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Abstract

A latent bandit is a bandit problem where the learning agent knows reward distri-
butions of arms conditioned on an unknown discrete latent state. The goal of the
agent is to identify the latent state, after which it can act optimally. This setting
is a natural midpoint between online and offline learning, where complex models
can be learned offline and the agent identifies the latent state online. This is of
high practical relevance, for instance in recommender systems. In this work, we
propose general algorithms for latent bandits, based on both upper confidence
bounds and Thompson sampling. The algorithms are contextual, and aware of
model uncertainty and misspecification. We provide a unified theoretical analysis
of our algorithms, which have lower regret than classic bandit policies when the
number of latent states is smaller than actions. A comprehensive empirical study
showcases the advantages of our approach.

1 Introduction

Many online platforms, such as search engines and recommender systems, display results based on
observed properties of the user and their query. However, the user’s behavior is often influenced
by a latent state not explicitly revealed to the system. This might be user intent (e.g., reflecting a
long-term task) in search, or short- and long-term preferences (e.g., reflecting topic interests) in a
recommender. In each case, the unobserved latent state influences the user response to the displayed
results, and thus the associated reward. A machine learning (ML) system, thus, should take steps to
infer the latent state and tailor its results accordingly.

While many ML models use either heuristic features [1, 4] or recurrent models [33] to capture user
history, explicit exploration for latent state identification (i.e., reducing uncertainty regarding the
true state) is less common in practice. In this paper, we study latent bandits, which model online
interactions of the above type as follows. In each round, the learning agent observes context (e.g.,
query or user demographics), takes an action (e.g., a recommends), and observes its reward (e.g.,
user engagement with the recommendation). The reward depends stochastically on both the context
and user latent state. As a result, it provides information about the unobserved latent state, which
can be used to improve predictions in the future. We are interested in designing exploration policies
that allow the agent to quickly maximize its per-round reward by resolving the relevant latent state
uncertainty. Specifically, we want policies that have low n-round regret.

Our latent state structure allows an agent to quickly adapt its results to new users, or adapt to new
user tasks or intents on a per-session basis. One example of that structure are clusters of users with
similar item preferences [34]. In this example, a system should be able to identify which cluster a
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new user belongs to faster than learning all user preferences without any prior information. This
would yield much better recommendations in the short-horizon, or cold-start, regime.

Fully online exploration (e.g., for personalization) involves learning a reward model, conditioned on
the context and latent state, and generally requires massive amounts of interaction data. Fortunately,
many platforms have such offline data (e.g., past user interactions) available, which can be used to
construct both a reasonable latent state space and conditional reward models [23, 9]. We assume that
such models are available and focus on a simpler online problem of latent state identification. Prior
works in this setting [25, 34] assumed that the true conditional reward models are given. Moreover,
they focused on upper confidence bound (UCB) designs, which are theoretically optimal but often
perform poorly empirically. We provide a unified framework that combines offline-learned models
with online exploration using both UCBs and Thompson sampling. Our algorithms are practical,
analyzable, contextual, and robust to natural forms of model misspecification.

We are the first to propose algorithms for latent bandits that are aware of model uncertainty. Our
paper is organized as follows. In Section 3, we propose novel practical algorithms based on UCBs
and Thompson sampling. Based on a connection between UCBs and posterior sampling [28], we
derive near-optimal bounds on the Bayes regret of our algorithms in Section 4. Finally, in Section 5,
we demonstrate their effectiveness in synthetic simulations and on a large-scale real-world dataset.

2 Problem Formulation

We adopt the following notation. Random variables are capitalized. The set of actions is A = [K],
the set of contexts is X , and the set of latent states is S, with |S| � K.

We study a latent bandit problem, where the learning agent interacts with an environment over n
rounds as follows. In round t ∈ [n], the agent observes context Xt ∈ X , takes action At ∈ A, and
observes reward Rt ∈ R. The random variable Rt depends on the context Xt, action At, and latent
state s ∈ S , where s is fixed but unknown.1 The observation history of the learning agent up to round
t is a vector Ht = (X1, A1, R1, . . . , Xt−1, At−1, Rt−1). The policy of the agent maps Ht and Xt to
the choice of action At.

Now we state our assumptions on how rewards and contexts are generated. The rewards are drawn
i.i.d. from a conditional reward distribution P (· | A,X, s; θ), which is parameterized by a vector
θ ∈ Θ, where Θ is a set of feasible model parameters. We use µ(a, x, s; θ) = ER∼P (·|a,x,s;θ) [R] to
denote the mean reward of action a in context x and latent state s under model θ. We denote the true
(unknown) latent state by s∗ and true model parameters by θ∗. We assume that θ∗ can be estimated
offline. We also assume that the rewards are σ2-sub-Gaussian, that is

ER∼P (·|a,x,s;θ∗) [exp(λ(R− µ(a, x, s; θ∗)))] ≤ exp(σ2λ2/2)

for all a, x, s, and λ > 0. The contexts can be generated by an arbitrary process independent of the
agent’s actions and the mean reward µ(a, x, s; θ) can be any complex function of θ.

The performance of the agent is measured by regret. Let At,∗ = arg maxa∈A µ(a,Xt, s∗; θ∗) be the
optimal action for latent state s∗ ∈ S and model θ∗ ∈ Θ. Then the expected n-round regret is

R(n; s∗, θ∗) = E

[
n∑
t=1

µ(At,∗, Xt, s∗; θ∗)− µ(At, Xt, s∗; θ∗)

]
. (1)

While a fixed-state regret is useful, we are often more concerned with the average performance over a
range of states (e.g., multiple users and multiple sessions with the same user). Thus we also consider
the Bayes regret, where we take an expectation over a random latent state and model. Suppose that
S∗ and θ∗ are drawn from some prior P1. Then the n-round Bayes regret is

BR(n) = E [R(n;S∗, θ∗)] = E

[
n∑
t=1

µ(At,∗, Xt, S∗; θ∗)− µ(At, Xt, S∗; θ∗)

]
. (2)

Note that S∗ and θ∗ in the definition of At,∗ = arg maxa∈A µ(a,Xt, S∗; θ∗) are random now.

1The latent state s can be viewed as a user’s current task or preferences, and is fixed over all n rounds.
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Algorithm 1 mUCB

1: Input: Model parameters θ̂

2: for t← 1, 2, . . . do
3: Define Nt(s)←

∑t−1
`=1 1{B` = s} and

Gt(s)←
t−1∑
`=1

1{B` = s} (µ̂(A`, X`, s)−R`) (3)

4: Set of consistent latent states Ct ←
{
s ∈ S : Gt(s) ≤ σ

√
6Nt(s) log n

}
5: Select Bt, At ← arg maxs∈Ct,a∈A µ̂(a,Xt, s)

3 Algorithms

In this section, we develop both UCB and Thompson sampling (TS) algorithms that leverage an
arbitrarily complex environment model, generally learned offline, to expedite online exploration. As
discussed earlier, such offline models can be readily learned given large amounts of offline interaction
data available in many interactive systems. In each subsection below, we specify a particular form of
the offline-learned model, and develop a corresponding online algorithm. It is important to note that
given an environment model, an optimal solution is to compute and maximize the Gittins index over
actions [15]. However, this is often computationally intractable and does not generalize to complex
latent variable models. We want our methods to be practical, and thus only consider myopic policies
that can be efficiently implemented online.

3.1 UCB with Perfect Model (mUCB)

We first design a UCB-like algorithm with learned model θ̂ ∈ Θ. Let µ̂(a, x, s) = µ(a, x, s; θ̂) be the
mean reward under model θ̂ and µ(a, x, s) = µ(a, x, s; θ∗) be the true reward. We initially assume
that the learned model is accurate, that is we are given θ̂ = θ∗ as an input.

The key idea in UCB algorithms is to compute a high-probability upper confidence bound Ut(a) on
the mean reward of each action a in any round t, where the Ut is some function of history [8]. Then
the algorithms take action At = arg maxa∈A Ut(a). Our model-based UCB algorithm, which we
call mUCB, works very similarly. The pseudocode of mUCB is in Algorithm 1. The algorithm works as
follows. In round t, it maintains a set of latent states Ct that are consistent with the observed rewards
thus far. Then it chooses a specific believed latent state Bt from the consistent set Ct and takes
action At with the maximum expected reward in that state, (Bt, At) = arg maxs∈Ct,a∈A µ̂(a,Xt, s).
Thus the UCB of action a is Ut(a) = arg maxs∈Ct µ̂(a,Xt, s). mUCB tracks two key quantities: the
number of times that state s is selected up to round t, Nt(s); and the “gap” between the expected and
realized rewards in state s up to round t, Gt(s). If Gt(s) is high, mUCB marks state s as inconsistent
and does not consider it in round t. Note that the gap is defined over latent states rather than actions,
and with respect to realized rewards rather than expected rewards.

3.2 UCB with Misspecified Model (mmUCB)

Now we extend mUCB to misspecified models, where we are given θ̂ 6= θ∗ as an input. We consider
the following worst-case high-probability definition of model misspecification: there exist ε, δ > 0
such that |µ̂(a, x, s)− µ(a, x, s)| ≤ ε holds with probability at least 1− δ jointly for all a, x, and s.
Guarantees of this form, for example, exist for spectral methods for latent variable models, where ε
and δ depend on the size of the offline dataset [5].

We modify mUCB to be robust to this type of model error, which gives rise to a new algorithm mmUCB.
The only change to mUCB is that Gt(s) is replaced with a high-probability lower bound

Gt(s) =

t−1∑
`=1

1{B` = s} (µ̂(A`, X`, s)− ε−R`) . (4)
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Algorithm 2 mTS

1: Input:
2: Model parameters θ̂
3: Prior over latent states P1(s)

4: for t← 1, 2, . . . do
5: Define

Pt(s) ∝ P1(s)
∏t−1
`=1 P (R` | A`, X`, s; θ̂)

6: Sample Bt ∼ Pt
7: Select At ← arg maxa∈A µ̂(a,Xt, Bt)

Algorithm 3 mmTS

1: Input:
2: Prior over model parameters P1(θ)
3: Prior over latent states P1(s)

4: for t← 1, 2, . . . do
5: Define

Pt(s, θ) ∝ P1(s)P1(θ)
∏t−1
`=1 P (R` | A`, X`, s; θ)

6: Sample Bt, θ̂ ∼ Pt
7: Select At ← arg maxa∈A µ̂(a,Xt, Bt)

This allows mmUCB to be conservative when identifying inconsistent latent states, so that s∗ ∈ Ct
remains to hold with a high probability. Just as importantly, it is also useful for deriving worst-case
regret bounds, both for UCB algorithms and TS.

3.3 Thompson Sampling with Perfect Model (mTS)

Our UCB algorithms are designed for the worst case. Now we adopt a more relaxed design, where
the latent state is random, and the model is fixed and known. That is, we are given θ̂ = θ∗ and a prior
distribution over latent states P1 as inputs.

Our solution is a variant of Thompson sampling [32, 10, 28]. The key idea in TS is to sample actions
according to their posterior probability of being optimal, conditioned on the history of the agent. In
our case, the optimal action in round t is At,∗ = arg maxa∈A µ(a,Xt, S∗; θ∗), and is random both
due to the observed context Xt and unknown latent state S∗. Therefore, TS should take action a with
probability P (At = a | Xt, Ht) = P (At,∗ = a | Xt, Ht). An advantage of TS over UCB algorithms
is that it obviates the need to design UCBs, which are often loose. As a result, UCB algorithms are
often conservative in practice and TS typically offers better empirical performance [10].

Our model-based TS algorithm, which we call mTS, is presented in Algorithm 2. The algorithm works
as follows. In round t, it maintains a posterior probability, Pt(s) = P (S∗ = s | Ht), that each latent
state s is optimal. Then it samples the latent state from its posterior distribution, Bt ∼ Pt, and takes
action At = maxa∈A µ̂(a,Xt, Bt). For any fixed s, Pt(s) ∝ P1(s)

∏t−1
`=1 P (R` | A`, X`, s; θ̂). As

a result, Pt can be updated incrementally in the standard Bayesian filtering fashion [30]. Note that
unlike mUCB, mTS needs to know the conditional reward distribution P (· | a, x, s; θ̂) to update Pt(s).

3.4 Thompson Sampling with Misspecified Model (mmTS)

Now we extend mTS to misspecified models. However, instead of considering a worst-case estimate
of θ∗, as in mmUCB, we assume that θ∗ ∼ P1 and that the learning agent knows P1. This is motivated
by prior literature on modeling epistemic uncertainty [11]. In practice, learning a distribution over
parameters is intractable for complex models; but approximate inference can be always performed,
for instance by an ensemble of bootstrapped models [11].

Our TS algorithm for misspecified models, which we call mmTS, is presented in Algorithm 3. The
algorithm seamlessly integrates model uncertainty into mTS as follows. In round t, the latent state
Bt and estimated model parameters θ̂ are sampled from their joint posterior, and then an action is
taken to maximize At = maxa∈A µ̂(a,Xt, Bt). In general, sequential Monte Carlo methods [12]
can be used for approximate posterior sampling. However, when the model prior is conjugate to the
likelihood, the posterior has a closed form and can be sampled from as follows. Since S is finite,
we can tractably sample from the joint posterior by first sampling latent state Bt from its marginal
posterior and then θ̂ conditioned on Bt. For exponential family distributions, the posterior parameters
can also be updated online and efficiently. We provide more details in Appendix A, and a pseudocode
for Gaussians in Appendix B.
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4 Regret Analysis

Maillard and Mannor [25] derived gap-dependent regret bounds for UCB algorithms in latent bandits
under the assumption that the true model is known and arms are independent. We provide a unified
analysis that extends their results to include context, model misspecification, and TS algorithms.

4.1 Regret Decomposition

UCB algorithms explore using upper confidence bounds, while TS samples from the posterior. Russo
and Van Roy [28] related these two designs with a unified regret decomposition. In our problems,
this is reflected as follows. Let s∗ be the true latent state. Then the regret of our UCB algorithms in
round t decomposes as

µ(At,∗, Xt, s∗)− µ(At, Xt, s∗) = µ(At,∗, Xt, s∗)− Ut(At) + Ut(At)− µ(At, Xt, s∗)

≤ [µ(At,∗, Xt, s∗)− Ut(At,∗)] + [Ut(At)− µ(At, Xt, s∗)] ,

where the inequality holds by the definition of At. A similar inequality without latent states appears
in prior work [28]. This yields the following regret decomposition

R(n; s∗, θ∗) ≤ E

[
n∑
t=1

µ(At,∗, Xt, s∗)− Ut(At,∗)

]
+ E

[
n∑
t=1

Ut(At)− µ(At, Xt, s∗)

]
. (5)

An analogous decomposition exists for the Bayes regret of our TS algorithms. Specifically, for any
TS algorithm and function Ut of history, we have

BR(n) = E

[
n∑
t=1

µ(At,∗, Xt, S∗; θ∗)− Ut(At,∗)

]
+ E

[
n∑
t=1

Ut(At)− µ(At, Xt, S∗; θ∗)

]
. (6)

The proof uses the fact that E [Ut(At,∗) | Xt, Ht] = E [Ut(At) | Xt, Ht] holds for any Ht and Xt

from the design of TS. Thus Ut can be an upper confidence bound in a UCB algorithm.

Though the UCBs Ut are not used by TS, they can be used to analyze it, due to the similarity of (5)
and (6). Thus regret bounds for UCB algorithms can be translated to Bayes regret bounds for TS.
There are two caveats though. First, since actions in TS do not maximize Ut, the regret bound must
be proved using a worst-case argument over suboptimal actions. Second, because the Bayes regret
is in expectation over problem instances, the resulting regret bounds are problem-independent, also
known as gap-free.

4.2 Key Steps in Our Proofs

Full proofs of our regret bounds are in Appendix C. All proofs follow the same outline, the key steps
of which are outlined below. To ease the exposition, we assume that the suboptimality gap of any
action is bounded by 1.

Step 1: Concentration of realized rewards at their means. We first show that the total observed
reward does not deviate too much from its expectation, under any believed latent state s. Formally,
we show that P

(∣∣∣∑t−1
`=1 1{B` = s} (µ(A`, X`, s∗)−R`)

∣∣∣ ≥ σ√6Nt(s) log n
)

= O(n−2) holds
for any round t and state s. Since we consider the contextual case, which requires joint estimation
over dependent arms, we use martingales and Azuma’s inequality.

Step 2: s∗ ∈ Ct in each round t with a high probability. This follows from the definition of Ct
and the concentration argument in Step 1 for s = s∗. Then, in any round t where s∗ ∈ Ct, we can
use that Ut(a) ≥ µ(a,Xt, s∗) for any action a in mUCB, and Ut(a) ≥ µ(a,Xt, s∗)− ε in mmUCB.

Step 3: Upper bound on the UCB regret. We prove this by bounding each term in (5) separately.
The first term is at most 0 with a high probability by Step 2. The second term is a sum of confidence
widths, the differences between Ut and the mean reward in round t. We partition it by the chosen
latent state in each round. For each latent state s, we introduce realized rewards Rt and get
n∑
t=1

1{Bt = s} (Ut(At)− µ(At, Xt, s∗)) ≤ Gn(s) + 1 +

n∑
t=1

1{Bt = s} (Rt − µ(At, Xt, s∗)) .
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The key step in proving the above bound is that G`(s) = Gn(s) holds in the last round ` where state
s is chosen, where

∑`−1
t=1 1{Bt = s} (Ut(At)−Rt) ≤ G`(s) holds. This relation also implies that

Gn(s) ≤ σ
√

6Nn(s) log n. The other term is bounded by Step 1, which gives a total upper bound
of 2σ

√
6Nn(s) log n. Finally, we apply the Cauchy-Schwarz inequality to combine the bounds for

individual latent states.

Step 4: Upper bound on the TS regret. We use the fact that the regret decomposition for Bayes
regret in (6) is similar to that for the UCB regret in (5). As mentioned in Section 4.1, as long as our
UCB analysis in Step 3 is worst-case over all possible sequences of actions and gap-free, the UCB
regret bound transfers to a Bayes regret bound for TS.

4.3 Regret Bounds

Our first result is an upper bound on the n-round regret of mUCB. This result differs from Maillard
and Mannor [25] in two respects: our bound is gap-free and accounts for context.

Theorem 1. Assume that θ̂ = θ∗. Then, for any s∗ ∈ S and θ∗ ∈ Θ, the n-round regret of mUCB is
bounded asR(n; s∗, θ∗) ≤ 2σ

√
6|S|n log n+ 3|S|.

A gap-free lower bound on the regret in a K-armed bandit is Ω(
√
Kn) [7]. So our upper bound is

optimal up to log factors, when substituting actions A with latent states S. The bound can be much
lower when |S| � K. It also holds for arbitrary reward models and is contextual. From Step 4 of the
proof outline, we also have that the Bayes regret of mTS is bounded.

Corollary 1. Assume that θ̂ = θ∗. Then, for S∗ ∼ P1 and any θ∗ ∈ Θ, the n-round Bayes regret of
mTS is bounded as BR(n) ≤ 2σ

√
6|S|n log n+ 3|S|.

Our next results apply to misspecified models. We assume that θ̂ is estimated by some black-box
method. For mmUCB, our bound depends on a high-probability maximum error ε induced by θ̂.

Theorem 2. Let P
(
∀a ∈ A, x ∈ X , s ∈ S : |µ(a, x, s; θ̂)− µ(a, x, s; θ∗)| ≤ ε

)
≥ 1− δ for some

ε, δ > 0. Then, for any s∗ ∈ S and θ∗ ∈ Θ, the n-round regret of mmUCB is bounded as

R(n; s∗, θ∗) ≤ 2σ
√

6|S|n log n+ 2εn+ δn+ 3|S| .

The proof of Theorem 2 follows our outline in Section 4.2. Steps 1–2 remain unchanged, but Step 3
changes to account for the error due to model misspecification. The linear dependence on error ε and
probability δ is unavoidable in the worst case, specifically when ε is larger than the suboptimality
gap. Nevertheless, some offline learning methods, such as spectral methods for latent variable models
[5], allow ε and δ to be arbitrarily small as the size of the offline dataset grows. So our bound can be
sublinear in n.

For mmTS, we assume that a prior distribution over model parameters is known. The key step in the
proof is to introduce µ̄(a, x, s) =

∫
θ
µ(a, x, s, θ)P1(θ)dθ, the conditional mean reward marginalized

over the prior. Using this quantity, we can obtain the following Bayes regret bound.
Corollary 2. Let θ∗ ∼ P1 and P (∀a ∈ A, x ∈ X , s ∈ S : |µ̄(a, x, s)− µ(a, x, s; θ∗)| ≤ ε) ≥ 1− δ
for some ε, δ > 0. Then, for S∗, θ∗ ∼ P1, the n-round Bayes regret of mmTS is bounded as

BR(n) ≤ 2σ
√

6|S|n log n+ 2εn+ δn+ 3|S| .

The proof of Corollary 2 relies on a variant of mmUCB where µ̂(a, x, s) is replaced with µ̄(a, x, s).
Note that unlike in mmUCB, the linear dependence of ε is conservative, as mmTS updates its model
posteriors and eventually concentrates. We leave the derivation of a tighter bound for future work.

We can relate the error ε and its probability δ using the tails of the conditional reward distributions.
In particular, let µ(a, x, s; θ)− µ̄(a, x, s) be v2-sub-Gaussian in θ ∼ P1 for any a, x, and s. Then
for any δ ∈ [0, 1], ε = O(v

√
2 log(K|X ||S|/δ)) satisfies the conditions on ε and δ in Corollary 2.

5 Experiments

In this section, we evaluate our algorithms on both synthetic and real-world datasets. We compare
the following methods: (i) UCB: UCB1/LinUCB with no offline model [8, 1]; (ii) TS: TS/LinTS with
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Figure 1: Left: Mean reward and standard error for low model noise (σ0 = 0.05). Middle/Right: Mean/worst-
case reward and standard error for high model noise (σ0 = 0.2).

no offline model [3, 4]; (iii) Exp4: Exp4 where models are experts [7] (iv) mUCB, mmUCB: our
proposed UCB algorithms mUCB/mmUCB; (v) mTS, mmTS: our proposed TS algorithms mTS/mmTS.
In contrast to our methods, the UCB and TS baselines do not use an offline learned model. Exp4 uses
models as experts, where each expert pulls the best arm given context and its latent state. Since we
are interested in “fast personalization”, we experiment with short horizons of up to 1000 rounds.

5.1 Synthetic Experiments

We first experiment with synthetic non-contextual bandits where A = [10] and S = [5]. The mean
rewards are sampled uniformly at random as µ(a, s) ∼ Uniform(0, 1) for each a ∈ A, s ∈ S. Using
rejection sampling, we constrain the suboptimality gap of all actions in each state s to be at least
0.1, to ensure statistically significant comparisons at short horizons. The rewards are drawn i.i.d.
from P (· | a, s) = N (µ(a, s), σ2) with σ = 0.5. We evaluate each algorithm on 500 independent
runs, with a uniformly sampled latent state in each run, and report the average reward over time. We
analyze the effect of model misspecification by perturbing the mean rewards with various degrees
of noise: for noise σ0 > 0, the estimated means are sampled as µ̂(a, s) ∼ N (µ(a, s), σ2

0) for each
action a and latent state s.

The left plot in Figure 1 shows the average reward over time for low model noise, σ0 = 0.05. In this
setting, our algorithms mUCB and mTS perform better than the baselines UCB1 and TS. In the middle
plot, we increase the noise to σ0 = 0.2. Neither mUCB nor mTS accounts for modeling errors, and
thus their performance degrades. On the other hand, the uncertainty-aware mmTS outperforms mTS.
However, mmUCB (not reported to reduce clutter) performs the same as mUCB. This is likely because
of the conservative nature of UCBs. Despite having similar worst-case regret guarantees, Exp4 is
tailored to adversarial bandits instead of the stochastic ones. Therefore, it is outperformed by mUCB
and mTS with the same model.

The right plot in Figure 1 shows 10% of the worst runs from the middle plot, as measured by the
average reward in the last round. This is a measure of a “worst-case” performance. Both UCB1 and
TS are unaffected by model misspecification, and outperform mUCB and mTS. However, mmTS still
performs best due to adapting the misspecified model to online data. This shows that employing
uncertainty-awareness makes model-based algorithms much more robust to model misspecification
and learning error.

5.2 MovieLens Experiments

We also assess the performance of our algorithms on the MovieLens 1M dataset [17], a large-scale
collaborative filtering dataset where 6040 users rate 3883 movies. Each movie has a set of genres.
We filter the dataset to include only users who rated at least 200 movies, and movies rated by at least
200 users; resulting in 1353 users and 1124 movies.

We randomly select 50% of all ratings as our training set and use the remaining 50% as the test set;
resulting in sparse rating matrices Mtrain and Mtest. We complete each matrix using least-squares
matrix completion [29] with rank 20. This rank is high enough to yield a low prediction error, and yet
small enough to avoid overfitting. The learned latent factors are Mtrain = Û V̂ T and Mtest = UV T .
User i and movie j correspond to rows Ui and Vj , respectively, in the matrix factors.

We define a latent contextual bandit instance with A = [20] and S = [5] as follows. Using k-means
clustering on the rows of U , we cluster users into 5 clusters, where 5 is the largest value that does
not yield empty clusters. First, a user i is sampled uniformly at random. In each round, 20 genres
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Figure 2: Mean/worst-case rating and standard error on the MovieLens 1M dataset.

and then a movie for each genre are uniformly sampled, creating a set of diverse movies. Context
Xt ∈ R20×20 is a matrix where each row is a training latent factor of one sampled movie, that is V̂j
for movie j. The agent selects one movies from Xt and observes its reward. The reward distribution
for user i and movie j is N (UTi Vj , 0.5), and its mean is the product of the corresponding user and
item factors on the test set. We evaluate on 500 users.

Our “offline” model is a Gaussian mixture that is learned in the same way as the true model, except
on the training set. It has 5 clusters of users derived from k-means clustering on the rows of Û . For
each latent state, the prior is a Gaussian with the corresponding cluster mean and covariance. The
context in LinUCB and LinTS is Xt, the same as in our algorithms, and they only learn the user latent
factor. This is more information than in low-rank bandit algorithms [24], which learn both the user
and movie representations, and thus perform poorly in short horizons that we consider.

The left plot in Figure 2 shows mean ratings and standard errors of 6 algorithms (as earlier, mmUCB
performs similarly to mUCB and is not shown). mUCB and mTS clearly adapt and “personalize” to users
faster than LinUCB and LinTS, and converge to better policies than Exp4. Both mUCB and mTS are
affected by model misspecification. In comparison, mmTS handles model uncertainty and converges
to the best policies. The right plot in Figure 2 shows the average results for the worst 10% of users.
Again, mmTS dramatically outperforms mTS in the worst case.

6 Related Work

Latent bandits. Latent contextual bandits can personalize faster than standard contextual bandit
policies, such as LinUCB [1] or linear Thompson sampling [4, 2]. The closest to our work is that
of Maillard and Mannor [25], who proposed and analyzed non-contextual UCB algorithms, with
side information that uniquely identifies users, under the assumption that the mean rewards for each
latent state are known. Then they relaxed the assumption on known means, but assumed the other
extreme case where the means are learned completely online. Zhou and Brunskill [34] extended this
formulation to contextual bandits. However, they used offline-learned policies that were deployed
online as a mixture, using Exp4. Bayesian policy reuse (BPR) [27] selects offline-learned policies by
maintaining a belief over the optimality of each policy through posterior inference, but no analysis
exists. Krause and Guestrin [21] used inference in latent graphical models to gather information, but
only to identify the state. This is akin to best-arm identification [6], which is a different objective from
cumulative regret minimization. We subsume prior work by providing contextual uncertainty-aware
UCB and TS algorithms, and their unified analyses.

Low-rank bandits. Low-rank bandits can be viewed as a generalization of latent bandits, where
low-rank matrices parameterize the reward and are learned online. Kawale et al. [20] proposed a TS
algorithm for low-rank matrix factorization; however, their algorithm is inefficient and is analyzed
only for rank-1 matrices. Sen et al. [31] analyzed an ε-greedy algorithm, but relied on the properties
that rarely hold in practice. Another body of work studied online clustering of bandits, which is
based on a specific low-rank structure [24, 13, 14, 26]. Yet another studied low-rank matrices where
both rows and columns are arms [19, 18]. None of these prior works used offline-learned models, an
important practical consideration given the general availability of offline data, and learned at most
linear models. In Section 5, we compare to idealized versions of these methods where low-rank
features are provided.
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Structured bandits. In structured bandits, the arms are related through a common latent parameter.
Lattimore and Munos [22] proposed a UCB algorithm for a multi-armed bandit variant of this problem.
Recently, Gupta et al. [16] proposed a unified framework that adapts classic bandit algorithms, such
as UCB1 and TS, to structured multi-armed bandits. Though similar to our work, the algorithms differ
in key aspects: we put confidence intervals on latent states instead of arms, and develop contextual
algorithms that are robust to model misspecification.

7 Conclusions

We study latent bandits, a class of bandit problems where the reward model is parameterized by a
latent state and at least partially known. We propose UCB and Thompson sampling algorithms for
solving this problem, which identify the latent state conditioned on offline-learned reward models.
The algorithms are contextual and robust to misspecification. We bound their regret using a unified
analysis, and validate them empirically on both a synthetic problem and the MovieLens 1M dataset.

Because of its generality and practicality, our work can be naturally extended to more complicated
graphical models of the environment. For example, in this work, we assume that the latent state
is fixed over time. However, a transition model could be incorporated into our setting to model an
evolving latent state. This would be useful when user preferences or intents change over time. In
addition, we could consider a more expressive latent state, such as a mixture of topics, which would
be useful if user types could not be classified into a finite discrete set. We leave the detailed study of
these extensions to future work.

Broader Impact

Our work develops improved algorithms for bandit-style exploration in a very general and abstract
sense. We have demonstrated its ability to increase the rate at which interactive systems identify
user latent state to improve long-term impact on user reward (e.g., engagement in a recommender
system). Our work is agnostic to the form of the reward. We are strongly motivated by improving
user positive engagement with interactive systems (e.g., by identifying user interests or preferences
in a recommender system). However, other forms of reward that are unaligned with a user’s best
interests could be used—our methods do not propose specific reward models. That said, our work has
no social implications (welfare, fairness, privacy, etc.) beyond those already at play in the interactive
system to which our methods might be applied.
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