
Media Mix Model Calibration With Bayesian Priors

Yingxiang Zhang, Mike Wurm, Eddie Li, Alexander Wakim, Joseph Kelly,
Brenda Price, Ying Liu

Google LLC.

November 2023

Abstract

Effective model calibration is a critical and indispensable component in developing Media
Mix Models (MMMs). One advantage of Bayesian-based MMMs lies in their capacity to
accommodate the information from experiment results and the modelers’ domain knowledge
about the ad effectiveness by setting priors for the model parameters. However, it remains
ambiguous about how and which Bayesian priors should be tuned for calibration purpose.
In this paper, we propose a new calibration method through model reparameterization. The
reparameterized model includes Return on Ads Spend (ROAS) as a model parameter, en-
abling straightforward adjustment of its prior distribution to align with either experiment
results or the modeler’s prior knowledge. The proposed method also helps address several
key challenges regarding combining MMMs and incrementality experiments. We use simu-
lations to demonstrate that our approach can significantly reduce the bias and uncertainty
in the resultant posterior ROAS estimates.

1 Introduction

Media Mix Model (MMM) is a top-level modeling tool that utilizes statistics and historical
data to understand what drives sales. It measures media investment efficiency on top of
baseline sales and other external factors that affect sales (e.g. seasonality, pricing, economy,
etc.). MMMs generally require modeling with causal inference assumptions and historical
data to generate modeled results for incremental sales, and may fall short in precisely mea-
suring effectiveness, especially for smaller media channels and channels with little spend
variation (Chan and Perry [2017]). Incrementality experiments, on the other hand, leverage
randomized controlled experiments to compare the change in consumer behavior between
groups that are exposed or withheld from marketing activity while keeping all other factors
constant. This presents a way of rigorously developing ground truth data on causality and
provides a rigorous view of the incremental value brought by the marketing investment.
In contrast to MMMs, which measure the effectiveness of all media channels over a longer
period of time, incrementality experiments provide results for incremental sales at a specific
point in time and are generally designed to measure the effectiveness of a specific media
channel.
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Modern MMMs often employ Bayesian modeling methodologies, for example Geo-level
Bayesian Hierarchical Media Mix Modeling (GBHMMM, Sun et al. [2017]). One advan-
tage of Bayesian MMMs lies in their capacity to accommodate modelers’ prior domain
knowledge or beliefs about the effectiveness of various media channels. This can be particu-
larly valuable when dealing with limited or noisy data for specific channels. Incrementality
experiments provide excellent opportunities to use priors and enhance the model’s accuracy.
By leveraging these experiments as priors, one can ensure a closer alignment between the
model’s outputs and the actual incremental value of the channels.

However, the process of integrating incrementality experiment results, particularly Return
on Ads Spend (ROAS), into MMMs via prior adjustment remains ambiguous. A con-
ventional approach is the manual calibration method, which is an iterative process that
involves trying different combinations of prior distributions for model parameters such that
the implied prior distribution of ROAS aligns with experiments. This method can be time-
consuming and may require significant expertise (Runge et al. [2023]). Moreover, questions
remain as to how to calibrate MMMs when the short-term media effects measured by experi-
ments are not representative of the long-term ads effectiveness measured by MMMs, and how
to calibrate MMMs when multiple experiments are conducted for the same channel.

In this paper, we propose a new calibration method with Bayesian priors through repa-
rameterization, which is developed based on GBHMMM (Sun et al. [2017]) and can be
generalized to other Bayesian-based MMMs. The proposed calibration method provides a
straightforward way to incorporate the prior domain knowledge about the effectiveness of
media channels and the incrementality experiment results into MMMs. It directly addresses
key advertiser queries: How to integrate prior knowledge or experiment results into MMMs,
how to calibrate MMMs when the experiment results do not represent the modeling-window
ROAS that MMMs aim to measure, and how to perform calibration with multiple exper-
iments. Lastly, the calibration method can potentially enhance the accuracy and reduces
the bias and uncertainty in MMM’s ROAS estimates, as demonstrated in our simulation
study.

It is worth noting that incrementality experiments are not the only source of information for
MMM calibration. Priors can encode various types of prior beliefs, such as ROAS estimates
from industry benchmarks or previous analysis. Such a prior helps to stabilize the model
and regularize the results toward a reasonable expectation. One challenge that MMMs often
face is high variance in model estimates caused by highly correlated input variables (Chan
and Perry [2017]). The proposed calibration method provides a means of incorporating
ROAS priors which can potentially help to reduce the variance, preventing radical changes
in the model estimates due to small changes in the data or the addition or subtraction of
seemingly unrelated variables in the model.

The remainder of this paper is organized as follows. In Section 2, we briefly review the
GBHMMM and the current practice. In Section 3, we introduce the calibration methodology.
Section 3.1 defines the incremental sales estimand. Section 3.2 discusses the calculation of
ROAS. Section 3.3 describes the calibration methodology through model reparameterization.
Section 3.4 highlights the implications and significance of the proposed methodology. Section
3.5 discusses the adaptability and scalability of the methodology. In Section 4, we evaluate
the calibration results through simulation studies. We conclude this paper with a brief
discussion in Section 5.
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2 Problem Formulation

In this section, we first provide an overview of Geo-level Bayesian Hierarchical Media Mix
Modeling (GBHMMM, Sun et al. [2017]), which serves as the foundation for the development
of the calibration methodology. Then, we discuss the challenges associated with MMMs
calibration within the current practices.

2.1 GBHMMM

For geo g, g = 1, 2, ..., G at time t, t = 1, 2, ..., T , let yt,g denote the geo-level response
variable, xt,m,g denote the media variables for media channel m, m = 1, 2, ...,M , and zt,c,g
denote the control variables, c = 1, 2, ..., C. The time-series of media variable is denoted by
x∗t,m,g = {xs,m,g, s ≤ t}. The response variable typically represents a KPI (e.g. revenue,
online inquires, etc). The media variables could be advertising spend or number of impres-
sions delivered. The control variables encompass a wide range of factors, such as product
price, promotions, and macroeconomic factors. Including correct control variables in the
model is critical since it plays an essential role in generating unbiased estimates as discussed
in section 3.1. The sales and media variables can be scaled by the geo population or target
market size. Any control variable that roughly scales with population or market size can
also be adjusted to a ”per capita” scale. The GBHMMM is modeled as,

yt,g = τg +

M∑
m=1

βm,gHill(Adstock(x∗t,m,g,Km, Sm), αm, L) +

C∑
c=1

γc,gzt,c,g + εt,g. (1)

The model parameters follow a Bayesian hierarchical structure where each geo is a sample
from the overall population and is allowed to deviate from the population level,

βm,g
iid∼ normal(βm, η

2
m),m = 1, ...,M,

γc,g
iid∼ normal(γc, ξ

2
c ), c = 1, ..., C,

τg
iid∼ normal(τ, κ2), εt,g

iid∼ normal(0, σ2),

where βm, γc and τ are hyperparameters that represents the common mechanism of media
impact at the total population level. The geo-level variation is controlled by the standard
deviations ηm, ξc and κ, respectively. Priors are needed for the hyperparameters βm, γc, τ
and standard deviations ηm, ξc, κ. The shape and carryover effect of advertising is modeled
through the Hill function and the geometric Adstock function, and are defined as

Hill(x;K,S) =
1

1 + (x/K)−S
, (2)
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Adstock(x0, ..., xt;α,L) =

∑L
l=0 α

lxt−l∑L
l=0 α

l
, (3)

where α ∈ (0, 1) is the retention rate of the ad effect of the media. The integer L is the
maximum duration of carry effect. Hill function is applied after the Adstock transformation
to capture the diminishing return of media spend with parameters K > 0 and S > 0. K is
also refered to as EC50, the half saturation point as Hill(K;K,S) = 1/2 for any value of
K and S. The Hill function goes to 1 as the media spend goes to infinity.

2.2 Current Practice

MMMs analyze aggregated historical data to measure and compare effectiveness across
a variety of media channels over the modeling window. Effective model calibration is a
critical and indispensable component of the MMM model-building process (Runge et al.
[2023]). Calibration involves refining MMMs by incorporating robust measurements, such
as incrementality experiments, to ensure that the models provide an accurate and faithful
representation of ad effectiveness. Additionally, calibration helps to regularize the model
by reducing the uncertainty in the model estimates. To achieve these goal, advertisers
often need to design and implement relevant experiments or randomized controlled trials
that generate reliable calibration data, such as conversion lift experiments or geo-based lift
experiments (Chen et al. [2021]).

Here, we introduce several commonly used methodologies for incorporating relevant exper-
imental results into the calibration process of MMMs. Unregularized non-Bayesian MMMs
only allow for calibration after the fact, and use incrementality experiment results to choose
the best version of MMMs. During the modeling process, modelers typically need to make
important decisions about the assumptions, such as how to represent carryover and shape
effects in their model. The assumptions chosen will impact the results of the model. When
faced with different models of comparable statistical quality, one can check the proximity of
the MMM ROAS and the incrementality experiment iROAS. The least similar results can
be used to rule out some models. However, this approach cannot ensure a close alignment
between the model’s outputs and the experiment results, and the selection of the final model
is subjective and potentially arbitrary.

Modern MMMs often employ Bayesian modeling methodologies to accommodate modelers’
domain knowledge about the effectiveness of various media channels. This domain knowledge
is captured by the priors of the model parameters, which are then combined with the
information in the raw data to produce the posterior estimation. Incrementality experiments
provide excellent opportunities to use priors and enhance the model’s accuracy. However,
the process of integrating incrementality experiment results, particularly ROAS, into MMMs
via prior adjustment remains ambiguous. A conventional approach is an iterative process
that involves attempting various combinations of prior distributions for model parameters
such that the implied prior distribution of ROAS aligns with the experiments. This approach
can be time-consuming and may necessitate significant expertise.

It is essential to acknowledge that MMM and experiments assess disparate aspects of adver-
tising impact. MMM measures the long-term average effectiveness of ads, encompassing the
shape and carryover effect. In contrast, incrementality experiments are usually conducted
over a brief period to measure the immediate or short-term effectiveness of ads. This can
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make it more challenging to calibrate MMMs using an iterative approach. As such, we are
motivated to develop a new methodology to calibrate MMM under the Geo-level Bayesian
Hierarchical Media Mix Modeling framework.

3 Methods

3.1 Incremental Sales Estimand

We begin by defining the incremental sales estimand within the potential outcomes frame-
work, which is also known as the Rubin Causal Model or the Rubin Causal Framework
(Rubin [2005]), a foundational concept in the field of causal inference. At its core, the Po-
tential Outcome Framework is designed to answer causal questions by considering the coun-
terfactual scenarios, which involve comparing the potential outcome if ad channel turned
on during the period [T0, T1] to the potential outcome if ad channel turned off during the
period [T0, T1].

Let Xa,m represent the time-series of media variables with the m-th media spend multiplied
by a constant a during the period [T0, T1], for example, X1,m represents the observed time-
series of media variables and X0,m represents the time-series of media variables with the
m-th media channel turned off during [T0, T1]. Let Zt,g = {zt,c,g, 1 ≤ c ≤ C} denote the
control variables at geo g and time t, and SalesX

a,m

t,g denote a random variable for the sales
at geo g and time t that would occur if media spend were assigned the value Xa,m. For any
time period t, there are two potential sales outcomes:

SalesX
1,m

t,g : potential outcomes if ad channel executed at historical levels during [T0, T1]

SalesX
0,m

t,g : potential outcomes if ad channel turned off during [T0, T1]

The incremental sales for the media spend over [T0, T1] is given by

∑
t,g

(E[SalesX
1,m

t,g |Zt,g]− E[SalesX
0,m

t,g |Zt,g]), (4)

The above equation is the estimand of interest, which can be estimated from the conditional
expectations from a regression model, such as a Media Mix Model, as in

∑
t,g

(E[Salest,g|X1,m, Zt,g]− E[Salest,g|X0,m, Zt,g]), (5)

Note that formulas (5) and (4) are equivalent under the conditional exchangeability as-
sumption and the consistency assumption in casual inference (Hernan and Robins [2020]),
as follows,
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∑
t,g

(E[SalesX
1,m

t,g |Zt,g]− E[SalesX
0,m

t,g |Zt,g])

exchangeability
=

∑
t,g

(E[SalesX
1,m

t,g |X1,m, Zt,g]− E[SalesX
0,m

t,g |X0,m, Zt,g])

consistency
=

∑
t,g

(E[Salest,g|X1,m, Zt,g]− E[Salest,g|X0,m, Zt,g]),

Conditional exchangeability and consistency of potential outcomes provide the justification
for the causal interpretation of a regression model, such as a Media Mix Model. When
conditional exchangeability 1 and consistency of potential outcomes 2 hold, we can obtain
unbiased estimates of the causal effect of treatment Xa,m on the outcome SalesX

a,m

t,g via
regression models. Consistency will often hold in the context of a MMM, as the treatment
variables are well-defined. Conditional exchangeability will hold if we appropriately control
for all confounders3 Zt,g in MMMs. However, it’s important to be cautious when selecting
or identifying confounders, since in certain circumstances, conditioning on non-confounders
(i.e. mediators and colliders according to Pearl [2009]) can introduce bias into the estimates.
Moreover, failing to account for confounders that affect both outcome and treatment also
introduces bias 4 into the estimates. As such, subject-matter knowledge becomes necessary
to identify possible confounders given that the causal interpretation in MMMs relies on the
uncheckable assumption of conditional exchangeability.

3.2 Calculation of ROAS

ROAS is the incremental sales per dollar spent on the media. The ROAS for the media
spend over [T0, T1] is calculated by dividing the incremental sales estimand as described in
equation (4) by the media spend over the period [T0, T1]. The ROAS for m-th media is
defined as

ROASm =

∑
t,g (E[SalesX

1,m

t,g |Zt,g]− E[SalesX
0,m

t,g |Zt,g])∑
T0≤t≤T1

∑
g Ct,m,g

, (6)

Where Ct,m,g is the media spend for the mth media channel at time t and geo g. Substitute
the numerator with equation (5) while accounting for the fact that E[Salest,g|X1,m, Zt,g]−
E[Salest,g|X0,m, Zt,g] for t outside of the range [T0, T1 + L] are zero5, then

1Definition of conditional exchangeability: (SalesX
1,m

t,g , SalesX
0,m

t,g ) ⊥ Xa,m|Zt,g , It holds in observa-
tional studies when the probability of receiving treatment (i.e., media turned on/off) is not dependent on
any other unmeasured causes of treatment and outcome, conditional on the measured covariates.

2Definition of consistency: SalesX
a,m

g,t = Salesg,t when Xa,m is the observed treatment. It implies that
the outcome observed is the exact outcome that was expected.

3In causal inference, a confounder is a variable that influences both the dependent variable and indepen-
dent variable, causing a spurious association.

4Section 4.3 provides more discussion on the bias that arises when exchangeability doesn’t hold.
5Because the media variables are only changed during the period [T0, T1], the difference in the expected

sales is non-zero in the range [T0, T1 + L] to account for the carryover effect.
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ROASm =

∑
T0≤t≤T1+L

∑
g (E[Salest,g|X1,m, Zt,g]− E[Salest,g|X0,m, Zt,g])∑

T0≤t≤T1

∑
g Ct,m,g

, (7)

The conditional expected sales can be rewritten as the sum of the first three terms in (1),
excluding the noise term. If a transformation of sales, such as standardization, is used as the
response variable, a corresponding inverse transformation should be applied to the predicted
sales6. According to the model specification in equation (1), ROAS can be written as

ROASm =

∑
T0≤t≤T1+L

∑
g βm,g[Hill(Adstock(x∗t,m,g, αm, L),Km, Sm)−Hill(Adstock(x̃∗t,m,g, αm, L),Km, Sm)]∑

T0≤t≤T1

∑
g Ct,m,g

(8)

Where x̃∗t,m,g represents the time-series of m-th media variable at geo g up to time t with
the channel turned off during [T0, T1]. For simplicity, we rewrite the terms in the square
brackets as F (Km, Sm, αm) since x∗t,m,g and x̃∗t,m,g are known and L is in general a pre-
defined quantity, then,

ROASm =

∑
T0≤t≤T1+L

∑
g βm,gF (Km, Sm, αm)∑

T0≤t≤T1

∑
g Ct,m,g

. (9)

3.3 Model Reparameterization and Calibration

Traditionally, MMM is calibrated by tuning the prior distribution of βm such that the prior
distribution of the ROAS estimate in Equation (9) aligns with the experimental results
or prior knowledge. This approach suffers from two drawbacks: First, βm is assumed to
be independent of other parameters, and therefore must be tuned analytically through an
iterative process, which is time-consuming and requires significant expertise. Second, the
independent prior distribution of βm may not exist when the desired prior distribution of
ROAS has a small standard deviation because βm is not the only parameter that contributes
to the ROAS prior variance. To address the increasing need for better alignment between
MMM and experiments, we propose a new MMM calibration approach. The key idea behind
this approach is to reparameterize GBHMMM by incorporating ROAS directly as a model
parameter.

First, we parameterize βm,g as βm,g = βm + ηmZm,g, where Zm,g
iid∼ normal(0, 1) and

{Zm,g}Gg=1} is independent of βm, ηm and all other model parameters. We can then rewrite
Equation (9) as

ROASm =

∑
T0≤t≤T1+L

∑
g (βm + ηmZm,g)F (Km, Sm, αm)∑
T0≤t≤T1

∑
g Ct,m,g

, (10)

6For simplicity, equation (8) is assuming that yt,g = Salest,g . In practice, we usually apply a trans-
formation of sales, yt,g = Lt,g(Salest,g), where Lt,g(.) is a linear transformation that includes population
scaling and standardization. If a transformation is applied, Equation (8) will need to include an inverse
transformation, L−1

t,g (.), in the numerator.
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Algebraically, we can write βm as

βm =

∑
T0≤t≤T1

∑
g Ct,m,gROASm −

∑
T0≤t≤T1+L

∑
g ηmZm,gF (Km, Sm, αm)∑

T0≤t≤T1+L

∑
g F (Km, Sm, αm)

:= H(ROASm, ηm,Km, Sm, αm, {Zm,g}Gg=1),

(11)

Given that the historical media spend, Ct,m,g, is known, and T0 and T1 are pre-defined
quantities 7, βm is a closed-form function of {ROASm, ηm,Km, Sm, αm, {Zm,g}Gg=1}. For

simplicity, we write the closed-form function as H(ROASm, ηm,Km, Sm, αm, {Zm,g}Gg=1),
which is equal to the first line in (11). Finally, we can reparameterize the GBHMMM in (1)
with ROASm as a parameter instead of βm

yt,g =

M∑
m=1

(H(ROASm, ηm,Km, Sm, αm, {Zm,g}Gg=1) + ηmZm,g)Hill(Adstock(x∗t,m,g, αm, L),Km, Sm)

+ τg +

C∑
c=1

γc,gzt,c,g + εt,g.

(12)

In contrast to the original GBHMMM which places priors on βm, the proposed calibra-
tion places priors on ROASm. To a finer point, the calibration implicitly places a prior
on βm = H(ROASm, ηm,Km, Sm, αm, {Zm,g}Gg=1), which is determined by the priors se-

lected for {ROASm, ηm,Km, Sm, αm, {Zm,g}Gg=1}. In particular, the prior distributions of

βm and {Zm,g}Gg=1 are no longer independent. In the reparameterized model, we now define

Zm,g
iid∼ normal(0, 1) and {Zm,g}Gg=1 is independent of ROASm, ηm and all other model

parameters.

3.4 Implications and significance

Calibrating the MMM with ROAS priors is appealing in practice because it provides a
straightforward way to incorporate the prior domain knowledge about the effectiveness of
media channels and the incrementality experiment results into MMM. It would directly
answer many of the fundamental questions advertisers have: How do I incorporate the results
of a single incrementality experiment into MMMs? How do I calibrate MMMs when the
experiment captures only short-term effects and doesn’t represent modeling-window ROAS
accurately? How should MMM calibration be approached when multiple incrementality
experiments have been conducted for a single media channel?

Incorporate the results of an incrementality experiment

Incrementality experiments, such as Google trimmed match geo exepriments (Chen et al.
[2021]), typically indicate a range of plausible values (e.g., mean, confidence interval, p-
values) that can inform our choice of prior distribution for ROASm in Equation (12), pro-
vided that the estimand of the experiment aligns with the definition in (4).

7The selection of T0 and T1 is further discussed in Section 3.4.
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When the experiment captures only short-term effects

However, it’s worth noting that the experimental results may not reflect the modeling-
window ROAS that MMM aims to measure, particularly when the media spend exhibits
strong seasonality and the incrementality experiments have a short measurement window.
In this case, the experiment is assessing a specific point on the saturation curve that may
not be representative of overall media performance. Figure 1 illustrates that for a given
media channel, a typical C-shaped saturation or diminishing return curve would yield a
higher ROAS for lower-than-usual spend during the experiment window, as compared to
the MMM modeling time window. The calibration method offers the flexibility for users to
calibrate the MMM using a subset of data by setting [T0, T1] as the experiment period, or
to calibrate the MMM using the complete data by setting T0 = 0 and T1 = T , depending on
whether the experimental results accurately represent the average media effect within the
modeling window.

Figure 1: Isolating experiment-window ROAS from diminishing return

When multiple incrementality experiments are available

When multiple incrementality experiments have been run for a single media, an intuitive
way to calibrate GBHMMM is to amend βm in equation (11) as

βm =

∑
e

∑
Te,0≤t≤Te,1

∑
g Ct,m,gROASe,m −

∑
e

∑
Te,0≤t≤Te,1+L

∑
g ηmZm,gF (Km, Sm, αm)∑

e

∑
Te,0≤t≤Te,1+L

∑
g F (Km, Sm, αm)

,

where ROASe,m is ROAS parameter for the e-th experiment run for media m, and [Te,0, Te,1]
are the start and end dates for the e-th experiment. However, we have noticed that the
parameters {ROASe,m}Ee=1 are essentially unidentifiable in some scenarios. For example,
different sets of {ROASe,m}Ee=1 can lead to same value of βm. The poor identifiability of
{ROASe,m}Ee=1 makes it challenging to estimate the parameters well with any statistical
method. Therefore, we suggest replacing {ROASe,m}Ee=1 with ROASm, which represents
the aggregated ROAS for media m during all experiment periods, then,

βm =

∑
e

∑
Te,0≤t≤Te,1

∑
g Ct,m,gROASm −

∑
e

∑
Te,0≤t≤Te,1+L

∑
g ηmZm,gF (Km, Sm, αm)∑

e

∑
Te,0≤t≤Te,1+L

∑
g F (Km, Sm, αm)

,

(13)
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One way to obtain the prior distribution of ROASm when multiple experiments exist is
to take the weighted sum of the prior ROAS distributions for each experiment, where the
weights, denoted by we,m, are proportional to the media spend during the experiments, as
in

Pr(ROASm ≤ R) = Pr(
∑
e

we,mROASe,m ≤ R),

we,m =

∑
Te,0≤t≤Te,1

∑
g Ct,m,g∑

e

∑
Te,0≤t≤Te,1

∑
g Ct,m,g

3.5 Adaptability and scalability

The proposed calibration approach is not limited to the GBHMMM, but is also applicable
to other Bayesian-based MMM methodologies, such as the BMMM (Jin et al. [2017]) and
RFMMM (Zhang et al. [2023]), as well as other model specifications, such as the GBHMMM
with log-normal βm,g prior.

BMMM (Jin et al. [2017]) is modeled by the following generic equation,

yt = τ +

M∑
m=1

βmHill(Adstock(x∗t,m, αm, L),Km, Sm) +

C∑
c=1

γczt,c + εt (14)

Following the same reparameterization process, βm can be written as,

βm =

∑
T0≤t≤T1

Ct,mROASm∑
T0≤t≤T1+L

(Hill(Adstock(x∗t,m, αm, L),Km, Sm)−Hill(Adstock(x̃∗t,m, αm, L),Km, Sm))

:= H
′
(ROASm,Km, Sm, αm),

As a result, BMMM can also be reparameterized with ROASm as a parameter instead of
βm, as in

yt = τ +

M∑
m=1

H
′
(ROASm,Km, Sm, αm)Hill(Adstock(x∗t,m, αm, L),Km, Sm) +

C∑
c=1

γczt,c + εt

(15)

GBHMMM with log-normal prior on βm,g
iid∼ lognormal(βm, η

2
m) is in general used to

prevent negative media effects, where βm,g can be parameterized as βm,g = eβm+ηmZm,g .
Following the same reparameterization process, βm can be written as,
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βm = log

 ∑
T0≤t≤T1

∑
g

Ct,m,gROASm

− log

 ∑
T0≤t≤T1+L

∑
g

eηmZm,gF (Km, Sm, αm)


:= H

′′
(ROASm, ηm,Km, Sm, αm, {Zm,g}Gg=1),

where F (Km, Sm, αm) is the same function as defined in Equation (9). Then, GBHMMM
with log-normal βm,g prior can also be reparameterized with ROASm as a parameter instead
of βm, as in

yt,g =

M∑
m=1

eH
′′
(ROASm,ηm,Km,Sm,αm,{Zm,g}Gg=1)+ηmZm,gHill(Adstock(x∗t,m,g, αm, L),Km, Sm)

+ τg +

C∑
c=1

γc,gzt,c,g + εt,g.

(16)

In summary, the presented reparameterization and calibration approach can be applied to
other Bayesian based MMMs. This approach is viable for implementation as long as there
is a one-to-one mapping between ROAS and one of the model parameters, holding other
model parameters fixed.

4 Simulation

This section illustrates some of the key properties of the calibration method using simulated
data generated from the same model class as in Equation (1). Specifically, we compare the
ROAS estimates with and without calibration, and show that the calibrated MMM generally
has tighter credible intervals and lower bias for the average ROAS than the non-calibrated
MMM.

4.1 Data simulation

We assume that there is only one media variable (M = 1), one control variable (C = 1),
100 geos (G = 100) and two years (104 Weeks) of data. The control variable is simulated
first to account for its potential influence as a confounding factor on both media spending
and sales. In general, control variables may exhibit seasonal patterns, so we simulated
the control variable zt,g as a sinusoid over time with addition of random noise, zt,g =

cos(2π(t− 12)/52) + wt,g, where wt,g is white noise with wt,g
iid∼ normal(0, 1).

We then simulate the media spend per capita in the geo g to have a positive correlation ρg
with the control variable,

xt,g = ug + ρgzt,g +
√

1− ρ2vt,g,
ug

iid∼ normal(0, 1), ρg
iid∼ uniform(0, 1), vt,g

iid∼ normal(0, 1)
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As the media spend should be non-negative, we take the positive part of xt,g as the media
spend. Finally, the geo level sales per capita yt,g is simulated to depend on the control
variable and the media spend, as in

yt,g = τg + βgAdstock(Hill∗(x∗t,g,K, S), α, L) + γgzt,g + εt,g

τg
iid∼ normal(τ, κ2), βg

iid∼ normal(β, η2), γg
iid∼ normal(γ, ξ2), εt,g

iid∼ normal(0, σ2)

where the hyper-parameters are fixed and summarized in Table 1, and the remaining pa-
rameters (τg, βg, γg, εt,g) are randomly drawn from the above distributions.

α K S L
0.5 1 1 3
τ β γ
10 3 1
κ η ξ σ
1 1 1 5

Table 1: Hyper-parameters

The ground-truth ROAS for the simulated data over a specified time period can be calculated
by applying Equation (8) with the parameter values obtained from the simulation. We
partition the two-year dataset into eight quarters and illustrate the ground-truth ROAS for
each quarter, along with the time series plots of the sales and the media spends for one of
the geos, as presented in Figure 2.

(a) Simulated data series for one geo
(b) Ground truth ROAS

Figure 2: Simulated data and ground truth ROAS

4.2 ROAS estimates with and without calibration

In this section, we compare the results from the GBHMMM (Equation 1) using non-
informative priors with those from the calibrated MMM (Equation 12) using ROAS prior.
As described in Section 3.4, the MMM can be calibrated through two approaches: either
using the ROAS prior specific to a sub-window or employing the ROAS prior associated with
the entire modeling window. For comparison, we obtain both the ROAS prior for the entire
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modeling window and the ROAS prior for the sub-window of quarter 3 by repeating the
data simulation process 100 times, and then matching the mean and the standard deviation
of the simulated ROAS to a log-normal distribution 8, as illustrated in Figure 3.

(a) ROAS Prior for the entire modeling window (b) ROAS Prior for the sub-window of quarter 3

Figure 3: Simulated data and ground truth ROAS

Figure 4 displays the posterior ROAS estimates with and without calibration. The blue
curve is the posterior density of ROAS for GBHMMM without incorporating ROAS pri-
ors, the orange curve is the posterior density of ROAS when the sub-window ROAS prior
is applied, the green curve is the posterior density of ROAS when using the full-window
ROAS prior, and the red line is the ground-truth ROAS of the entire modeling window.
It is observed that the GBHMMM without calibration yields ROAS estimates with greater
uncertainty in comparison to the GBHMMM calibrated using ROAS priors. Specifically, the
standard deviation of the posterior ROAS estimates from the GBHMMM without calibra-
tion is approximately five times that of the GBHMMM with calibration. In contrast, when
calibrating the GBHMMM using either the ROAS prior for the entire modeling window or
the ROAS prior for the sub-window of quarter 3, the posterior ROAS distributions exhibit a
substantial degree of similarity, with the full-window calibration yielding a slightly narrower
credible interval.

This study is an ideal case in the sense that it is free of omitted variables and model
mis-specification, which often exist in real data. In the following section, we will test the
calibration result in more complex settings mimicking the challenges faced by modelers in
practice.

4.3 When bias exists

In practice, when the confounding factor, zt,g, is unobserved, it’s common to directly adjust
for the available proxies in order to reduce bias due to unobserved confounding. However,
the bias could not be entirely eliminated when the confounding factor is unobserved, and
can only be measured with error via a proxy variable (Kurok and Pea [2014]). To mimic this
situation, we simulate a proxy control variable, zproxyt,g = zt,g+ut,g, where ut,g is white noise

independent of zt,g and ut,g
iid∼ normal(0, 1). Assuming zt,g is unobserved, we use zproxyt,g

8Lognormal distribution is in general used for setting ROAS prior to prevent negative ROAS estimates.
It is important to ensure that the ROAS prior distribution is centered around the ground truth ROAS in
Figure 2, which might not always be the case as the ground truth ROAS is from a single simulation replicate.
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Figure 4: Posterior ROAS vs ground truth

instead of zt,g to construct models and evaluate the impact of calibration using ROAS
priors.

Figure 5 shows that the GBHMMM, whether calibrated or not, produces biased estimates of
ROAS when the confounding factor is unobserved and a proxy variable is used. However, the
use of ROAS priors for calibration proves to significantly reduce this bias. It is also worth
noting that calibration using the ROAS prior for the entire modeling window is shown to
be more effective in reducing bias when compared to calibration with sub-window ROAS
priors.

Figure 5: Posterior ROAS vs ground truth
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5 Conclusion

Media Mix Models (MMMs) frequently integrate Bayesian modeling methodologies due to
their flexibility in accommodating prior domain knowledge regarding the effectiveness of
media channels. Until now, most models do not include ROAS as a parameter, which
makes it difficult to translate prior information about ROAS into an appropriate prior
distribution. In this paper, we propose a Bayesian MMM that includes ROAS as a model
parameter. This provides a straightforward way to calibrate MMMs based on any available
prior information, including domain knowledge or incrementality experiments. We also
discuss how the MMM calibration should be approached when the incrementality experiment
measures only short-term ad effect and doesn’t represent the modeling-window ROAS, and
when multiple incrementality experiments are conducted for a single media channel. The
proposed calibration method can be generalized to other Bayesian-based MMMs as long as
one of the model parameters can be parameterized as a function of ROAS.

The simulation study in section 4 provides evidence that, by employing ROAS priors through
reparameterization for MMM calibration, this methodology can significantly reduce the bias
and uncertainty in the resultant posterior ROAS estimates. Furthermore, the study demon-
strates that calibration with modeling-window ROAS priors is more effective in reducing
bias when compared to calibration with short-term ROAS priors.
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