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Abstract:

We present a framework for interactive design of new image stylizations using a wide range of predefined filter blocks. Both novel

and off-the-shelf image filtering and rendering techniques are extended and combined to allow the user to unleash their creativity

to intuitively invent, modify, and tune new styles from a given set of filters. In parallel to this manual design, we propose a novel

procedural approach that automatically assembles sequences of filters, leading to unique and novel styles. An important aim of

our framework is to allow for interactive exploration and design, as well as to enable videos and camera streams to be stylized on

the fly. In order to achieve this real-time performance, we use the Best Linear Adaptive Enhancement (BLADE) framework – an

interpretable shallow machine learning method that simulates complex filter blocks in real time. Our representative results include

over a dozen styles designed using our interactive tool, a set of styles created procedurally, and new filters trained with our BLADE

approach.

1 Introduction

From the moment the camera was invented there has always been
an interest to raise the bar of realism: capturing higher resolution
images, inclusion, improvement, and precision of color, or even the
addition of 3D scene depth. Fine art and photography have differ-
ent goals when it comes to rendering a scene. While the former
focuses on the aesthetic where the artist reflects their creative ideas
using brush, paint, and a blank canvas, the latter aims to capture the
intent of the photographer using a technical piece of equipment and
(in more modern incarnations) software. Stylization of photos is an
approach that bridges the two worlds, allowing us to explore artis-
tic expression on a canvas of already-captured images. Stylization
creates evocative, abstract representations of natural and synthetic
scenes, and is not limited to static photographs. It can also be applied
to on video footage and video games as an additional dimension of
artistic expression [1].

Related to stylization is the concept of rotoscoping, an anima-
tion technique used to trace over motion pictures footage, frame by
frame, to produce realistic action. The technology dates back to the
1910s when Max Fleischer used it for cinematic storytelling. Besides
the usage of classic cartoons like Popeye and Betty Boop, it gar-
nered special attention with the ’80s music video Take on Me [2].
A few additional examples have been created since then, including
A Scanner Darkly [3] in the ’90s, and the recent masterpiece Loving
Vincent [1]. This technique allows the creation of stunning visual
effects that enable the animator to dramatically changes the style.
The main drawback is the manual labor.

In the early 90’s, stylization was used by artists and designers
to communicate, to abstract their ideas, and to express themselves.
Technical illustration uses stylization to explain better the object’s
parts. By using the silhouettes and feature lines of the object it is
easier to communicate concepts and remove spurious detail. The first
example of stylization is arguably Haeberli [4]. This seminal work
achieved stylization by creating painterly images from a collection of
brush strokes that were computed using local attributes of an image.
This work was extended in the research community by many others
([5–9]). Automated stylization enabled practical application of styl-
ization to video, for the first time used in the movie What Dreams
May Come [10]. Since then, many movies (e.g., Waking Life [11]
and Sim City [12]) and an increasing number of apps have included
stylization of their content.

Nowadays, in the era of mobile photography, widely popular
applications such as Instagram, Snapchat, Facebook, and Google
Photos use stylization filters to alter the captured world. Millions
of pictures are shared daily and in most cases the photos are pro-
cessed with some filters. Since most pictures are stylized, the need
to identify pictures that have not been altered has increased. Users
often identify such pictures with the hash-tag ‘#nofilter’ to show that
no alterations were made (e.g., in Instagram there are over 260M
photos posted with such a tag). We use stylization to express our
emotions and feelings [13] and to increase the likelihood that our
pictures are viewed and engaged with in social media [14]. In this
work we propose to extend the expressiveness of a photograph by
allowing the user to create their own personalized stylizations. Our
work will describe both a wide set of predefined stylizations, to the
creation of unique stylizations tuned and designed by the user.

We present an interactive design framework (see Fig. 1) to cre-
ate new stylizations using a wide range of predefined filter blocks.
While the most common filters can be off-the-shelf image process-
ing and rendering techniques, here we apply and combine them in
novel ways. When designing the filter blocks (see Sec. 4.2), we

Added filters Current image

Predefined Styles Design Style
Available filtesrs

Fig. 1 Style Design App. The users adds/modifies/replaces over 20 block

filters to create a new stylization using a real time design application. A set

of predefined styles are available as a starting point to be further customized

by the user.
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recognize that the most interesting filters (e.g., Flow-XDoG) are
too slow for interactive or real-time use. As such, we develop a
lightweight, yet effective learning approach that is trainable yet com-
putationally simple and interpretable. We present and expand the
Best Linear Adaptive Enhancement (BLADE) of Getreuer et al. [15]
and Romano et. al [16]. We show that using a shallow and easy
to train machine learning method, we can add to our design tool-
box a set of accurate approximations of significantly more complex
and expensive filters. Our approach can be seen as a shallow two-
layer network, where the first layer is predetermined and the second
layer is trained. We show that this simple network structure allows
for inference that is computationally efficient, easy to train, inter-
pretable, and sufficiently flexible to perform the task of complex
stylization.
The main contributions of this work can be summarized as follows:

• We present an interactive design framework for stylization. The
resulting tool allows for modifying, tuning, and designing new styles
on the fly.
• We present a light-weight and interpretable machine learning
framework that is straightforward to train, and able to perform
interactive, real-time inference on mobile devices.
• We propose a novel procedural style generation technique built on
our design tool. Through simple rules we create original stylization
effects from novel and automated combinations of filter blocks.

The rest of the paper is organized as follows: Section 2 reviews
previous work. Section 3 is an overview of our system. Section 4
introduces our design application and the filter blocks. Section 5
explains how we use BLADE to achieve real time performance.
Section 6 presents our stylization design results. Finally, Section 7
contains conclusions and future work.

2 Related work

We cover related work in filtering and stylization research. Note that
stylization of images and videos represents a broad research area,
thus we review three main topics: filtering, video stylization, style
transfer, and learnable filtering.

2.1 Filtering and Abstraction

Winnemöller et al. [9] proposed the use of eXtended Difference-of-
Gaussians (XDoG) to create interesting sketch and hatching effects.
Kang et al. [6] extended XDoG by adding an edge tangent flow block
to create smooth edges.

Kyprianidis and Döllner [7] used oriented separable filters and
XDoG to achieve a high level of image abstraction. Kang et al. [8]
further improved the level of abstraction by adding a flow-based step.
Other more complex algorithms simplify images using advanced
multi-scale detail image decomposition [17].

For more general background on modern approaches to image fil-
tering, we refer the reader to [18, 19]. For a more comprehensive
survey of artistic stylizations we refer the reader to Kyprianidis et
al. [20]. We employ some of these filters as building blocks of our
stylization system as described in Section 4.

2.2 Video Stylization

As an extension of image filtering, some works have focused on
speeding up the stylization process to run at interactive rates. Win-
nemöller et al. [21] used a bilateral filter iteratively to abstract the
input, then quantize the background color and overlay XDoG to pro-
duce strong outlines. Our system can achieve similar results using
a different set of filters. Barnes et al. [22] proposed to precompute
a multidimensional hash table to accelerate the process of finding
replacement patches. This structure enables them to stylize a video
in real time using a large collection of patch examples

2.3 Style Transfer

As an alternative to explicit filter creation, a wide range of works
have developed a technique called style-transfer. Style transfer is
a process of migrating a style from a given image (reference) to
the content of another (target), synthesizing a new image which is
an aesthetic mixture of the two. Recent work on this problem uses
Convolutional Neural Networks (CNN). Gatys et. al. [23] posed the
style-transfer problem as an energy minimization task, seeking an
image close to the target using output of a CNN as a loss func-
tion. As an alternative to CNNs, Elad and Milanfar [24] presented an
approach based on texture synthesis. Their approach copies patches
from the reference image to the target while maintaining the main
features of the content image using a hierarchical structure.

Despite the visual appeal of these approaches, their complexity
is a major drawback. The method described by Gatys et. al. [25]
can take up to an hour to stylize a single image. More recent works
have focused on addressing this issue. Johnson et al. [26] achieved
real-time style transfer with simplified networks running on a high-
end desktop GPU. However, achieving similar results on a full HD
image on a mobile device would require tens of seconds. Elad and
Milanfar’s [24] approach takes minutes to run on a mobile device.

Another alternative is patch-based style transfer. Such methods
transfer the style by finding and applying patches of the reference
image in the target image. Barnes et al. [22] presented a method
to efficiently query patches within a large dataset and replace each
patch of the target image with one from the reference image. Friego
et al. [27] used local image features to determine the best scale of
a patch. These approaches do not allow control over the color, line
weight, and other features of stylization.

Style transfer has several other drawbacks. First, output quality
depends directly on the reference image. While often considered
an advantage, having a specific template can generate inconsistent
and undesirable results for different inputs (e.g., very bright/dark
images) or transform the content in areas in which we would like
to preserve details. Second, current style transfer approaches do not
provide sufficient aesthetic control. Gatys et. al. [25] extended their
own work to introduce control over color, scale, and spatial location.
However, this does not allow the fine tuning required to design new
stylizations.

Note that our method does not compete against these approaches;
each of the techniques above can be incorporated into our system as
a new block to further enrich the creative toolbox. Moreover, note
that our method focuses on the design aspect of new stylizations,
and while we aim to create real-time filters that can create interesting
results, we also want to allow for creating filters that can be tuned to
a specific designer intent.

2.4 Trainable Filters

While deep learning has become popular in image processing, many
recent works take inspiration from variational methods, or closely
connected methods in partial differential equations, Markov random
fields, and maximum a posteriori estimation. A particularly suc-
cessful direction is “unrolling” (or “unfolding”), which is described
generically for instance by Liu et al. [28]. The recipe is to formulate
a task as an optimization, solve it with an iterative algorithm (e.g.
with gradient descent or proximal methods), unroll several iterations,
then substitute portions of the algorithm with trainable parameters.
Compared to generic convolutional architectures, the advantage of
this unrolling approach is that it tends to reduce the needed number
of parameters, training data, and inference computational cost for a
given level of quality. For instance Chen and Pock’s trainable nonlin-
ear reaction diffusion [29] and Lefkimmiatis’s work [30] are image
denoising networks designed by unrolling variational optimization
algorithms. Besides denoising, deep unrolling has been applied to
tasks such as image deblurring [28, 31, 32]. While deep learning
methods are capable of achieving impressive quality, they are hard
to analyze and debug, and still too expensive to run interactively on
smartphones at full-resolution.
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For mobile-friendly filtering, we leverage the Best Linear Adap-
tive Enhancement (BLADE) framework of Getreuer et al. [15].
BLADE extends the RAISR method of Romano et al. [16] to a gen-
eral trainable filtering framework. The BLADE architecture has a
table of trainable linear filters and a predetermined selection mech-
anism (Fig. 3). For each output pixel, the selection mechanism
uses local image features to decide which filter to apply. Infer-
ence is computationally efficient and practical for mobile use. For
instance with 5× 5 filters on the Google Pixel 2018 phone, our CPU
implementation runs at 38.21 MP/s and our GPU implementation at
223.03 MP/s.

3 Overview

In this section, we show an overview of our work. Fig. 2 (top)
shows how to design a style. The user provides as input an image
or uses a video live-stream (e.g., selfie camera stream), then the
user adds/removes/rearranges filters and tunes their parameters until
the desired style is achieved. In Sec. 4 we present the interactive
interface (Sec. 4.1) and the filter blocks (Sec. 4.2). Fig. 2 (bot-
tom) shows the general idea of procedural stylization: hundreds of
styles are generated by randomly selecting filters and their parame-
ters within a range of valid values, then we identify new interesting
styles either by manual assessment or automatically by NIMA [33],
a no-reference aesthetic prediction network.

In order to achieve real-time inference, we use BLADE to learn
complicated filters that normally could not run interactively on
mobile devices (Fig. 3). Sec. 5 explains the details of BLADE:
inference 5.1, training 5.2, filter selection with structure tensor
features 5.3, and real-time filtering 5.4.

4 Stylization through filtering

Stylization is the process of altering an image’s appearance for artis-
tic expression. This can be done by matching the look of another
image (style transfer) or by applying a set of filters. The end goal is
to create a more pleasing, interesting, or artistic image than the input.
We focus on stylization though filtering in this work. Style transfer
can bring very interesting stylizations, but as we will discuss, the
result depends too heavily on the reference image aesthetics.

In this section, we describe an interactive tool we created for
designing styles by combining filter blocks.

Input

Tune
  filter

Add
  filter

Iterate

Design Stylization

Procedural Stylization

Fig. 2 Diagram of our method: Stylization design and procedural genera-

tion.

Input patch Riz

h1

h2

...

hK

s(i)

Linear filterbank

Filter selection

Output pixel ûi

Fig. 3 BLADE inference. Ri denotes extraction of a patch centered at pixel

i. For a given output pixel ûi, we only need to evaluate the one linear filter

that is selected, hs(i).

4.1 Interactive Style Design

While most works (Sec. 2.1) focus on creating one filter or a fixed
set of filters to achieve a style, our goal is to create a flexible tool
that allows anyone to design stylization filters, regardless of their
technical ability.

The final result of our framework is as shown in Fig. 1. The main
components are:

1. A wide range of filter blocks (see Sec. 4.2).
2. The ability to tune the parameters for any filter through sliders.
3. Two layers: a black and white foreground layer used as alpha
channel to display lines and contours; and a background layer for
color. This separation provides added flexibility.
4. A visual flow diagram of filter blocks which allow any filter to
be added, moved, reordered, removed, and tuned at any time. This is
the essence of the system’s interaction design.

4.2 Filter blocks

We implemented three categories of blocks: pixel operations,
advanced filters, and histogram modification filters. Fig. 4 shows the
effect of each individual block filter.

A. Pixel-wise Operators:

• To Grayscale: Converts the image into grayscale/luminance
and saves the chrominance channels (UV ). This block is useful
for applying any other block filter to just the luminance channel.
[Fig. 4 (b)].
• To Color: Uses the current luma and converts the image back to
RGB using the UV previously saved by the To GrayScale block.
• Posterization: Discretizes continuous image colors (e.g., 255
levels) to regions of fewer tones, e.g. levels = 10, [Fig. 4 (c)].
• Luma Posterization: Posterizes the image in the luma channel
by converting the image to grayscale, applying Posterization, and
converting it back to color [Fig. 4 (d)].
• Brightness: Multiplies the luma channel by a user-selected
brightness constant, clipping the output values [Fig. 4 (e)].
• Soft Threshold [9]: Computes the following function for each
pixel

output = 1 + tanh
(

min(0, φ · (input − ǫ))
)

(1)

where φ determines the slope and ǫ the cut-off. For grayscale images,
this block behaves like a binary cut-off that preserves smooth tran-
sitions. For color images, it simplifies each RGB channel into two
levels [Fig. 4 (f)].
• Saturation: Makes the colors more vivid r more muted by adding
or subtracting in RGB the grayscale image tuned by a parameter
[Fig. 4 (g)].
• Hue: Performs a color rotation in UV space and adds a bias in
RGB . This block is useful for changing the image’s tint [Fig. 4 (h)].
• Colorize: Convert to monochrome using an HSL palette transfor-
mation [Fig. 4 (i)].
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Fig. 4 Filters: (a) Input, (b) To GrayScale, (c) Posterization, (d) Luma Posterization, (e) Brightness, (f) Soft Threshold, (g) Saturation, (h) Hue, (i) Colorize, (j)

Gaussian Smoothing, (k) ETF, (l) TVF, (m) Sobel, (n) XDoG, (o) Pattern Filling, (p) Halftone, (q) Image Detail Control, and (r) Linear Equalization. See text for

details.

B. Spatial Filters:

• Gaussian Smoothing: Blurs and removes details and noise from
the image with a controllable standard deviation (σ) parameter
[Fig. 4 (j)].
• Sobel Filter [34]: Fast edge-detection filter [Fig. 4 (m)].
• Scale: Upscales or downscales the image using a user-selected
scale parameter. This block can help to speed up computation (com-
puting other blocks in a lower resolution) and alter the behavior of
other scale-dependent filters.
• Pattern Filling Filter: Uses Luma Posterization to discretize
the image into a set of levels, then, each pixel is replaced by a
texture depending on its level. This block is useful for creating
cross-hatching patterns [Fig. 4 (o)].
• Halftone: Replaces colors with a set of dots that vary in size
and color. This style mimics the behavior of the four-color printing
process traditionally used to print comics [Fig. 4 (p)].

C. BLADE Filters:

• Edge Tangent Flow (ETF) [6]: Creates an impressionistic oil
painting effect. This method uses a kernel-based nonlinear smooth-
ing of vector field inspired by bilateral filtering [Fig. 4 (k)].
• Total Variation Flow (TVF) [35]: Makes image piecewise con-
stant with an anisotropic diffusion filter [Fig. 4 (l)].
• Flow XDoG [9]: Uses Difference-of-Gaussians to find the edges
of the image. In our implementation, the user can control the
variance of the main Gaussian (σ) and the multiplier (p) [Fig. 4 (n)].
• Detail Control [17]: Controls the details of the image by adding
the residual of the image to its filtered version multiplied by a δ. Set-
ting δ < 0 smooths the image while δ > 0 adds details [Fig. 4 (q)].

D. Histogram Operators:

• Linear Histogram Equalization: Equalizes the luma channel
expanding the pl to zero and the ph to 255. Normally we choose
l = 5 and h = 95 such that the 5% percentile is moved to zero and
the 95% is moved to 255, thereby increasing the image’s dynamic
range [Fig. 4 (r)].
• Histogram Minimum Dynamic Range: Computes the percentile
5% and 95% on the luma histogram and expands (if necessary) the
dynamic range to match the user parameter range DR.

These two filters are usually placed as the first filter in the pipeline
to force the image to have a proper dynamic range to obtain a
satisfactory result. For instance applying XDoG on a hazy or too
bright/dark image would result in an almost entirely white output
image.

5 Best Linear Adaptive Enhancement

As we mentioned, the trade-off between quality and speed is a
challenge with stylization. We want the freedom to apply elaborate
techniques to produce interesting style effects, but on the other hand,
computational efficiency is necessary to run efficiently. This is espe-
cially the case when processing full-resolution images or video as
part of an interactive application on a mobile device. To this end,
we leverage the BLADE framework to learn fast approximations to
more complex filters.

Let z be an input grayscale image and u the target output
grayscale image. We denote by subscript zi the ith pixel value at

spatial position i ∈ Ω ⊂ Z
2. Let h1, . . . ,hK denote a set of K lin-

ear FIR filters, each having footprint or nonzero support F ⊂ Z
2.

The coefficients of these filters are learned.

5.1 Inference

We describe inference first to introduce the structure of the BLADE
network architecture. BLADE inference is a spatially-varying filter.
For each output pixel, one filter in the bank is selected and applied:

ûi =
∑

j∈F

h
s(i)
j zi+j , (2)

where s(i) ∈ {1, . . . ,K} denotes the index of the filter selected at
the ith pixel. Equivalently, inference (2) can be written in vector
notation as

ûi = (hs(i))TRiz, (3)

where (·)T denotes matrix transpose and Ri is the patch extraction
operator defined by (Riz)j := zi+j , j ∈ F .

When computing ûi, only the selected filter needs to be evaluated.
The complexity per pixel is O(N) where N = |F | is the number of
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pixels in the footprint. Notably, computation cost is independent of
the number of filters K. Furthermore, inference is independent for
each output pixel, so it is readily parallelized and implemented with
high efficiency.

We use features of the 2× 2 image structure tensor for the fil-
ter selection s(i). This makes BLADE filtering adaptive to image
edges and structure. In principle, BLADE can operate with any
deterministic function of z as the selection rule.

To run BLADE on color images, we use the To Grayscale and
To Color operations described earlier to extract the luma channel,
filter luma with (2), and reassemble a color image.

5.2 Training

To train the BLADE filters h1, . . . ,hK to approximate an existing
style effect, we first apply a (possibly slow) reference implementa-
tion of the effect to a set of images to create a training set of input
image / target output image example pairs. We also train on 90◦ rota-
tions and flips of the images, augmenting the training set by a factor
of 8.

For notational simplicity, we describe training for a single exam-

ple image pair z and u. The filters h1, . . . ,hK are trained with a

simple L2 loss plus a quadratic regularization term,

argmin
h1,...,hK

K
∑

k=1

(

(hk)TQh
k +

∑

i∈Ω:
s(i)=k

|ui − (hk)TRiz|2
)

. (4)

The matrix Q determines the regularization. To encourage spatially-

smooth filters, we set it to a discretization of L2 norm of the filter’s
spatial gradient. The inner sum is over the set of pixels i where the
kth filter is selected.

The training minimization (4) decouples over the filters, so each
filter can be solved independently.

For each filter h, its solution amounts to a multivariate linear
regression with regularization. Denote by {i(1), . . . , i(M)} an enu-
meration of pixels where s(i) = k, and M the number of such

pixels. The optimal filter hk is

h = (Q+A
T
A)−1

A
T
b (5)

where Am,n = (Ri(m)z)n and bm = ui(m). Rather than storing A

and b themselves, it is possible to accumulate ATA as a matrix of

size N ×N and ATb as a length-N vector. This way filters can
be trained from any number of examples with a fixed amount of
memory.

Once the filters h1, . . . ,hK are trained, we visualize them as a
tabular collage (Figs. S3, S4, S5, S6). This is often an illuminating
characterization of how BLADE will behave, as inference amounts
to selecting among and applying these filters. For instance, a suc-
cessful choice of filter selection mechanism s(i) should allow the
filters to specialize and take on diverse shapes, which we can inspect
for visually. Additionally as described in detail in [15], the variance
of the regression residual is a good diagnostic to identify filters in
need of more training examples or stronger regularization.

5.3 Structure tensor features

Following [16] and [15], we make BLADE adaptive to the local
image content by basing the filter selection s(i) on features of
the 2× 2 image structure tensor [36–38]. In continuous space, the
structure tensor is a 2× 2 matrix of spatial derivatives at every
location:

J(∇u) :=

(

∂x1u
∂x2u

)

(

∂x1u ∂x2u
)

, (6)

where above, u(x) is a differentiable continuous-domain image, ∂x1

and ∂x2 denote partial derivatives, and ∇ = (∂x1 , ∂x2)
T denotes

gradient. In implementation the derivatives can be discretized with
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Fig. 5 Quantization of filter selection features with 16 orientation bins, 5

strength bins, and 3 coherence bins.

finite differences. To use the smallest stencil possible for this pur-
pose, we compute finite differences in 45◦ rotated coordinates x′1,
x′2 over a 2× 2 stencil as

1√
2h

(

u(x1 + 1, x2)− u(x1, x2 + 1)
)

= ∂x′

1
u(x1 + 1

2 , x2 + 1
2 ) +O(h2),

(7)

1√
2h

(

u(x1 + 1, x2 + 1)− u(x1, x2)
)

= ∂x′

2
u(x1 + 1

2 , x2 + 1
2 ) +O(h2).

(8)

Next, each component of the structure tensor is spatially filtered with
a Gaussian kernel Gρ with standard deviation ρ,

Jρ(∇u) := Gρ ∗ J(∇u). (9)

The filtered structure tensor Jρ(∇u) is at each location an aggregate
of the image statistics of its neighborhood, with the neighborhood
size determined by ρ. These statistics robustly capture the pre-
dominant edge orientation and other local image characteristics, as
studied for instance by Weickert [39], Zhu and Milanfar [40], and
Takeda et al. [41].

At the ith pixel, we compute three features from the eigensystem
of the 2× 2 filtered matrix Jρ(∇u)i: (1) orientation as the angle
of the dominant eigenvector, (2) strength as the square root of the
dominant eigenvalue, and (3) coherence according to

coherence =

√
λ1 −

√
λ2√

λ1 +
√
λ2

(10)

where λ1 ≥ λ2 ≥ 0 are the eigenvalues.
To perform filter selection s(i), we quantize these features to uni-

form bins, and we then view the bin indices as a three-dimensional
index into the bank of filters. Fig. 5 illustrates a typical quantization.

5.4 Real-Time Advanced Filtering

The following sections describe how we take advanced, computa-
tionally demanding effects and apply visually accurate approxima-
tions of them in real time using the BLADE framework.

5.4.1 TV flow: Total variation (TV) flow is a classic anisotropic
diffusion process that tends to regularize the image into piecewise-
constant regions. TV flow flattens textures and details while retaining
strong edges, which is aesthetically interesting in designing style
effects for image simplification and producing a cartoon-like look.

In order to create a BLADE approximation of TV flow, we use
as training target the modified TV flow definition of Marquina and
Osher [42],

∂tu = |∇u| div(∇u/|∇u|), (11)

in which u(x) is a continuous-domain image. Compared to the usual
TV flow, this definition has an extra |∇u| factor, which mitigates the
tendency to produce artificial edges in smooth gradients.

For training, we use a small dataset of 32 photographs of size
1600× 1200 as input images and apply the second-order scheme
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Blade TVF Reference TVF

Blade ETF Reference ETF

Input

Fig. 6 Example of approximated edge tangent flow and TV flow. BLADE has

PSNR 34.85 dB and MSSIM 0.9619 for ETF and PSNR 35.86 dB and 0.9683

for TVF.

Blade Flow-XDoG Reference Flow-XDoG

Fig. 7 Example of approximated Flow-XDoG. Readers are encouraged to

zoom in aggressively (200% or more).

developed in [42] as the reference implementation to generate TV
flow target images. For filter selection, we use 16 orientations, 4
strength bins, and 4 coherence bins (K = 256 filters total) and use
filters of size 7× 7 (Fig. S5).

Fig. 6 shows an example, comparing the input, TV flow reference
implementation, and the fast BLADE approximation.

5.4.2 Edge tangent flow: Edge tangent flow (ETF) is another
anisotropic diffusion equation with useful qualities for style effects.
This process smooths the image along edges but not across them, as

Input Blade Flow-XDoG
Scale 1.0

Blade Flow-XDoG 
Scale 1.5

Blade Flow-XDoG 
Scale 2.0

Fig. 8 Examples of three scales of trained Flow-XDoG. Readers are encour-

aged to zoom in aggressively (300% or more).

its name suggests. When applied to a photographic image, ETF tends
to alter textures into flows and swirls like an impressionist-style oil
painting. When applied as post processing to an edge mask (from the
Sobel or Flow XDoG filter blocks), ETF makes lines visually more
organic and flowy like hand-drawn strokes.

ETF anisotropic diffusion is defined mathematically by

∂tu = div
(

D(u)∇u
)

, (12)

where at each spatial location, D(u)(x) is the 2× 2 outer product of
the unit-magnitude local edge tangent orientation. The edge tangent
orientation is obtained as the weaker eigenvector of the smoothed
image structure tensor.

For training a BLADE approximation of ETF, we use the same
dataset of 32 photographs, and use line integral convolution evolved
with second-order Runge–Kutta as a reference implementation to
generate ETF target images. We use 24 orientations and 3 coher-
ence bins. We omit the strength feature, since ETF is essentially a
one-dimensional diffusion at every point in the edge tangent orien-
tation and this behaves irrespective of the gradient magnitude. We
train filters of size 5× 5 (Fig. S3). Our CPU implementation on a
Xeon E5-1650v3 runs BLADE ETF at 27.1 MP/s. Fig. 6 shows an
example.

BLADE ETF has two interesting parameters: increasing the struc-
ture tensor smoothing parameter ρ produces broader brush strokes,
and applying multiple passes of the filter (more time steps of the dif-
fusion equation) results in longer strokes. Both of these parameters
are tunable even after training.

5.4.3 Flow-XDoG: Extracting image edges is a fundamental
element for line drawing or cartoon-like styles. We briefly review
the origin of the Flow-XDoG filter:

• The classical Marr–Hildreth approach to edge detection is Lapla-
cian filtering, which can be made more noise robust by using a
Laplacian of Gaussian filter. The DoG filter Gk·σ −Gσ with k =
1.6 is a close approximation to the Laplacian of Gaussian [43].
• Improving on DoG, Kang et al. [6] introduced flow-based
difference-of-Gaussians (FDoG). A basic implementation of FDoG
is simply ETF followed by DoG filtering, which we could realize
as two filter blocks. However, as Kang et al. develop, the edge tan-
gent flow field can be used in a “flow-guided” DoG filter to obtain a
cleaner output that responds more strongly on true edges.
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Blade DC -20 Reference DC -20

Blade DC +20 Reference DC +20

Input

Fig. 9 Example of approximated Detail Control for values -20 and +20.

BLADE has PSNR 38.38 dB and MSSIM 0.9845 for -20 and PSNR 41.36 dB

and 0.9895 for +20.

• In a later work, Winnemöller et al. [9] introduced extended
difference-of Gaussians (XDoG). XDoG substitutes the highpass
DoG filter Gkσ −Gσ′ with a high-emphasis filter (1 + p)Gkσ −
pGσ , with emphasis according to parameter p. Second, XDoG
follows the filter the Soft Threshold function (1). XDoG can be
combined with FDoG, which we refer to as Flow-XDoG.

To make a fast approximation of Flow-XDoG, we decompose it
to two stages. First, BLADE is used to approximate a flow-guided
version of the high-emphasis DoG filter (1 + p)Gkσ − pGσ (for
which we use second-order Runge–Kutta line integral convolution
as the reference implementation), and second, the soft threshold is
applied. Being a simple pointwise operation, the soft threshold is
straightforward to implement separately from BLADE, and this has
the advantage that the soft threshold parameters φ and ǫ are tunable
at inference time.

We use 16 orientations, 5 strength bins, and 3 coherence bins,
and we train 7× 7 filters (Fig. S4). Fig. 7 shows an example, com-
paring the input, Flow-XDoG reference implementation, and the
fast BLADE approximation. Fig. 8 shows how we can change the
scale of the image at training to produce a more subtle behavior of
Flow-XDoG.

5.4.4 Detail Control: Smoothing or enhancing details is a ver-
satile tool for stylization. Smoothing can help to remove the details
to create an abstraction or it can enhance the details to emphasize

the different aspect of the images. An effective detail control filter is
Talebi and Milanfar’s multilayer Laplacian enhancement [17].

For training a BLADE approximation, we use the same dataset
of 32 photographs, and use the algorithm described in [17] as a
reference implementation to create training targets.

We use 16 orientations, 5 strength bins, and 3 coherence bins, and
we train 9× 9 filters (Fig. S6). Note this change affects only the
luminance channel, therefore Fig. 9 shows an example of control to
smooth or increase the detail of that channel.

6 Style Design

In this section, we present the following results: a set of new styles
generated by designers, a set of styles generated procedurally, and
finally for comparison a few examples of style transfer.

6.1 Generating New Styles

We conducted several style design sessions with graphic designers
who generated dozens of styles. Fig. 11 shows six styles and Fig. 12
shows another additional seven styles.

Fig. 10 depicts the design of each stylization from the input (left)
to the final result (right) for six styles and Fig. S2 shows a summary
of how the styles are generated.

• Style 1: This style uses Flow-XDoG to transform the input then
threshold and color are applied. Gaussian block is used to smooth the
filtering. Here we present it in an orange tint but we created explored
versions with dark blue, green, blue, and grayscale.
• Style 2: This style tries to imitate crayons. This stylization uses
a smoothed and thresholded version of the image to apply a down-
scaled version of Flow-XDoG in grayscale, finally, the colors are
saturated.
• Style 3: This style tries to create the effect of a sketch. Instead of
using XDoG (as it was done in [9]), we simplify this filter by using
thresholding and apply a five-level hatching texture to the grayscale.
Finally, we overly lines to highlight contours.
• Style 4: This style tries to abstract or simplify the input. To
achieve such a result, we remove details, downscale, and smooth
with the watery ETF filter, we then apply Flow-XDoG and apply
posterization.
• Style 5: This is a heavily stylized result. Details are removed and
Flow-XDoG is applied and several ETV and TVF are applied. To get
the final output, we posterize the result and apply lines to highlight
the edges.
• Style 6: We call this stylization blob, it is a colorful abstraction of
the image. To create it, we apply Flow-XDoG in its lowest scale (i.e.,
it smoothes the input), we posterize the result and remove details.

We show the performance on device and on desktop (Table 1). The
table shows that our method, even when using heavy filters (such
as three times ETF), can achieve real-time rendering performance.
When a style uses the basic set of filters it is possible to process a Full
HD input video in under 1ms, when more advanced filters are used
we achieve real time rendering over 30fps at viewfinder resolution.
Desktop performance is one order of magnitude faster and we can
achieve 16K video processing with over 60fps.

Table 1 Style computation time of Fig. 11 and 12 (in megapixels per second)

for ‘Device’ (Pixel 2018) and Desktop GPU.

Style
Device

MP/s

Desktop

MP/s

1 124.4 1719.4

2 156.9 2405.5

3 128.4 1469.1

4 30.3 357.5

5 92.3 1469.4

6 40.0 458.7

Style
Device
MP/s

Desktop
MP/s

7 131.0 1637.5
8 169.4 2295.9
9 114.0 675.2
10 241.8 4069.9
11 240.7 4138.8
12 126.0 1804.9
13 101.3 1323.3
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Fig. 10 Progression of each stylization from input (left) to the final stylization (right). The top right corner shows the filters applied in that step. Note that Style

3 has just four filters. Readers are encouraged to zoom in aggressively (300% or more).

6.2 Procedural Styles

Procedural modeling is technique that enables the generation of
hundreds or thousands of examples using a limited set of rules. In
the computer graphics community, the technique has been used to
generate buildings, cities, trees, and more complex models; see for
instance [44, 45]. Based on this idea, we call procedural styles those
created randomly using a set of simple rules.

The simple set of rules for this experiment was to add a random
number of filters between 4 and 9, with random input parameters:
XDoG (σ ∈ [0.5, 8.0] and p ∈ [1, 40]), TVF, Soft Threshold (φ ∈
[0.013, 0.059] and ǫ ∈ [50, 110]), Detail Control (δ ∈ [−100, 60]),
Luma Posterization (level ∈ [5, 12]), Saturation (saturation ∈
[1.5, 2.2]), Size (size ∈ [100, 300], and To GrayScale (20% proba-
bility). We also enforce a rule that XDoG and TVF are the only filters
that can be added more than once (duplicating the rest of filters has
the same effect as selecting different parameters).

We developed a web-based visualization tool to quickly review
the procedurally generated alternatives (Fig. 13). Fig. 14 shows four
examples of styles found manually in under five minutes using the
visualization tool. In order to automate this process, we used the
Neural Image Assessment (NIMA) network of Talebi and Milan-
far [33], which evaluates the aesthetic quality of an image. Using
this approach, we discovered the styles in Fig. 15.

6.3 Computational Performance

One of the key goals of our system is allowing for interactive explo-
ration and design of different styles and options, as well as being able
to process videos and camera streams. Therefore, we have aimed
to achieve real-time computational performance and decided for a
GPU implementation. Most image filters are standard image pro-
cessing operations, and we have implemented them using OpenGL
and GLSL shading language.

In the case of BLADE filtering, we have taken advantage of
the fact that it is a fully parallelizable algorithm, and also imple-
mented it using GPU GLSL shading language. We have decoupled
two main steps of the algorithm as separate full-image passes: filter
bucket hash computation and applying of the selected filter. Both
passes run only on a single image channel (luminance) and take
advantage of accelerated instructions and OpenGL extensions like
ARB_texture_gather that allow to process four pixels at the same
time. To optimize the bucket index computation arithmetic, we use
approximations to transcendental functions where applicable. For
example the arctangent for orientation angle computation uses a
variation of a well-known quadratic approximation [46].

With the GPU implementation and inherent parallelism of our fil-
ters, we have observed order of magnitude speed-up over straightfor-
ward CPU implementation. We observe linear performance scaling
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Fig. 11 Input image on top and six different stylizations created with our tool. See details in Sec. 6.1. Readers are encouraged to zoom in aggressively (200%

or more).
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Input Style 7 Style 8 Style 9

Style 10 Style 11 Style 12 Style 13

Fig. 12. Additional stylization created with our tool. Readers are encouraged to zoom in aggressively (200% or more).

Fig. 13 Visualization tool to explore alternative procedurally generated

styles. Many alternatives (as seen in the figure) are not very interesting or

distinct, but the system’s real-time speed and created visualization tool makes

it fast and easy to explore and identify promising alternatives.

with the number of processed pixels for all implemented filter-
ing operations and real-time performance for Full HD images on
a mobile device (Fig. S1 (bottom)) and up to 40MP images on a
desktop PC (Fig. S1 (top)).

7 Conclusions

In this work, we presented an interactive framework for design-
ing filter-based stylization which allows a designer to tune, modify,
and conveniently explore the space of filters directly, empowering
user creativity. Our framework is flexible, and not limited to any
particular visual style.

In parallel to this manual design, we presented a procedural,
fully automatic style creation process that follows a set of sim-
ple rules to generate hundreds of different styles. These styles can
be selected through manual visualization or evaluated using a pre-
viously trained aesthetics quality assessment method (e.g. [33]).
Our filtering and stylization framework was used to design filters
for a free, experimental application called Google Storyboard∗ that
allows to automatically turn any video into a comic strip.

In order to make the system real-time, we apply the Best Linear
Adaptive Enhancement (BLADE) framework for simple, trainable,
and edge-adaptive filtering to realize fast approximations of sophis-
ticated style effects. BLADE’s computationally efficient inference

∗
https://play.google.com/store/apps/details?id=com.google.android.apps.photolab.storyboard

allows for fully real-time applications on a mobile device and is easy
to train and interpret.

For future work, we find several potential directions of explo-
rations. First, one can include any new, more advanced filters.
These may include CNN-based stylization approaches that would
enrich the expressiveness of our system. A second possibility is
to explore more complex hand-crafted features for filter selection.
While this might increase the computational requirements, it would
allow for more sophisticated and more content-adaptive stylization
filters. Finally, the adaptation of the proposed approach to longer
videos including episodic-length television and motion pictures,
while enabling automatic or convenient change of style as required
by the scene or the director, would be quite interesting.
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Fig. S1 Process time on GTX 1080 desktop PC and on ‘Device’ (Pixel 2018)

vs. image size in megapixels for each of the filters in our system.
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Fig. S2 Graph of each stylization. The caption of each filter is[are] the

parameters for the given filter.
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Fig. S3 5× 5 BLADE filters approximating edge tangent flow with 24

different orientations and 3 coherence values.
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Fig. S4 7× 7 BLADE filters for approximating Flow-XDoG with 16 differ-
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Fig. S7 Additional stylization examples: Input image on top and six different stylizations created with our tool. See details in Sec. 6.1. Readers are encouraged

to zoom in aggressively (200% or more).
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