
A Model-based, Quality Attribute-guided
Architecture Re-Design Process at Google

Qin Jia
Google LLC

qinjia@google.com

Yuanfang Cai
Drexel University

yuanfang.cai@drexel.edu

Onur C. Çakmak
Google LLC

onurcc@google.com

Abstract—Communicating and justifying design decisions are
difficult, especially when the architecture design has to evolve.
In this paper, we report our experiences of using formal but
lightweight design models to communicate, justify, and ana-
lyze the quality trade-offs of an architecture revision plan for
Monarch, a large-scale legacy system from Google. We started
from a few critical user scenarios and their associated quality
attribute scenarios, which makes these models lightweight and
concise, expressing high-level abstractions only. We also separated
static views from dynamic views so that each diagram can be
precise and suitable for analyzing different types of quality
attributes respectively. The combination of scenarios, quality
attributes, and lightweight modeling was well accepted by the
team as an effective way to analyze and communicate the trade-
offs. A few days after we presented and shared this process,
two new projects within the Monarch team adopted component
and sequence diagrams in their design documents, and two other
product areas within Google started to learn and to adopt the
process as well. Our experience indicates that these architecture
modeling and analysis techniques can be integrated into software
development process to communicate and assess features, quality
attributes, or design decisions continuously and iteratively.

Index Terms—software architecture, software modeling, qual-
ity attribute

I. INTRODUCTION

Software architecture modeling techniques, such as Unified

Modeling Languages (UML) [1], quality attribute (QA) anal-

ysis, trade-off analysis [2], have been researched and taught in

classrooms for decades. In practice, however, these techniques

are seldom applied, as reported in recent surveys [3]–[6].

Most interviewed developers do not use formal models in

practice, and consider that creating a “big picture view” of

a large-scale system is difficult, costly, and not feasible [3],

[4]. While it has been recognized that software projects could

benefit from formal models if they can be applied within

a limited context [3], [6], there is no guidance on how to

leverage these models, especially when architecture changes

are proposed and needed to be analyzed and justified for large-

scale legacy systems. This is exactly the challenges faced by

Monarch [7]—a large-scale in-memory database and one of

the largest infrastructure software systems within Google.

To accommodate the rapid growth of users and workloads,

the tech leads (TLs) of Monarch proposed to redesign the

system to adopt a more modularized architecture. Given

the potentially significant impact, the TLs encountered the

challenges of convincing the team that the new design was

worthwhile: due to the increased number of servers, the team

was concerned about the potential degradation of several

key qualities, especially performance, but could not precisely

estimate the severity of the impact and the trade-offs among

maintainability, performance, availability, etc..

In this paper, we report our experiences of combining multi-
ple lightweight models, which are abstract enough to model the
specific scenarios only, and using these models to efficiently
analyze and communicate trade-offs among multiple quality
attributes for the proposed re-architecting plan of Monarch in

a rigorous and precise way. We first identified a few critical

user scenarios and associated quality attributes that will be

affected by the proposed re-design of the architecture, such

as latency and availability. We further modeled each attribute

using a quality attribute scenario (QAS), in which the concrete

components (binaries) involved, responses expected, and the

target measures of these responses were specified. After that,

we modeled the static structure among these components

using UML component diagrams, and modeled their run-

time behaviors using UML sequence diagrams so that the

Remote Procedure Call (RPC) routes needed to accomplish

these scenarios can be visualized.

We modeled the current architecture and proposed new

architecture using both component and sequence diagrams

respectively. These models made it clear that in order to realize

the same user scenario, how many new components will be

added/changed, how the RPCs route through these components

in the current design, and how the routes will change in the

proposed new design. The paths of the RPCs in these sequence

diagrams provided the concrete visualization for the team to

assess how latency and availability will be affected in the

proposed new design. The component diagrams made it clear

how existing components will be decoupled to simplify the

APIs and improve maintainability.

After quantifying the target measures in QAS, and modeling

RPC routes in both designs, we were able to tell exactly how

many more components and binary instances will be added

on the RPC paths in the new design. Comparing with the

actual performance data, the team recognized that even though

the new design will increase query latency to some extent,

the system can still meet performance service level objectives

(SLO) [8]. On the other hand, the new design will greatly

improve availability and maintainability, which are currently

at risk and hindering the evolution of the overall system.

61

2023 IEEE/ACM 45th International Conference on Software Engineering: Software Engineering in Practice (ICSE-SEIP)

2832-7659/23/$31.00 ©2023 IEEE
DOI 10.1109/ICSE-SEIP58684.2023.00011

The team highly commended the scenario-based lightweight

modeling and trade-off analysis techniques. The comments

we received indicated that the UML component and sequence

diagrams are effective ways to illustrate static and run-time

structures of the system. The process was recommended

to other Monarch projects and other product teams within

Google. A few days after we presented and shared this process,

two new projects within the Monarch team adopted component

and sequence diagrams in their design documents, and two

other product areas within Google started to learn and tried

to adopt the modeling process. To summarize, there are two

critical steps ensuring the success of this process:

First, specifying concrete scenarios makes models concise.

Since a QAS lists the specific components involved in these

scenarios, we were able to create lightweight models with

these components only. It is critical that we limited the models

to high-level abstractions, expressing architecture use cases

only, to avoid unnecessary complexity of modeling the overall

design [3], [4], [6].

Second, separating static and run-time views makes models
precise. It has been long recognized that software architecture

always has multiple structures [2], [9]: static module struc-

tures, run-time component-connector structures, and allocation

structures. No single diagram can precisely capture all the

structures. In practice, however, commonly used box-and-line

style diagrams usually do not distinguish static or run-time

views, and ambiguity is inevitable.

These two steps made it possible for us to create precise

and self-explanatory diagrams, so that the whole team, in-

cluding senior and junior developers, as well as managers,

could understand the existing and newly proposed design

without extensive prior knowledge on software modeling. This

inspiring experience indicates that it is possible to integrate

partial, lightweight modeling, quality attribute analysis, and

trade-off analysis into software development processes, rather

than creating a complex full picture at the beginning of a

project. Since this process starts from user scenarios, it can be

applied whenever a new feature is added, or a quality attribute

needs to be evaluated.

According to Google’s policy, we cannot report the actual

measures from Monarch. Although the concrete QA numbers

reported in this paper are for illustration purposes, their relative

values are based on the actual data and estimation.

II. CHALLENGES TO MONARCH

A. Background

Monarch [7], one of most widely used infrastructure soft-

ware systems in Google, is used to monitor the availability,

correctness, performance, load, and other aspects of applica-

tions and systems. For more than a decade, almost all Google

global user-facing services (e.g., Youtube, GMail and Google

Maps) and backend infrastructure for such services, including

Colossus [10], Spanner [11], F1 [12] and Borg [13], have

been replying on the reliable monitoring service provided by

Monarch. Every second, the system accepts terabytes of time

series data into memory and serves millions of queries. To en-

sure performance and availability, Monarch has a regionalized

architecture. Global query and configuration planes integrate

the regions into a unified system.

Each Monarch zone consists of a collection of clusters

located in a strongly network-connected region. A zone stores

local time series data based on geographical locations, and

responses to the queries on those data. The locality ensures the

high availability and low latency of zonal writes and queries.

Component instances are deployed and replicated across the

clusters to improve reliability. Each node within a cluster

stores data in memory and avoids dependencies among each

other, so that each zone can continuously provide services

during transient outage of other zones, global components, or

storage systems. Monarch’s global components are replicated

in each geographical zone, and can interact with all other

zones. In order to communicate and analyze the architecture

of Monarch, the team created an informal model as depicted

in Figure 1, which shows the components involved in queries.

In response to a query, Monarch reads the time series data

stored in various zones, and conducts various computations

(e.g., aligns, aggregates and joins) on these data. For example,

suppose a user issues a query to get the global queries-per-

second (QPS) data for their services. Monarch reads the RPC

count for each task (i.e., monitored target) of the service in

different zones and aggregates them into a global QPS.

Once a Monarch user (e.g., a Google engineer, a dashboard,

or an alerting pipeline) issues the query, the process starts from

the Root Mixer, the entry point of the scenario. It first interacts

with a Root Index Server to get the zones that potentially

contain the requested data. After that, the Root Mixer sends

the query to Zone Mixers in the selected zones. Each Zone
Mixer interacts with a Zone Index Server to get a set of relevant

Leaves, which potentially contain data needed for the query. A

Leaf stores the time series data in memory, indexes, processes,

and computes these data as well. The query processing within

each zone contains two passes:

1) Replica Resolution: a Zone Mixer interacts with the

relevant Leaves to get a summary of each relevant target to

choose Leaves with the best data quality to process among

Leaf replicas.

2) Query: these selected Leaves compute (e.g., align, ag-

gregate and join) the time series data as much as they can

and then send the output back to the Zone Mixers for further

processing. The Zone Mixers, in turn, send the processed data

back to the Root Mixer, which conducts final computation and

aggregation, and returns to the end users.

In the meantime, the Leaves are also responsible for re-

ceiving new data points and storing them, as well as reading,

processing, and writing time series data into a long-term

historical data Repository. When a Leaf receives new time

series data, or the time series data are moved between Leaves
(for load-balancing), it also sends the indexing data (i.e.,

indices of the metadata of the time series, such as metric names

and monitored targets) to the Zone Index Server to make sure

62

Fig. 1: Box-and-line model of the current architecture

it has the latest information about what data is stored within

Leaves. The Zone Index servers then send the indexing data

back to the Root Index Servers.

B. Challenges of rapid growth

During the past decade, Monarch experienced a rapid

growth: the number and size of the stored time series data,

as well as the queries-per-second (QPS), both experienced

more than 2 times year-to-year growth. The number of Leaves
within a zone increased from hundreds to tens of thousands

over the years, and a query needs to retrieve a lot more

data from more Leaves. The rapid growth greatly challenges

the availability and scalability of Monarch queries. In ad-

dition, since a Leaf takes all the responsibilities of time

series processing, indexing, and storage, failures on any of

these responsibilities cannot be isolated, nor can the code

and resources be decoupled. Therefore the reliability and

maintainability become challenging. The developers complain

that it is getting harder and harder to make changes to the Leaf
component because multiple responsibilities are coupled with

each other. We scanned the Monarch code base, and detected

many anti-patterns [14] within the Leaf component. The sys-

tem needs to be re-architected, in particular, to decouple these

responsibilities, and, most importantly, to increase availability

and maintainabiliy to keep up with the rapid growth.

C. Proposal to handle the challenges

In order to handle the challenges of availability and main-

tainability caused by the rapid growth, the team has proposed

to decouple the overloaded Leaf component into multiple com-

ponents, each responsible for storing, computing and indexing

the data respectively. The tech leads (TLs) have created a

box-and-line style diagram to represent the newly proposed

architecture, as depicted in Figure 2.

D. Problems with informal modeling

The informal models depicted in Figure 1 and Figure 2 are

then used to communicate and analyze the architecture revision

proposal but presented a few communication obstacles:

First, the bidirectional arrows linking the components are

ambiguous. For example, these is a solid line linking Root
mixer and Zone Mixer, indicating that there is a query relation

between them. But it’s not clear which component starts the

interaction, and which one responds next. The two separate

passes, Replica Resolution and Query, can not be modeled

either. The sequences of RPCs are critical for performance and

latency analysis, but cannot be modeled in these diagrams.

Second, the semantic of each box is not clear: does a Leaf
box represent a static Leaf component, or an instance of the

same component deployed in multiple servers?

Third, the diagram of the proposed new architecture (Fig-

ure 2) appears to be more complicated than the one modeling

the current architecture (Figure 1): two new components were

added outside of the Leaf components, and many boxes were

created within a Leaf. It is unclear if each box represents a

new binary, or a module within the same binary.

Given that these diagrams are not sufficient to analyze trade-

offs, there were concerns among team members that the new

architecture would negatively impact performance and latency.

In fact, it was not clear what the trade-offs among availability,

maintainability, and latency were between the existing design

and proposed new design. Without a more systematic way

to conduct relatively rigorous and quantitative analysis, the

team was not able to make this significant decision based on

intuition and experiences only.

At this point, we recognized that one problem with the

informal diagrams in Figure 1 and Figure 2 is that they mix

static structures among these components and the run-time

RPC passing sequences, where the canonical UML component

and sequence diagrams could be used. In addition, these

different dimensions of quality attributes can be modeled

and analyzed rigorously using quality attributes scenarios [2].

63

Fig. 2: Box-and-line model of the proposed architecture

In order to avoid creating overly complicated diagrams, we

decided to start from just a few critical user scenarios. Next

we elaborate each step of the process.

Fig. 3: A quality attribute scenario: Availability

III. CRITICAL USER SCENARIOS AND

QUALITY ATTRIBUTE SCENARIOS

Monarch is a complicated system with dozens of compo-

nents. A complete architecture model, either a static compo-

nent diagram or a run-time sequence diagram, will be overly

complicated. In order to keep the models concise, we decided

to only model a part of the system related to the following

critical user scenario:

QueryTimeSeries: A user sends a query to Monarch, and
the system reads the time series data from various locations,
computes them, and returns to the user successfully with low
latency.

This user scenario combines both functional requirements,

stating what the system must do and how it must behave,

and quality attribute requirements that qualify these functions.

Terminology such as latency, availability is widely used in in-

dustry and used to be called non-functional requirements. Bass

et al. [2] pointed out that since non-functional requirements

usually need to be accomplished through various functions,

e.g., using login functions to ensure security, they should be

called quality attributes to avoid the confusion.

Most functional requirements are not meaningful without

qualifying attributes. Take the QueryTimeSeries scenario for

example. If the system returns query results successfully, but

only responds to the user after a few days, this functional re-

quirement should be considered as failed. To specify qualities

such as “low latency”, the Monarch team defines a number of

Service Level Objectives (SLO) [8] that specify the detailed

measures of query responses. For example, the availability

SLO for QueryTimeSeries is defined as “The system returns
correct responses for ≥ 99.99% of the queries.”

Using these SLOs definitions, we can define a number of

Quality Attribute Scenarios (QAS) [2] associated with the user

scenario. As illustrated in Figure 3, a QAS consists of at least

the following 5 parts1:

• Source of Stimulus: an entity, e.g., a Monarch user—a

Google engineer, a dashboard, or an alerting pipeline,

that initiated the stimulus.

• Stimulus: a condition or an event that requires a response

when it arrives at a system, e.g., a query is initiated.

• Artifacts: the artifacts that are stimulated, which would

be a collection of systems, the whole system, or some

components of the system.

• Response: the activity undertaken as the result of the

arrival of the stimulus.

• Response measure: when the response occurs, it should

be measurable or testable.

A QAS starts from a concrete scenario, and allows the

designer to specify (1) the artifacts involved in responding

to an event, and (2) the quantifiable responses of each event.

For example, the artifacts involved in the QueryTimeSeries

1All the concrete measures in this table are for illustration purposes, not
actual Monarch metrics.

64

TABLE I: Target response measures of quality attributes

Quality Attributes Target Measures
Availability ≥ 99.99% Monarch queries return successfully.

Maintainability
It takes less than X days to rollout a query change. Queries experience less than Y incidents a month.
It takes less than Z hours to root cause an incident.

Latency ≥ 99% Monarch queries complete within M seconds

Resource efficiency Less than 10% additional CPU and memory consumption while running a query

Note: All specific numbers in the table are for illustration purposes.

scenario in the current design are depicted in Figure 1, and

its availability QAS is depicted in Figure 3: once the user

initiated a query, the system should successfully return the

results ≥ 99.99% of the time.

For the Monarch QueryTimeSeries scenario, the TLs iden-

tified 4 quality attributes associated with it: 1) Availability,

2) Maintainability, 3) Latency, and 4) Resource efficiency. All

these QASs share the same source, stimulus, and artifacts, and

only differ in terms of response measures, as summarized in

Table I. In order to analyze these quality attributes, we further

modeled the static and run-time structures of the artifacts

involved in these QAS, and analyzed how they will change

in the proposed new architecture.

IV. MODEL CURRENT ARCHITECTURE

Figure 1 depicts the informal diagram the TLs created

to model the current design, including all the components

involved in the QueryTimeSeries scenario. The diagram has 8

boxes, but only 6 components are involved in the scenario: (1)

Root Mixer, (2) Root Index Server, (3) Zone Mixer, (4) Zone
Index Server, (5) Leaf, and (6) Repository. Both Figure 1 and

2 are ambiguous in that they mix static components (binaries)

with binary instances deployed on multiple servers: these 3-

color Leaf boxes meant to model multiple instances deployed

on multiple servers, not that they are three components, or

there are only three instances.

To address these problems, we created a UML component

diagram, as shown in Figure 4, to model the current de-

sign. The key difference is that Figure 4 uses Provided
Interface and Required Interface to model the

APIs provided and expected by a component, rather than

attempting to model how RPCs are passed among them. It

only contains the component-level static information, i.e., there

is only one box for one component, no matter how many

instances are deployed in the production.

After identifying the components involved in each response,

it becomes straightforward to model how RPCs route through

these components to accomplish the scenario. Figure 5 de-

picts the sequence diagrams modeling the two stages of

the QueryTimeSeries scenario, i.e., Replica Resolution and

Query. Sequence diagram is an effective tool for latency and

availability analysis because it visualizes which and how many

hops there are on the RPC path of each scenario. Figure 5

indicates that, in the current design, there are 12 to 14 RPC

hops needed to accomplish QueryTimeSeries. The longer the

paths, the longer the latency. We also use the subscripts to de-

note multiple instances of the same component. For example,

Zone Mixer1..n denotes that n instances of Zone Mixer are

involved in the RPC sequences of the scenario. These sequence

diagrams enable us to estimate the total number of RPCs

needed. For example, a Root Mixer queries n Zone Mixer,

so there are n RPCs between the two components.

As we introduced in Section II, the prominent risks of the

current Monarch system is availability and maintainability.

The main problem is that the Leaf component takes multiple

responsibilities. Given the increased coupling among classes

and arbitrary APIs, it takes a longer to make changes to Leaf.
Handling multiple responsibilities on one component risks

the system’s availability given the rapid growth of users and

requests.

V. MODEL PROPOSED NEW ARCHITECTURE

In order to handle the challenges mentioned in Section II,

The TLs proposed to change the architecture of Monarch. The

main idea is to decouple the Leaf component into three com-

ponents, each responsible for data computation, indexing, and

storage respectively. They created a box-and-line style diagram

to model the proposed new architecture as depicted in Figure 2.

This diagram has similar problems of ambiguity, mixing static

component structures with run-time message sequences, and

mixing static components, their run-time instances, and classes

within the components. Using this diagram, it is impossible

to tell how the Replica Resolution and Query passes will be

affected by the new design.

To avoid the ambiguity and illustrate how the newly pro-

posed design will impact qualities, the team created component

(Figure 6) and sequence diagrams (in Figure 7) to model

static and run-time views separately in the new design. As

shown in Figure 6, the Leaf component is decoupled into three

components: Leaf Mixer, new Leaf and Leaf Index Server.

Leaf Index Server is the only component involved in the

Replica Resolution pass because it contains all the data quality

information of targets, and the addresses of Leaves. It stores

the indexes and keys of the time series data and their hosting

Leaves, and provides the keys to the Zone Mixer. Leaf is

simplified and becomes a key-value store of time series data.

Leaf Mixer is responsible for computing (e.g., alignment,

aggregation and join) time series data, and uses the same,

simplified Read API to interact with both Leaf and Repository.

Figure 7 depicts the sequence diagrams modeling how RPCs

in the QueryTimeSeries scenario route through these new

components. It shows that the Replica Resolution will end with

the new Leaf Index Server, rather than Leaf. In the Query pass,

two new hops to Leaf Mixer and Leaf Index Server are added to

65

Fig. 4: Current design: scenario-based component diagram

(a) Sequence diagram: the Replica Resolution pass

(b) Sequence diagram: the Query pass

Fig. 5: Current design: scenario-based sequence diagrams

accomplish the query. The Leaf Mixer component will interact

with the Leaf component and Repository separately, instead of

relying on the Leaf to interact with Repository. As a result,

16 to 18 RPC hops are needed to accomplish this scenario.

VI. QUALITY TRADE-OFF ANALYSIS

Given the component diagrams and sequence diagrams of

the current and proposed new architecture, it becomes easier

to analyze the quality attributes, and how they will change in

the new design. Table II presents the level of importance of

each QA, their risk levels in the current design, and how these

qualities will change in the new design based on the analysis

in this section. A quality attribute with high risk means that

the current system may not always meet the target response

measures as the system scale grows, as listed in Table I. The

risk level is determined based on how often the corresponding

SLO is violated according to the execution data obtained in

real-time. For example, if the system can’t always meet its

availability SLO, it means that its availability is at high risk.

A. Availability

Monarch has to return the results successfully for ≥ 99.99%
of queries, which is the most important quality attribute. We

use both component and sequence diagrams to analyze how

availability will change.

a) Current design: Currently availability is at risk for

two reasons. First, as we discussed in the Section II, Monarch

has experienced 2-5x year-to-year growth over the last several

years. As the number of time series grows, the number of

Leaves in a zone, and the number of Leaves involved in both

Replica Resolution and Query RPCs grow drastically. Even

if a small number of Leaves run into problems, the overall

66

Fig. 6: Proposed new design: scenario-based component dia-

gram

query availability will be affected. There are usually a certain

(small) number of bad machines in a cluster. As the number of

involved Leaves grows, the chance of reaching a problematic

Leaf (on a bad machine) increases.
We model the availability of the QueryTimeSeries scenario

to be the product of availability of all the instances along the

RPCs path. This is just an approximation to illustrate how

availability changes before and after the architecture change.

In practice, individual node failures can be tolerated with

various mechanisms (like data replication). From the sequence

diagrams depicted in Figure 5, we can observe how many

RPCs and how many component instances are involved. The

availability of a query without touching Repository in the

current architecture can be modeled as:

Acurrent = ArAriA
n
zA

n
ziA

m
l (1)

where Ar, Ari, Az , Azi and Al denote the availability of

an instance of Root Mixer, Root Index Server, Zone Mixer,

Zone Index Server, and Leaf respectively. Note that availability

of the stateless components like Root Mixer and Zone Mixer
is close to 100% because the failures could be tolerated by

retries. The failures of Root Index Server and Zone Index
Server are also negligible because the RPCs could be hedged

to multiple instances in multiple clusters. So the major con-

tributor to Acurrent is Am
l . The number of Leaves involved

in Query is a small subset of Leaves involved in Replica

Resolution. Our measurement shows that the ratio of Leaves
involved in Query and Replica Resolution can be as low as

20% in huge zones [7]. So we only use Am
l to represent the

availability of the involved Leaf instances.
Second, since all three responsibilities are clustered into one

Leaf component, if one function has a bug, or the node runs

into resource problems due to a spike of requests (including

writes and queries), all the queries on the Leaf are affected.
b) New design: The availability of the new design, as

shown in Figure 7, can be modeled as:

Anew = ArAriA
n
zA

n
zi(A

m′
li Ak

lmAj−i+1
l′) (2)

where the Ali, Alm and Al′ represent the availability of an

instance of Leaf Index Server, Leaf Mixer and the new Leaf.

Anew is significantly higher than Acurrent for the following

reasons:

First, Al should be lower than the product of Ali, Al′ and

Alm, although it is the combination of the three responsibili-

ties. Because the Leaf Mixer is a stateless component, queries

can utilize retries to tolerate failures. As a result, Alm is

negligible because it is close to 100%.

Second, m is much larger than m′ because the new Leaf
Index Server only stores the time series key information, so

the data is more dense and the number of instances involved

in the query will reduced.

Third, j− i+1 is much smaller than m because the number

of Leaves involved in the Query is much smaller than the

number of Leaves involved in Replica Resolution, i.e., j−i+1
can be as small as 20% of m on average in huge zones.

Moreover, as shown in the component diagram in Figure 6,

since the computation and indexing functions are decoupled

from the storage component, they are isolated from the failures

caused by writing to the in-memory storage. This way the

probability of failures can be significantly lowered. In addition,

the two storage layers, i.e., Leaf and Repository, do not

depend on each other any more. This significantly improves

the availability of queries that only uses one of the storage

layers. Furthermore, the system can also serve partial data to

the query that combines data from both storage layers, and

provides failure isolation between the two storage layers.

B. Maintainability

The team measures this attribute from three dimensions as

listed in Table I: 1) the number of days to rollout a change, 2)

the number of incidents allowed within a month on the query

functions, and 3) the number of hours to root cause an incident.

The team believes this attribute is of medium importance but

with a high risk. We use component diagrams to analyze how

the maintainability will change in the new design.

a) Current design: Since multiple responsibilities are

currently aggregated within one component, Leaf, (as shown

in Figure 4), the classes within it also couple with each

other through complicated APIs. This makes it difficult to

understand and harder to implement new features. When

Leaves experience problems in production, it is also very hard

to determine which part is the root-cause, or whether it is

caused by the query scenarios or other activities. Currently

Leaves are involved in 18 out of 20 Monarch performance

dashboards. When there is a problem in Leaves, it’s hard to

root cause the problem based on the dashboards because most

of them will be broken. In addition, problems in data storage

would also make Leaves misbehave, which in turn, affects

the performance of the query, leading to more production

incidents.

b) New design: Decoupling the responsibilities into

different components (as shown in Figure 6) enables the

team to roll out different changes independently and in

parallel, speeding up the code-to-production time. Currently,

the rollout of Zone Mixers is around 30% faster than Leaves.

In the new design, query related features no longer need to

67

(a) Sequence diagram: the Replica Resolution pass

(b) Sequence diagram: the Query pass

Fig. 7: Proposed new design: scenario-based sequence diagrams

be rolled out with Leaves, so the release time will also be

reduced by 30% approximately. The rollback of one function

won’t affect the other functions anymore. Restricted APIs and

decoupled components make it easy to identify root cause,

and improved failure isolation will reduce the the number of

incidents per month. With the new design, we can split the

18 dashboards into 5 write related dashboards and 13 query

related dashboards, which can be used to pinpoint different

problems more efficiently. It is even possible to shard the site

reliability team into two shards, query and storage, each of

which only responsible for the affected components.

C. Latency

This is another critical quality attribute and SLO: ≥ 99%
of queries must complete within a certain amount of time. We

use sequence diagrams to analyze this attribute.

a) Current design: as depicted in Figure 5, there are 12

to 14 RPC hops needed to accomplish the QueryTimeSeries
scenario. Based on the metrics collected from Monarch, the

latency of queries is currently well below the target, and the

team considers that this attribute is of low risk. In addition,

from the team’s experience, the number of hops on RPC paths

is not the major cause of tail latency, which is mainly affected

by data processing time.

b) New design: Figure 7 shows that in the new design, 16

to 18 RPC hops are needed to accomplish the query scenario.

Our experiment revealed that the latency will increase to some

extent, but the system can still meet the target measures

without influencing user experiences. On the other hand,

although the data volume output by Leaves has increased

(because there is no computation including aggregations on

the Leaf anymore), the added layer of k Leaf Mixers splits

the majority of work on current Zone Mixers into k shards,

which will increase the parallelism and mitigate the latency

overhead. In addition, as there are fewer number of Leaves
involved in the query (from m to j − i + 1, i.e., as much

as a 80% reduction), the query tail latency could be further

improved because a query is less likely to be impacted by the

small number of hot-spotted leaves.

D. Resource efficiency

The target is that the query processing should take less than

10% of additional CPU and memory. We use both component

and sequence diagrams to analyze the trade-offs.

68

a) Current design: the team marked this attribute as “low

risk” because the current resource utilization of the system

hasn’t reached its limit and there are slack resources to use.

b) New design: As shown in Figure 7, the QueryTime-
Series user scenario now has 4 additional RPC hops. Intro-

ducing additional RPCs comes with the overhead of newtork

I/O, CPU time to encode and decode the RPCs, and memory

consumption to buffer those RPCs. Given that the current

system still has some slack resources, it should be able to

handle the additional resource overhead.

Furthermore, the system could utilize the resources better

with the new design. Since the spiky load of query compu-

tation are moved out of data storage, and transferred into a

stateless component, Leaf Mixer, as shown in Figure 6, both

Leaves and Leaf Mixers can operate with higher resources

(specifically memory) utilization because there is no need for

a large headroom. This change does not sacrifice the reliability,

because the storage workload is very stable and the failure of

stateless component can be tolerated by retries.

Table II summarizes these trade-off analyses, indicating

that for the quality attributes that are of medium or high

importance, and at medium or high risk, the new design will

significantly improve them and mitigate the risk. For the other

quality attributes that will be degraded in the new design, they

are either of low importance or low risk. The advantage of the

new design clearly outweighs the current one. Note that none

of the above analyses were possible before the component and

sequence diagrams were created.

VII. FEEDBACK AND IMPACT

We presented the re-architecting plan to the team, using

these scenario-based models to illustrate how key qualities of

the system will change in the new designs. The overall process

was well received. The team found that the canonical UML

component and sequence diagrams are easy to understand, and

acknowledged the advantage of differentiating static view from

run-time views. Below are a few comments:

“I really like how this slide represents how the jobs interact
with each other and what the responsibilities of each compo-
nent are.”

“Loved your presentation,... I also liked that you broke down
the impact using the industry standard terms (availability,
consistency, scalability etc)....

“... I really liked the diagrams you used, particularly the
-o (provided interface))- (required interface) notation. also,
having legends on the diagrams. super useful.”

The managers of Monarch commented that this process

should be recommended to other Monarch teams, as well as

other Google projects. A few days after we presented and

shared the process, two new projects of Monarch adopted

UML component and sequence diagrams in their design doc-

uments, and two other teams within Google started to learn

and tried to adopt this process to support the refactoring of

their systems.

VIII. LESSONS LEARNED

In this section, we summarize the lessons learned from this

experience, that is, how to support trade-off analysis among

multiple quality attributes and justify re-architecting decisions,

by creating lightweight models based on a few critical user

and quality attribute scenarios. The most important lesson is

to limit the models to high-level abstractions, expressing these

scenarios only, and avoiding unnecessary complexity.

Specifying scenarios makes models lightweight, concise, and
relevant. Monarch has dozens of components and binaries, and

we just modeled a small part that is relevant to the query sce-

nario. Each component we modeled provides many APIs, and

we only modeled those that are involved in the scenario, and

have impacts on these quality attributes, just enough to conduct

the trade-off analysis. UML has the reputation of being overly

complicated [3], [15], [16], but our experience indicates that

it is possible to just use a small portion of the overall UML

family, guided by concrete user and quality attribute scenarios.

Only creating high-level models with sufficient abstraction is

the key to make these models useful.

Separating static and run-time views makes models pre-
cise. Modeling static structures and run-time RPC sequences

separately turns out to be an effective way to reduce am-

biguity. The “provided interface” and “required
interface” notations are well accepted by the developers

since they merely model the existence of relevant APIs,

rather than their interactions. Sequence diagrams, on the

other hand, visualize RPC sequences using time lines, and

these sequences are critical in terms of analyzing the trade-

offs among availability, latency, and maintainability. Sequence

modeling has been widely used in system designs, such as

embedded systems and real-time systems [17]–[19], but are

still not widely adopted in software design.

Creating self-explanatory diagrams. It is also important to

have non-ambiguous legends and make the diagrams self-

explanatory. We have to accept the fact that not all software

developers are familiar with all the notations in formal models

such as component and sequence diagrams. In order to com-

municate with both developers and management, we have to

make sure that these diagrams are understandable and avoid

using overly complicated notations that cannot be explained

using legends or one or two sentences.

Simplified notations. Although we recommend the team to

adopt component and sequence diagrams, we didn’t follow

standard UML notations strictly. For example, we didn’t use

stereotype or special icons to denote “Component”. Rather,

we just used a box to represent an independently executable,

deployable component. Similarly, in these sequence diagrams,

we also used a simple box to represent an instance of a binary

at run-time, rather than using specialized UML notations. The

assumption is that a box represents a static entity in a static

view, and represents a run-time instance in a dynamic view.

Our rationale is, again, keep the diagrams simple: not to

introduce new notations until it is absolutely necessary.

Supporting customized notations. In these Monarch dia-

69

TABLE II: Risk and trade-off analysis

Current Architecture Proposed New Architecture
Quality Attributes Importance Risk Tradeoffs Notes

Availability High High +
Failure isolation between different responsibilities
Fanout reduction leads to availability increase
Move computation out from stateful components and allow retries

Maintainability Medium High +
Code changes to the query, index and storage are now independent
Simplify the API of leaf to a key-value store

Latency High Low - Four more RPC hops are needed to accomplish a query
Resource efficiency Medium Low - Additional RPC processing overhead

grams, we employed simple color coding to denote three types

of responsibilities: computation, index generation, and data

storage. In Figure 1, Figure 4, and Figure 5, it is clear that

the Leaf component is taking all three responsibilities in the

current design. Figure 6 and Figure 7 depict how they will be

decoupled into three different components in the new design.

This color-coding notation is not part of the standard UML,

but is an innovative and effective way to demonstrate how the

system will be refactored and why.

In summary, although we recommend UML modeling,

we also recommend allowing variations, customization, and

extension in term of notations used in diagrams, following

the principles of usefulness, simplicity, and non-ambiguity.

It is critical that the models are concise, precise, relevant to

the tasks the developers are working on, and help developers

address the challenges they are facing. We created these

diagrams using Google Slides and a general graphic creation

application, rather than UML-specific tools. It took us a few

hours in total to create, revise, and refine these diagrams. The

time cost is affordable.

In this study, we only used component and sequence dia-

grams. It is possible that in other situations, a different type

of models will be needed. For example, a C42 context model

can be useful to analyze how the components within a system

interact with infrastructure components or third-party libraries.

UML deployment diagrams can also be useful to demonstrate

how different components should be installed in hardware

devices. Again, we only create these models when needed,

at the proper level of abstraction.

This is the first attempt to support architecture redesign for

a planet-scale legacy system using scenario-based, lightweight

models and multiple QA analysis within Google. The fact that

these models were quickly adopted by other teams indicate

the possibility to apply these techniques to other stages of

a software development process, supporting feature analysis,

quality attribute trade-off analysis, as well as refactoring

decision-making.

In this experience, we have tackled the challenges of cre-

ating abstract and lightweight models that are just enough

to express the scenarios in question, and avoided unneces-

sary complexity and details, which was the key to facilitate

the quick adoption of these basic UML models and related

concepts by multiple Google projects. The experience also

provided an example and guidelines on how to leverage

2https://c4model.com/

these models to facilitate design related decision-making. It

is possible that more complicated, and more than one changes

to the architecture are needed in the future. This experience

is the first step for the team to adopt more formal and

sophisticated models to provide quantitatively, automated, and

more accurate predictions, as researchers have proposed in the

domain of performance engineering [20], [20]–[23].

IX. RELATED WORK

Modeling and documenting software architecture have been

proposed and taught in classrooms for a few decades. Unified

Modeling Language (UML) [1] is considered as the de facto

standard of software design modeling techniques. Clements

et al. [9] proposed that software systems should be modeled

using different types of views. Bass et al. [2] also proposed that

software architecture has different types of structures: module,

component-connector, and allocation. C4 is another software

modeling technique gaining popularity recently. It models

software from four levels: Context, Containers, Components

and Code. However, the application of these models are still

limited in practice.

A recent survey [3] of 314 practitioners from 180 IT

companies reveals that although most practitioners recognized

the usefulness of UML in terms of improving system under-

standability and quality, as many as 74.8% of them did not use

UML at all because of some reasons such as lack of knowledge

about modeling, culture of the company, time constraints,

as well as the difficulty of keeping the models updated.

Researchers have conducted various surveys on the application

of UML in practice [3], [15], [16], [24]–[26]. Basically most

practitioners recognize the necessity and benefit of modeling,

but they couldn’t justify the cost of managing the complexity

and evolution. This is consistent with our observations within

Google and other companies we worked with.

Many other architecture description languages (ADL) [27],

such as ACME [28], AADL [29] and Wright [30], have

been proposed, but they face similar challenges for large-scale

industrial projects. Researchers also proposed a number of

architecture review and assessment approaches using various

models [31]–[34]. Our report complements these prior works

with a real experience of combining multiple abstract models

to justify a significant architecture-level revision for an extra

large legacy system within Google.

Service level objectives (SLO) and site reliability engi-

neering (SRE) are widely used terms within Google and

software industry to define important system attributes, such

70

as performance and reliability. These SLOs form a subset

of quality attributes [2] (used to be called “non-functional

requirements”), a term used in academic research and edu-

cation. SLO and SRE usually rely on testing and continuous

online monitoring to ensure the most important quality of the

running system, and the practitioners have to count on their

intuition and experiences to analyze the trade-offs among these

attributes. Here we integrate user scenarios and lightweight

models to enable rigorous trade-off analysis.

In the domain of software performance engineering, using

UML and other models to analyze and predict software

performance has been studied for more than a decade [20]–

[23], [35]–[40]. In particular, Petriu’s [22] recent work is

most relevant to ours since we share similar purposes of

using multiple models to analyze multiple quality attributes.

Different from Petriu’s work that employs an sophisticated

ecosystem of heterogeneous modeling artifacts to support

multiple features such as consistent co-evolution of the soft-

ware models and cross-model traceability, we reported an

experience of communicating and justifying the redesign of

an extra large system using lightweight, basic UML models

under the specific, realistic scenarios. We created abstract

models just enough to analyze and communicate the trade-

offs. We believe this is the first step towards the adoption

of more sophisticated models. Most other SPE works focus

on abstracting the interaction among software components to

assess performance only, while in this study, we analyzed the

trade-offs among multiple quality attributes, enabled by the

combination of component and sequence models created based

on critical user scenarios.

In the domain of Model-based engineering (MBE), models

are widely used in the design and development of embedded

systems. These models are usually used for the purpose of

simulations, code generation, and documentation [17], [19],

[41]–[43]. In software design, however, formal modeling is

not part of the software development process yet. Most teams

create design documents at the beginning of the project,

usually containing informal diagrams that are not sufficient

to support complicated decision-making or trade-off analysis.

We expect that this positive experience inspires more effective

adoption of software architecting and modeling into daily

development processes.

X. CONCLUSION

In this paper, we report our experiences of using scenario-

based formal models to conduct quality trade-off analy-

sis, communicating and justifying a proposed re-architecting

strategy for Monarch. We first identify a few critical user

scenarios and their associated quality attribute scenarios, in

which the concrete artifacts involved are specified. These

scenarios enabled us to create precise and concise models

with a proper level of abstraction: component diagrams with

only scenarios-related components, and sequence diagrams

only modeling how RPCs route through these components.

We create these models for both the current design and the

proposed new design, which made it easy to conduct trade-

off analysis. This process was well-received by the team and

recommended to other teams within Google. Soon after our

presentation, two new projects adopted these diagrams in their

design documents, and two other products within Google

are adopting the process. This experience indicates that it

is possible to integrate formal models and QA analysis into

software development process continuously, communicating

features, assessing quality attributes, or justifying design and

architecture decisions.

XI. ACKNOWLEDGEMENTS

We thank Adam Tart, Ming Chen, Nick Sakharov and many

other Monarch engineers for their contributions to the design.

We would like to thank John Wilkes for the valuable feedback

of the paper. This research was partially supported by the

United States National Sciences Foundation grants 1835292,

1823177, and 2213764.

71

REFERENCES

[1] G. Booch, J. Rumbaugh, and I. Jacobson, Unified Modeling Language
User Guide. The 2nd Edition. Addison-Wesley, 2005.

[2] L. Bass, P. Clements, and R. Kazman, Software Architecture in Practice,
4th ed. Addison-Wesley, 2021.

[3] E. Júnior, K. Farias, and B. Silva, “A survey on the use of UML in the
brazilian industry,” in Proceedings of the XXXV Brazilian Symposium
on Software Engineering, ser. SBES ’21. New York, NY, USA:
Association for Computing Machinery, 2021, p. 275–284. [Online].
Available: https://doi.org/10.1145/3474624.3474632

[4] E. Guimaraes, M. Manica, L. Gonçales, V. Bischoff, B. da Silva, and
K. Farias, “On the UML use in brazilian industry: A state of the practice
survey,” 07 2018.

[5] H. Störrle, “How are conceptual models used in industrial software
development? a descriptive survey,” in Proceedings of the 21st
International Conference on Evaluation and Assessment in Software
Engineering, ser. EASE’17. New York, NY, USA: Association
for Computing Machinery, 2017, p. 160–169. [Online]. Available:
https://doi.org/10.1145/3084226.3084256

[6] A. M. Fernández-Sáez, M. R. Chaudron, and M. Genero, “An
industrial case study on the use of UML in software maintenance
and its perceived benefits and hurdles,” Empirical Softw. Engg.,
vol. 23, no. 6, p. 3281–3345, dec 2018. [Online]. Available:
https://doi.org/10.1007/s10664-018-9599-4

[7] C. Adams, L. Alonso, B. Atkin, J. P. Banning, S. Bhola, R. Buskens,
M. Chen, X. Chen, Y. Chung, Q. Jia, N. Sakharov, G. T. Talbot, A. J.
Tart, and N. Taylor, Eds., Monarch: Google’s Planet-Scale In-Memory
Time Series Database, 2020.

[8] Y. Rastegari and F. Shams, “Optimal decomposition of service level
objectives into policy assertions.” The Scientific World Journal, vol. 2015
(2015): 465074.

[9] P. Clements, F. Bachmann, L. Bass, D. Garlan, J. Ivers, R. Little, P. Mer-
son, R. Nord, and J. Stafford, Documenting Software Architectures:
Views and Beyond. The 2nd Edition. Addison-Wesley, 2010.

[10] A. Merchant, “Keynote address II: Optimal flash partitioning for storage
workloads in google’s colossus file system.” Broomfield, CO: USENIX
Association, Oct. 2014.

[11] J. C. Corbett, J. Dean, M. Epstein, A. Fikes, C. Frost,
J. Furman, S. Ghemawat, A. Gubarev, C. Heiser, P. Hochschild,
W. Hsieh, S. Kanthak, E. Kogan, H. Li, A. Lloyd, S. Melnik,
D. Mwaura, D. Nagle, S. Quinlan, R. Rao, L. Rolig, Y. Saito,
M. Szymaniak, C. Taylor, R. Wang, and D. Woodford, “Spanner:
Google’s Globally-Distributed database,” in 10th USENIX Symposium
on Operating Systems Design and Implementation (OSDI 12).
Hollywood, CA: USENIX Association, Oct. 2012, pp. 261–264. [On-
line]. Available: https://www.usenix.org/conference/osdi12/technical-
sessions/presentation/corbett

[12] B. Samwel, J. Cieslewicz, B. Handy, J. Govig, P. Venetis, C. Yang,
K. Peters, J. Shute, D. Tenedorio, H. Apte, F. Weigel, D. G.
Wilhite, J. Yang, J. Xu, J. Li, Z. Yuan, C. Chasseur, Q. Zeng,
I. Rae, A. Biyani, A. Harn, Y. Xia, A. Gubichev, A. El-Helw,
O. Erling, A. Yan, M. Yang, Y. Wei, T. Do, C. Zheng, G. Graefe,
S. Sardashti, A. Aly, D. Agrawal, A. Gupta, and S. Venkataraman, “F1
query: Declarative querying at scale,” 2018, pp. 1835–1848. [Online].
Available: http://www.vldb.org/pvldb/vol11/p1835-samwel.pdf

[13] A. Verma, L. Pedrosa, M. R. Korupolu, D. Oppenheimer, E. Tune,
and J. Wilkes, “Large-scale cluster management at Google with Borg,”
in Proceedings of the European Conference on Computer Systems
(EuroSys), Bordeaux, France, 2015.

[14] R. Mo, Y. Cai, R. Kazman, L. Xiao, and Q. Feng, “Architecture anti-
patterns: Automatically detectable violations of design principles,” IEEE
Transactions on Software Engineering, pp. 1–1, 2019.

[15] M. Petre, “UML in practice,” in 2013 35th International Conference on
Software Engineering (ICSE), 2013, pp. 722–731.

[16] W. J. Dzidek, E. Arisholm, and L. C. Briand, “A realistic empirical
evaluation of the costs and benefits of UML in software maintenance,”
IEEE Transactions on Software Engineering, vol. 34, no. 3, pp. 407–432,
2008.

[17] G. Liebel, N. Marko, M. Tichy, A. Leitner, and J. Hansson, “Model-
based engineering in the embedded systems domain: An industrial
survey on the state-of-practice,” Softw. Syst. Model., vol. 17, no. 1, p.
91–113, feb 2018. [Online]. Available: https://doi.org/10.1007/s10270-
016-0523-3

[18] T. Shailesh, A. Nayak, and D. Prasad, “An UML based performance
evaluation of real-time systems using timed petri net,” Computers,
vol. 9, no. 4, 2020. [Online]. Available: https://www.mdpi.com/2073-
431X/9/4/94

[19] J. Trowitzsch, A. Zimmermann, and G. Hommel, “Towards quantitative
analysis of real-time UML using stochastic petri nets.” vol. 2005, 01
2005.

[20] C. U. Smith, Performance engineering of software systems, ser. Software
Engineering Institute series in software engineering. Addison-Wesley,
1990.

[21] D. C. Petriu, C. M. Woodside, D. B. Petriu, J. Xu, T. Israr, G. Georg,
R. France, J. M. Bieman, S. H. Houmb, and J. Jürjens, “Performance
analysis of security aspects in UML models,” in Proceedings of the 6th
International Workshop on Software and Performance, ser. WOSP ’07.
New York, NY, USA: Association for Computing Machinery, 2007, p.
91–102. [Online]. Available: https://doi.org/10.1145/1216993.1217010

[22] D. Petriu, “Integrating the analysis of multiple non-functional properties
in model-driven engineering,” Software and Systems Modeling, vol. 20,
12 2021.

[23] C. Canevet, S. Gilmore, J. Hillston, L. Kloul, and P. Stevens, “Analysing
UML 2.0 activity diagrams in the software performance engineering
process,” SIGSOFT Softw. Eng. Notes, vol. 29, no. 1, p. 74–78, jan
2004. [Online]. Available: https://doi.org/10.1145/974043.974055

[24] C. Lange, M. Chaudron, and J. Muskens, “In practice: UML software
architecture and design description,” Software, IEEE, vol. 23, pp. 40 –
46, 04 2006.

[25] M. Ozkaya and F. Erata, “A survey on the practical use of
UML for different software architecture viewpoints,” Information and
Software Technology, vol. 121, p. 106275, 2020. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0950584920300252

[26] G. Scanniello, C. Gravino, M. Genero, J. A. Cruz-Lemus, and
G. Tortora, “On the impact of UML analysis models on source-
code comprehensibility and modifiability,” ACM Trans. Softw.
Eng. Methodol., vol. 23, no. 2, apr 2014. [Online]. Available:
https://doi.org/10.1145/2491912

[27] N. Medvidovic and R. Taylor, “A classification and comparison frame-
work for software architecture description languages,” IEEE Transac-
tions on Software Engineering, vol. 26, no. 1, pp. 70–93, 2000.

[28] D. Garlan, R. Monroe, and D. Wile, “ACME: An architecture
description interchange language,” in CASCON First Decade High
Impact Papers, ser. CASCON ’10. USA: IBM Corp., 2010, p.
159–173. [Online]. Available: https://doi.org/10.1145/1925805.1925814

[29] P. H. Feiler, B. Lewis, S. Vestal, and E. Colbert, “An overview of the
sae architecture analysis & design language (AADL) standard: A basis
for model-based architecture-driven embedded systems engineering,”
in Architecture Description Languages, P. Dissaux, M. Filali-Amine,
P. Michel, and F. Vernadat, Eds. Boston, MA: Springer US, 2005, pp.
3–15.

[30] R. Allen, R. Douence, and D. Garlan, “Specifying and analyzing
dynamic software architectures,” in Proceedings of the 1998 Confer-
ence on Fundamental Approaches to Software Engineering (FASE’98),
Lisbon, Portugal, March 1998, an expanded version of a the paper
”Specifying Dynamism in Software Architectures,” which appeared in
the Proceedings of the Workshop on Foundations of Component-Based
Software Engineering, September 1997.

[31] D. Sobhy, R. Bahsoon, L. Minku, and R. Kazman, “Evaluation
of software architectures under uncertainty: A systematic literature
review,” ACM Trans. Softw. Eng. Methodol., vol. 30, no. 4, aug 2021.
[Online]. Available: https://doi.org/10.1145/3464305

[32] R. C. Soares, V. d. Santos, and E. Y. Nakagawa, “Continuous
evaluation of software architectures: An overview of the state of
the art,” in Proceedings of the 37th ACM/SIGAPP Symposium on
Applied Computing, ser. SAC ’22. New York, NY, USA: Association
for Computing Machinery, 2022, p. 1425–1431. [Online]. Available:
https://doi.org/10.1145/3477314.3507318

[33] V.-P. Eloranta, U. van Heesch, P. Avgeriou, N. Harrison, and
K. Koskimies, “Lightweight evaluation of software architecture deci-
sions,” in Relating System Quality and Software Architecture, I. Mistrik,
R. Bahsoon, P. Eeles, R. Roshandel, and M. Stal, Eds. Boston: Morgan
Kaufmann, 2014, pp. 157–179.

[34] P. Clements, P. Gordon, R. Kazman, and M. Klein, Evaluating Software
Architectures: Methods and Case Studies. Addison-Wesley Profes-
sional; 1st edition, 2001.

72

[35] C. U. Smith, C. M. Lladó, V. Cortellessa, A. D. Marco, and L. G.
Williams, “From UML models to software performance results: an
SPE process based on XML interchange formats,” in Proceedings of
the Fifth International Workshop on Software and Performance, WOSP
2005, Palma, Illes Balears, Spain, July 12-14, 2005. ACM, 2005, pp.
87–98. [Online]. Available: https://doi.org/10.1145/1071021.1071030

[36] M. Melià, C. M. Lladó, C. U. Smith, and R. Puigjaner, “Experimentation
and output interchange for petri net models,” in Proceedings of the 7th
International Workshop on Software and Performance, WOSP 2008,
Princeton, NJ, USA, June 23-26, 2008, A. Avritzer, E. J. Weyuker, and
C. M. Woodside, Eds. ACM, 2008, pp. 133–138. [Online]. Available:
https://doi.org/10.1145/1383559.1383576

[37] M. Rapp, M. Scheerer, and R. Reussner, “Design-time performability
optimization of runtime adaptation strategies,” in Companion of
the 2022 ACM/SPEC International Conference on Performance
Engineering, ser. ICPE ’22. New York, NY, USA: Association
for Computing Machinery, 2022, p. 113–120. [Online]. Available:
https://doi.org/10.1145/3491204.3527471

[38] J. I. Requeno, I. Gascón, and J. Merseguer, “Towards the
performance analysis of Apache Tez applications,” in Companion
of the 2018 ACM/SPEC International Conference on Performance
Engineering, ser. ICPE ’18. New York, NY, USA: Association
for Computing Machinery, 2018, p. 147–152. [Online]. Available:
https://doi.org/10.1145/3185768.3186284

[39] T. Altamimi and D. C. Petriu, “Incremental change propagation from
uml software models to lqn performance models,” in Proceedings of
the 27th Annual International Conference on Computer Science and
Software Engineering, ser. CASCON ’17. USA: IBM Corp., 2017, p.
120–131.

[40] C. Li, T. Altamimi, M. Zargar, G. Casale, and D. Petriu, “Tulsa: A
tool for transforming uml to layered queueing networks for performance
analysis of data intensive applications,” 08 2017, pp. 295–299.

[41] B. Anda, K. Hansen, I. Gullesen, and H. K. Thorsen, “Experiences from
introducing UML-based development in a large safety-critical project,”
Empirical Software Engineering, vol. 11, no. 4, pp. 555–581, 2006.

[42] M. Brambilla, J. Cabot, and M. Wimmer, “Model-driven software
engineering in practice,” Synthesis lectures on software engineering,
vol. 3, no. 1, pp. 1–207, 2017.

[43] J. Hutchinson, J. Whittle, and M. Rouncefield, “Model-driven engineer-
ing practices in industry: Social, organizational and managerial factors
that lead to success or failure,” Science of Computer Programming,
vol. 89, pp. 144–161, 2014.

73

