
From Fugu With Love: New Capabilities for the Web
Thomas Steiner

tomac@google.com

Google Germany GmbH

Hamburg, Germany

Pete LePage

petele@google.com

Google LLC

New York, NY, United States

Thomas Nattestad

Rory McClelland

nattestad@google.com

rorymcclelland@google.com

Google Germany GmbH

Munich, Germany

Alex Russell

slightlyoff@google.com

Google LLC

San Francisco, CA, United States

Dominick Ng

dominickn@google.com

Google Australia

Sydney, NSW, Australia

ABSTRACT

We present a greeting card web application that is useful in all

modern browsers, but sees its experience progressively enhanced

through new and upcoming browser capabilities such as native file

system access, system clipboard access, contacts retrieval, periodic

background sync, screen wake lock, web sharing features, and more.

CCS CONCEPTS

• Information systems→Web applications; Browsers.

KEYWORDS

ProgressiveWeb Apps,Web apis,Web Incubator Community Group

ACM Reference Format:

Thomas Steiner, Pete LePage, Thomas Nattestad, Rory McClelland, Alex

Russell, and Dominick Ng. 2020. From Fugu With Love: New Capabilities

for the Web. In Companion Proceedings of the Web Conference 2020 (WWW

’20 Companion), April 20–24, 2020, Taipei, Taiwan. ACM, New York, NY, USA,

4 pages. https://doi.org/10.1145/3366424.3383526

1 INTRODUCTION AND BACKGROUND

1.1 The App Gap

Modern web browsers support impressive web applications far

beyond the web’s origin as a global space of linked documents.

WebAssembly (Wasm) is enabling new classes of games and pro-

ductivity apps, Web Real-Time Communication (Webrtc) enables

new ways to communicate, and service workers allow developers

to create reliably fast web experiences almost regardless of network

conditions. However, there are some capabilities, like file system

access, raw clipboard access, background app refresh, and more,

that are available to native desktop and mobile platforms, but that

are not available to the web platform. These missing capabilities

mean some types of apps cannot be delivered on the web, or that

these apps are less useful. In colloquial terms, this is sometimes

referred to as the app gap.

This paper is published under the Creative Commons Attribution 4.0 International

(CC-BY 4.0) license. Authors reserve their rights to disseminate the work on their

personal and corporate Web sites with the appropriate attribution.

WWW ’20 Companion, April 20–24, 2020, Taipei, Taiwan

© 2020 IW3C2 (International World Wide Web Conference Committee), published

under Creative Commons CC-BY 4.0 License.

ACM ISBN 978-1-4503-7024-0/20/04.

https://doi.org/10.1145/3366424.3383526

1.2 Using Web Technologies, But Not the Web

The app gap causes some developers to simply not build for the web.

However, doing this often means focusing on only one platform, or

using more complex toolchains. Frameworks such as Apache Cor-

dova
1
(mobile) and Electron

2
(desktop) allow developers to build

apps using web technologies, but also to access more of the under-

lying capabilities of the device than are available on the broader

web platform. This approach leverages the web’s interoperability

and relative ease of development, but it comes with security chal-

lenges [2, 10], and requires that users pay the cost of downloading

and storing an entire web runtime per app.

1.3 The Capabilities Project, Or Project Fugu

The Capabilities Project (or Project Fugu) aims to bridge this gap.

We want to enable the web to access native app capabilities without

having to compromise user security, privacy, or trust, or having to

package entire app runtimes. Giving developers these new tools

will empower the open web as a place where almost any experience

can be created, and make it a first class platform for developing

apps that run on any browser, with any operating system, and on

any device. We design and develop these new capabilities in an

open and transparent way in the w3c’s Web Incubator Community

Group
3
(wicg) using the existing open web platform standards

processes while getting early feedback from developers and other

browser vendors as we iterate on the design of these features to

ensure its interoperability.

This work is a cross-company effort, with contributors from

Google, Microsoft, and Intel. The monthly meetings are open to

active contributors and have shared notes,
4
accessible to anyone in

the Chromium organization.

We have identified and prioritized an initial set of capabilities

we heard partner demand for and that we see as critical to closing

the gap between web and native. People interested in the list can

review it by searching the Chromium bug database for bugs that

are tagged with the label proj-fugu.5 Regarding the project’s code
name: fugu is a pufferfish that is considered a delicacy, however, if

1
Apache Cordova: https://cordova.apache.org/

2
Electron: https://electronjs.org/

3
wicg: https://wicg.io/

4
Project Fugu notes: https://bit.ly/fugu-sync

5
Project Fugu bugs: https://bit.ly/fugu-bugs

https://doi.org/10.1145/3366424.3383526
https://doi.org/10.1145/3366424.3383526
https://cordova.apache.org/
https://electronjs.org/
https://wicg.io/
https://bit.ly/fugu-sync
https://bit.ly/fugu-bugs


WWW ’20 Companion, April 20–24, 2020, Taipei, Taiwan Thomas Steiner, Pete LePage, Thomas Nattestad, et al.

not carefully prepared, it can be lethally poisonous. This analogy

works quite well with many of the capabilities we deal with. We

have outlined our vision for a more capable web in a blog post [9]

on the Chromium blog and invite interested parties to follow along

the project’s progress on the dedicated project landing page.
6

1.4 The Capabilities Process

We have developed a process, depicted in Figure 1, to make it possi-

ble to design and develop new web platform capabilities that meet

the needs of developers quickly, in the open, and most importantly,

without moving feature development outside the standards process.

(1) Identify the developer need:

The first step is to identify and understand the developer

need. How are they doing it today? And what and whose

problems or frustrations are fixed by this new capability?

Typically, these come in as feature request from developers,

frequently via bugs filed on bugs.chromium.org.

(2) Create an explainer:

After identifying the need for a new capability, create an

explainer, essentially a design document that is meant to

explain the problem, along with sample code showing how

the api might work. The explainer is a living document that

will go through heavy iteration as the new capability evolves.

(3) Get feedback and iterate on the explainer:

Once the explainer has a reasonable level of clarity, it is time

to publicize it, to solicit feedback, and iterate on the design.

This is an opportunity to verify the new capability meets

the needs of developers and works as expected and to gather

public support and verify that there really is a need for this.

(4) Move the design to a specification and iterate:

Once the explainer is in a good state, the design work transi-

tions into a formal specification, working with developers

and other browser vendors to iterate and improve on the

design. Once the design starts to stabilize, we use an origin

trial
7
to begin prototyping and to experiment with the imple-

mentation. Origin trials allow developers to try new features

with real users, and give feedback on the implementation.

(5) Ship it:

Finally, once the origin trial is complete, the spec is mature,

and all of the other launch steps have been completed, it

is time to ship it to stable. We still iterate with other im-

plementations and developers to refine the spec, explore

improvements and fixes to the design with other vendors,

and work toward promoting the spec to a formal standard.

Nota bene, many ideas never make it past an explainer or origin

trial stage. Not shipping a feature because it does not solve the de-

veloper need is fine. Key milestones here are formalized with public

discussion and approvals via Chromium’s api launch process.
8

1.5 Permissions

Some of the capabilities we work on are potentially harmful for

users if not handled appropriately (we recall the code name of this

project). In a position paper [12] presented at the w3c Permissions

6
Project Fugu landing page: https://developers.google.com/web/updates/capabilities

7
Origin Trial: http://googlechrome.github.io/OriginTrials/explainer.html

8
Chromium (Blink) launch process: https://goo.gle/blink-launch-process

Figure 1: The Capabilities Process

Workshop, we have outlined our standpoints regarding evolving

the current permission model. We propose the following steps:

• Permission-requesting apis need to introduce the ability

for developers to register interest in a capability before ever

being allowed to prompt users and to be called back when the

situation changes, e.g., if increased site engagement is noted,

when before the threshold would not have been reached.

• Since different web apis currently have disparate ways to

signal a developer’s intent to use them, permissions requests

should be centralized on a single method [13] to enable better

user controls and bring much needed developer consistency.

• The Permissions api [8] should be extended with a revoke

method, so developers are able to ensure their applications

operate with least-privilege.

• TheWeb Application Manifest should be extended to include

fields which allow sites to identify to the runtime amaximum

set of permissions. Requests for permissions not included in

this list should fail.

1.6 Access to Powerful Web Platform Features

Allowing users to control which sites are able to access powerful

apis is crucial for maintaining the security and privacy properties

of the web. The impact of restrictions on the developer ergonomics

and user utility of the api and the web platform overall must also

be considered. The following general principles [11] summarize

the overall approach of the Chromium project to evaluating how

powerful new features should be controlled on the web:

• Access to powerful APIs should be available to the entire

web of secure contexts, with control managed exclusively

by user consent ux like prompts or pickers at time-of-use.

• api-specific restrictions on the scope of access may also be

used to guard against potential abuse.

• Usage of powerful apis should be clearly disclosed to users,

ideally using a central hub that offers users control over what

sites can use which capabilities.

• Installing a web app is associated with persistence, and thus

persistent and/or background access to powerful apis may

only be granted (possibly subject to additional requirements)

to installed web apps. Non-installed sites may still request

and be granted permission to use powerful apis, but should

not have their access persisted.

• Installation or engagement alone should not act as a vote of

trust for either granting access or enabling the ability to ask

for access to powerful apis.

bugs.chromium.org
https://developers.google.com/web/updates/capabilities
http://googlechrome.github.io/OriginTrials/explainer.html
https://goo.gle/blink-launch-process


From Fugu With Love: New Capabilities for the Web WWW ’20 Companion, April 20–24, 2020, Taipei, Taiwan

• Separately, efforts should be made to curtail the existing

persistency on the web platform outside of installed web

apps, e.g., time-limiting permission grants, more aggressively

expiring cookies, and restricting background task execution.

2 PRIOR ART

This is not the first attempt at making the web a powerful applica-

tion platform. We list three examples that went to market with this

promise. While there are more,
9
these four are very representative.

2.1 Palm webOS

Palm webOS,
10

announced in 2009, was exclusively for mobile. It

recognized that users wanted their people, calendars, and informa-

tion to move with them, wherever they were, wirelessly, as opposed

to being bound to a personal computer. At its core, webOS leverages

industry-standard technologies, including web technologies such

as css, xhtml, and js. It changed owners several times and lives on

as an open-source project
11

now powering smart devices, e.g., tvs.

2.2 Chrome Apps

In 2013, Chrome Apps [6] promised to bring together the speed,

security, and flexibility of the modern web with the powerful func-

tionality previously only available with native software. Chrome

Apps were designed to work offline, could run in stand-alone win-

dows, were launchable directly from the desktop, supported notifi-

cations, and could interact with usb, Bluetooth and other devices.

They were kept updated automatically and synced their state to the

cloud. Chrome Apps could use a set of proprietary chrome.* apis.12

Chrome Apps were deprecated in August 2016
13

and support for

Chrome Apps in Chrome will end by June 2022.
14

Project Fugu is

a direct successor to Chrome Apps. Progressive Web Apps built

using Fugu apis are one of the recommendedmigration strategies.
15

2.3 Firefox os

Firefox OS, also known as Boot 2 Gecko
16

and first commercially

released in 2013, is a discontinued open-source operating system

designed by Mozilla and external contributors. It was based on the

rendering engine of the Firefox web browser, Gecko, and on the

Linux kernel. The applications used standards like js and html5,

and web apis that could communicate directly with the underlying

hardware. A fork of Firefox OS now gains traction under the name

of KaiOS,
17

especially in emerging markets.

2.4 Super Apps Like WeChat

WeChat is a Chinesemulti-purposemessaging, social media andmo-

bile payment app developed by Tencent. In 2017, WeChat launched

a feature called Mini Programs.
18

Developers can create mini apps

9
Others: Adobe air, Windows Hosted Apps, Blackberry WebWorks apps, w3c Widgets

10
Palm webOS announcement: http://bit.ly/palm-webos-announcement

11
webOS open-source project: https://www.webosose.org/

12chrome.* apis: https://developer.chrome.com/apps/api_index

13
Chrome Apps deprecation: http://bit.ly/chrome-apps-deprecation

14
Chrome Apps end of support: https://goo.gle/chrome-apps-support-end

15
Transitioning from Chrome Apps: https://developers.chrome.com/apps/migration

16
Boot to Gecko: https://developer.mozilla.org/en-US/docs/Archive/B2G_OS

17
KaiOS: https://www.kaiostech.com/

18
WeChat Mini apps: https://goo.gle/wechat-miniapps

in the WeChat system, implemented using js and a proprietary api

that grants access to device capabilities like qr code reading, the file

system, Bluetooth communication, system clipboard, etc. Other su-

per app platforms exist, and there is ongoing standardization effort

happening in the w3c MiniApps Ecosystem Community Group.
19

3 DEMO DESCRIPTION

3.1 Core Contributions and Intended Audience

In March 2003, Nick Finck and Steve Champeon stunned the web

design world with the concept of progressive enhancement, a strat-

egy for web design that emphasizes core webpage content first,

and that then progressively adds more nuanced and technically

rigorous layers of presentation and features on top of the content.

While in 2003, progressive enhancement was about using at the

time modern css features, unobtrusive JavaScript; progressive en-

hancement in 2020 is about using modern browser capabilities. We

will present a greeting card web application that is useful in all

modern browsers, but sees its experience progressively enhanced

through new and upcoming browser capabilities.

The target audience are academia and industry web develop-

ers, browser engineers, and people involved in the w3c standards

process, as well as web privacy researchers.

3.2 Demo Link and Demo Requirements

The demo is publicly available at https://glitch.com/~fugu-greetings,

where it can either be explored directly, or where its source code

can be inspected and cloned. We recommend running the demo in

the latest Chrome Canary
20

or Edge Canary
21

browsers (both at

version 82 as of February 2020). Since this demo is about bleeding

edge web apis, some browser runtime flags need to be set (below,

replace chrome:// with edge:// on Edge):

• chrome://flags/#native-file-system-api

• chrome://flags/#enable-experimental-web-platform-features

• chrome://flags/#periodic-background-sync

3.3 Baseline Application

Progressive Web Applications (pwas) are a type of application soft-

ware delivered through the web, built using common web technolo-

gies including html, css, and js. They are intended to work on

any platform that uses a standards-compliant browser. As such, we

will start with a simple drawing web application that serves as the

baseline greeting card app that is offline-enabled, can be added to

the user’s home screen, etc., and step-by-step add new browser ca-

pabilities as progressive enhancements that are dynamically offered

on supporting browsers. We note that the currently rudimentary

visual design of this application is not focus of the demo.

3.4 Web Share (Target) api Support

Creating an advanced greeting cards app is nonsensical if there is

no one out to appreciate the cards. We thus add a feature that allows

the user to share their drawings with the world. The Web Share

api [3] allows for the sharing of files using the native device’s share

19
MiniApps Ecosystem cg: https://www.w3.org/community/miniapps/

20
Chrome Canary: https://www.google.com/chrome/canary/

21
Edge Canary: https://www.microsoftedgeinsider.com/en-us/download

http://bit.ly/palm-webos-announcement
https://www.webosose.org/
https://developer.chrome.com/apps/api_index
http://bit.ly/chrome-apps-deprecation
https://goo.gle/chrome-apps-support-end
https://developers.chrome.com/apps/migration
https://developer.mozilla.org/en-US/docs/Archive/B2G_OS
https://www.kaiostech.com/
https://goo.gle/wechat-miniapps
https://glitch.com/~fugu-greetings
chrome://flags/#native-file-system-api
chrome://flags/#enable-experimental-web-platform-features
chrome://flags/#periodic-background-sync
https://www.w3.org/community/miniapps/
https://www.google.com/chrome/canary/
https://www.microsoftedgeinsider.com/en-us/download


WWW ’20 Companion, April 20–24, 2020, Taipei, Taiwan Thomas Steiner, Pete LePage, Thomas Nattestad, et al.

mechanism. Figure 2 shows the user initiating a share of a drawing

on an Android device. Both the native Google Hangouts app as

well as the native Facebook app offer itself as share targets. The

other way round, through the Web Share Target api, the greeting

card application itself can become a share target that one can share

images to as card sources, for example, from the photo gallery app.

3.5 Native File System api Support

Drawing everything from scratch is hard. We thus add a feature

that allows the user to import a local image into the application.

Figure 3 shows the file import dialog where, after granting access,

the user can open a local image file and add it to their drawing.

Later, they can also save their creation to disk. Both operations are

enabled through the Native File System Access api [7] and not to be

confused with legacy workarounds that required uploading a local

file to a server and downloading a copy.

3.6 Contact Access api Support

At times it can be hard to correctly type a greeting card recipient’s

name, for example, when it is written in a different script that the

present keyboard layout does not support. We add a feature that

allows users to pick one (or multiple) of their local contacts and add

their names to the greeting card message. This is a one-off operation

facilitated by the Contact Picker api [1]; no continuous contacts

access is granted and the user can choose the contact details.

Figure 2: Web Share api

Figure 3: Native File System Access api

3.7 Clipboard api Support

Occasionally users might want to paste a picture from another app

into the greeting card app, or copy a drawing from the greeting

card app into another app. We add a feature that allows users to

copy and paste images from and to the app. The Clipboard api [5]

allows for the asynchronous copying and pasting of image data

(currently limited to Portable Network Graphics images).

3.8 Badging api Support

If the greeting cards app is installed on a user’s device, it will have

an icon on their home screen. This icon can be used to convey fun

information on the icon badge like the number of brushstrokes

a given drawing has taken. The Badging api [4] enables apps to set

a numeric badge on the app icon that increments with each stroke.

3.9 Other apis Support

The demo will showcase a number of other apis, namely the Shape

Detection api to detect shapes like faces, the Wake Lock api to

keep the screen awake while the user waits for drawing inspiration,

the Periodic Background Sync api to surprise the user with a new

greeting card template each day, the Idle Detection api to clear

the greeting card when the user is no longer interacting with the

application (for example, when it is running in a kiosk setup), and

the File Handling api, which allows the app to register as a file

handler to integrate with the operating system’s file explorer.

4 CONCLUSIONS

We hope to gather feedback on these proposed features from the

conference attendees, as well as trigger conversations about future

challenges around permissions, security, and browser compatibility,

and invite interested parties to learn more about Project Fugu.

REFERENCES

[1] Peter Beverloo and Rayan Kanso. 2019. Contact Picker api. Unofficial Proposal

Draft, 4 November 2019. wicg. https://wicg.github.io/contact-api/spec/.

[2] Luca Carettoni. 2017. Electron Security Checklist. A guide for developers and

auditors. Technical Report. Doyensec llc. https://doyensec.com/resources/us-

17-Carettoni-Electronegativity-A-Study-Of-Electron-Security-wp.pdf.

[3] Matt Giuca. 2017. Web Share api. Draft Community Group Report, 30 November

2017. w3c. https://wicg.github.io/web-share/.

[4] Matt Giuca and Jay Harris. 2019. Badging api. Draft Community Group Report,

11 November 2019. wicg. https://wicg.github.io/badging/.

[5] Gary Kacmarcik and Grisha Lyukshin. 2019. Clipboard api and events. Editor’s

Draft, 22 August 2019. w3c. https://w3c.github.io/clipboard-apis/.

[6] Erik Kay. 2013. A new breed of Chrome Apps. Technical Report. Google. https:

//chrome.googleblog.com/2013/09/a-new-breed-of-chrome-apps.html.

[7] Marijn Kruisselbrink. 2019. Native File System. Draft Community Group Report,

18 November 2019. wicg. https://wicg.github.io/native-file-system/.

[8] Mounir Lamouri, Marcos Cáceres, and Jeffrey Yasskin. 2019. Permissions. Editor’s

Draft, 30 October 2019. w3c. https://w3c.github.io/permissions/.

[9] Pete LePage. 2018. Our commitment to amore capable web. Technical Report. https:

//blog.chromium.org/2018/11/our-commitment-to-more-capable-web.html.

[10] Tongbo Luo, Hao Hao, Wenliang Du, Yifei Wang, and Heng Yin. 2011. Attacks

on WebView in the Android system. In Proceedings of the 27th Annual Computer

Security Applications Conference. ACM, 343–352.

[11] Dominick Ng and Rory McClelland. 2019. Controlling Access to Powerful Web

Platform Features. Technical Report. https://goo.gle/access-to-powerful-features.

[12] Alex Russell and Thomas Nattestad. 2018. Permissions Workshop Position Paper.

Technical Report. https://goo.gle/permissions-workshop-position-paper.

[13] Jeffrey Yasskin. 2017. Requesting Permissions. Draft Community Group Report,

28 September 2017. wicg. https://wicg.github.io/permissions-request/.

https://wicg.github.io/contact-api/spec/
https://doyensec.com/resources/us-17-Carettoni-Electronegativity-A-Study-Of-Electron-Security-wp.pdf
https://doyensec.com/resources/us-17-Carettoni-Electronegativity-A-Study-Of-Electron-Security-wp.pdf
https://wicg.github.io/web-share/
https://wicg.github.io/badging/
https://w3c.github.io/clipboard-apis/
https://chrome.googleblog.com/2013/09/a-new-breed-of-chrome-apps.html
https://chrome.googleblog.com/2013/09/a-new-breed-of-chrome-apps.html
https://wicg.github.io/native-file-system/
https://w3c.github.io/permissions/
https://blog.chromium.org/2018/11/our-commitment-to-more-capable-web.html
https://blog.chromium.org/2018/11/our-commitment-to-more-capable-web.html
https://goo.gle/access-to-powerful-features
https://goo.gle/permissions-workshop-position-paper
https://wicg.github.io/permissions-request/

	Abstract
	1 Introduction and Background
	1.1 The App Gap
	1.2 Using Web Technologies, But Not the Web
	1.3 The Capabilities Project, Or Project Fugu
	1.4 The Capabilities Process
	1.5 Permissions
	1.6 Access to Powerful Web Platform Features

	2 Prior Art
	2.1 Palm webOS
	2.2 Chrome Apps
	2.3 Firefox os
	2.4 Super Apps Like WeChat

	3 Demo Description
	3.1 Core Contributions and Intended Audience
	3.2 Demo Link and Demo Requirements
	3.3 Baseline Application
	3.4 Web Share (Target) api Support
	3.5 Native File System api Support
	3.6 Contact Access api Support
	3.7 Clipboard api Support
	3.8 Badging api Support
	3.9 Other apis Support

	4 Conclusions
	References

