hard decisions that are

difficult with a small number of internal nodes.

6.2 Multi-Task Learning
In this section, we show the efficacy of the end-to-end optimization

of regression weights and tree structure in a hierarchical multi-

task learning problem as described in Section 5. We use the school

dataset which is the standard testbed for multi-task regression. It

consists of the examination scores of 15362 students from 139 sec-

ondary schools in London during the years 1985, 1986 and 1987.

Thus there are 139 tasks, and each example has the year of the ex-

amination, four school-specific and three student-specific attributes.

We follows the experimental setup and split in [56]. We replace each

categorical attribute with one binary variable for each possible at-

tribute value resulting in 27 attributes per example. We evaluate the

performance using the measure of percentage explained variance

which is defined as the percentage of one minus nMSE (normalized

mean squared error) [56]. We compare against state the art Multi-

task relationship learning (MTRL [56]) that learns the structure

of inter-task relationship and against a single-task learning (STL)

baseline that solves each regression problem independently. As

shown in Table 2, we outperform the baselines.

Method Explained Variance (higher better)

STL 23.5

MTRL [56] 29.9

gHHC (this paper) 38.4

Table 2: Results over the school dataset.

6.3 Qualitative Evaluation
We examine, qualitatively, the quality of the tree structures learned

by our method. We show two scenarios, one in which the input

representation is fixed over the ImageNet dataset (Figure 4) and one

in which the input representation is jointly learned with the tree

structure as described in Section 5 using GloVe [36] (Figure 3). In

both cases, we see that our method produces meaningful structure.

7 RELATEDWORK
Hierarchical clustering is a widely studied problem theoretically,

in machine learning, and in applications. Apart from the work on

Dasgupta’s cost and related costs [49], there has been much work

on probabilistic models that have been used to describe the quality

of hierarchical clusterings. Much of this work uses Bayesian non-

parametric models to describe tree structures [1]. There has also

been some work using discriminative graphical models to measure

the quality of a clustering [50]. These cost functions comewith their

own inductive biases and the optimization of them with similar

techniques to this paper could be interesting future work. Gradient-

based methods are prevalent in flat clustering such as stochastic

and mini-batch k-means [42].

Hyperbolic geometry has received much recent interest in the

machine learning community. It has been studied in the embedding

of taxonomies and graphs [19, 35, 40, 48]. It has also been used

to visualize hierarchical clustering [4, 31]. Recent work [47] uses

hyperbolic space to discover, in an unsupervised way, the relation-

ships between words. However, to the best of our knowledge, no

work addressed learning latent tree in an unsupervised fashion in

the hyperbolic space as we do in this paper.
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Differentiable clustering methods have also been used as regu-

larizes in deep auto-encoders as well as deep supervised models

that jointly optimize flat clustering objectives with their models

core objective. Goyal et al. [20] similarly uses a nested Chinese

Restaurant Process model jointly with an autoencoder for videos.

Other problems traditionally solved with clustering, such as within-

document coreference have used problem specific representations

of clusterings that support gradient-based learning of similarity

between data points and assignment of points to clusters [33]. Work

on extreme classification also learns tree structures but typically

use labeled data to discover these structures [24].

8 CONCLUSION
In this paper, we presented a novel hierarchical clustering algorithm

that uses gradient-based optimization and a continuous representa-

tion of trees in the Poincaré ball. We showed its ability to perform

hierarchical clustering on large scale data. We also showed how

our model can be jointly optimized with multi-task regression. In

future work, we hope to explore gradient-based optimization of

tree structures in deep latent-variable models.
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