
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

1

Autotuning Convolutions is Easier Than You Think

NICOLAS TOLLENAERE, GUILLAUME IOOSS, INRIA, France
STÉPHANE POUGET, University of California Los-Angeles, USA
HUGO BRUNIE, CHRISTOPHE GUILLON, INRIA, France
ALBERT COHEN, Google, France
P. SADAYAPPAN, University of Utah, USA
FABRICE RASTELLO, INRIA, France

A wide range of scientific and machine learning applications depend on highly optimized implementations
of tensor computations. Exploiting the full capacity of a given processor architecture remains a challenging
task, due to the complexity of the microarchitectural features that come into play when seeking near-peak
performance. Among the state-of-the-art techniques for loop transformations for performance optimization,
AutoScheduler [Zheng et al. 2020a] tends to outperform other systems. It often yields higher performance as
compared to vendor libraries, but takes a large number of runs to converge, while also involving a complex
training environment.

In this paper, we define a structured configuration space that enables much faster convergence to high-
performance code versions, using only random sampling of candidates. We focus on two-dimensional convolu-
tions on CPUs. Compared to state-of-the-art libraries, our structured search space enables higher performance
for typical tensor shapes encountered in convolution stages in deep learning pipelines. Compared to auto-
tuning code generators like AutoScheduler, it prunes the search space while increasing the density of efficient
implementations. We analyze the impact on convergence speed and performance distribution, on two Intel x86
processors and one ARM AArch64 processor. We match or outperform the performance of the state-of-the-art
oneDNN library and TVM’s AutoScheduler, while reducing the autotuning effort by at least an order of
magnitude.

CCS Concepts: • Software and its engineering→ Source code generation; Dynamic compilers.

Additional Key Words and Phrases: Code generation, Optimisation space, Microkernel, Convolution

ACM Reference Format:
Nicolas Tollenaere, Guillaume Iooss, Stéphane Pouget, Hugo Brunie, Christophe Guillon, Albert Cohen, P.
Sadayappan, and Fabrice Rastello. 2022. Autotuning Convolutions is Easier Than You Think. ACM Trans. Arch.
Code Optim. 1, CONF, Article 1 (January 2022), 24 pages.

1 INTRODUCTION
Tensor computations are at the core of many applications in scientific computing, signal processing,
data analytics and machine learning. Their optimized implementation is therefore of considerable
interest. While vendor libraries have originally been the result of extensive manual efforts [Van Zee
and van de Geijn 2015], today’s leading approaches involve domain-specific code generators. Such
code generators are typically controlled by an expert, or by an autotuning algorithm often referred
to as an autoscheduler. Focusing on convolution operations, the range of available options is the
following:

Authors’ addresses: Nicolas Tollenaere, Guillaume Iooss, INRIA, Grenoble, France, nicolas.tollenaere/guillaume.iooss@
inria.fr; Stéphane Pouget, University of California Los-Angeles, Los Angeles, USA, pouget@cs.ucla.edu; Hugo Brunie,
Christophe Guillon, INRIA, Grenoble, France, hugo.bruinie/christophe.guillon@inria.fr; Albert Cohen, Google, Paris, France,
albertcohen@google.com; P. Sadayappan, University of Utah, Salt Lake City, USA, psaday@gmail.com; Fabrice Rastello,
INRIA, Grenoble, France, fabrice.rastello@inria.fr.

2022. XXXX-XXXX/2022/1-ART1 $15.00
https://doi.org/

ACM Trans. Arch. Code Optim., Vol. 1, No. CONF, Article 1. Publication date: January 2022.

https://doi.org/

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

1:2
Nicolas Tollenaere, Guillaume Iooss, Stéphane Pouget, Hugo Brunie, Christophe Guillon, Albert Cohen, P. Sadayappan,

and Fabrice Rastello

• Vendor libraries like oneDNN [Intel 2018] and cuDNN [NVIDIA 2018] have been manually
optimized by expert HPC and software engineers. They used to dominate the HPC landscape.
But with the growing diversity of operations and architectures, manual efforts do not scale.
In particular, while modern libraries use JIT optimization, they cannot fully adapt to every
given tensor shape of a CNN layer in a DNN pipeline.

• Polyhedral compilers such as Diesel [Elango et al. 2018], Polly [Grosser et al. 2012], Pluto
[Bondhugula et al. 2008], PPCG [Verdoolaege et al. 2013], Tensor Comprehensions, [Vasilache
et al. 2018], Tiramisu [Baghdadi et al. 2019] automatically generate multi-level tiled code for
affine loop nests. However, a significant limitation is that none of them can directly optimize
across tile sizes, which is critical for efficient CNN implementations.

• Autotuning can be performed by systems like AutoTVM [Chen et al. 2018b] or AutoSched-
uler [Zheng et al. 2020a] both part of the TVM domain-specific compiler [Chen et al. 2018a].
A search process guided by a dynamically constructed machine learning model [Chen et al.
2018b] iterates through tiled loop configurations, where code is generated, compiled and
executed on the target platform. AutoTVM has been demonstrated to outperform polyhedral
compilers [Chen et al. 2018b], and AutoScheduler to outperform AutoTVM [Zheng et al.
2020a].

• Analytical modeling and optimization. Recent research has shown that a comprehensive
characterization and optimization across all possible tiled loop configurations for CNNs is
feasible [Li et al. 2021]. The approach is semi-automatic: manual reasoning to build analyti-
cal models of data movement, in conjunction with the automated resolution of nonlinear
optimization problems to optimize tile sizes.

Among existing solutions, AutoScheduler [Zheng et al. 2020a] has demonstrated higher per-
formance of optimized codes over both automatic and semi-automatic tools, as well as vendor
libraries. AutoScheduler defines a space in which it samples candidate implementations. It runs a
batch of candidates on the target platform, and trains and refines a regression cost model using the
performance measurements from executed candidates. The cost model is used to select samples for
the next batch, focusing on the candidates with the best predicted performance by the cost model.
This approach is very effective in generating high-performance code, but the training environment
in the autotuning loop is rather cumbersome. The convergence rate is also slow, at least a thousand
runs, which takes several hours for each optimized stage in a DNN pipeline.
When analyzing the programs sampled across multiple AutoScheduler sessions, we observed

that the cost model tends to rediscover some classical principles of efficient code generation, such
as outer product microkernels. A microkernel is an unrolled and vectorized portion of computation,
whose data footprint fits inside the innermost level of the memory architecture, i.e., CPU registers.
The implementations in vendor libraries (such as oneDNN) relies heavily on a very small set of
microkernels, written in assembly code or with vector intrinsics [Li et al. 2021; Van Zee and van de
Geijn 2015]. This is effective when the unroll factor divides the problem size, but lacks flexibility
overall. Indeed, the best implementations found by AutoScheduler often leverage unconventional
microkernels, unrolled along up to 5 dimensions, with a variety of unroll factors.
These observations raise the question of how much of the search acceleration benefits of Au-

toScheduler’s ML modeling could be achieved by the use of expert knowledge embedded into the
optimization search space.

Contributions. This paper introduces a structured space capturing such expert knowledge. Its
structure derives from the offline (and automatic) identification of a collection of efficient micro-
kernels, embedded into an original, hierarchical tiling scheme. We show that the plain random

ACM Trans. Arch. Code Optim., Vol. 1, No. CONF, Article 1. Publication date: January 2022.

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

Autotuning Convolutions is Easier Than You Think 1:3

sampling of candidates in this space allows for much faster convergence than AutoScheduler with
comparable performance.

We focus on two-dimensional convolutions on CPU.While accelerators are the dominant platform
for training, latency-bound inference tasks are still typically served by CPUs.
The construction of our structured configuration space is as follows: We start with an offline

preselection of high-performing, automatically-generated microkernels. This step in problem-size
independent and performed only once for each targetmicroarchitecture. Then, online search operates
within a hierarchy of strictly divisible tiles. The structure of the online search derives from this
divisibility constraint, and from the requirement that every tile decomposes into the microkernels
identified offline. Since some problem sizes are not divisible by any tile size corresponding to
an efficient microkernel, we allow for the sequential combination of two microkernels with the
appropriate multiplicity matching the tensor sizes for a specific convolution stage to be optimized.
Compared to state-of-the-art libraries, our structured search space enables higher performance for
typical tensor shapes encountered in convolution stages in deep learning pipelines. Compared to
automatic generators like AutoScheduler, it prunes the search space while increasing the density of
efficient implementations.
While our approach applies to a wider class of tensor computations, our experiments focus on

CNNs with 2D convolutions. We evaluate the impact of the structure of the search space on the
performance distribution.

We describe our implementation and evaluate it on 20+ CNN layers from 2 ML inference models
(ResNet-18 and Yolo-9000).Wematch or outperform the performance of the state-of-the-art oneDNN
library [Intel 2018] and TVM’s AutoScheduler [Chen et al. 2018a; Zheng et al. 2020a], while reducing
the autotuning effort by at least an order of magnitude.

Outline. The rest of the paper is organized as follows: Sec. 2 provides a high-level overview of
our approach. Sec. 3 introduces the principles of the structured search space. Sec. 4 presents the
overall autotuning strategy. Sec. 5 reports experimental results and compares with state-of-the-art
frameworks and libraries. Sec. 6 revisits the principles of our autotuning strategy in the form of an
ablation study. Sec. 7 discusses related work before the conclusion in Sec. 8.

2 OVERVIEW OF THE APPROACH
Let us illustrate the overall approach by observing the structure of the generated code and how it
conditions the structure of the search space itself. Please refer to Section 3.1 for a formal definition
of the concepts used in this section.

Structure of the generated code. Fig. 1 and 2 illustrate the two-level code generation strategy for
convolutions and the nature of microkernels in this context.
As shown in Fig. 2(a), the generated code can be divided into two parts. The innermost loops,

which are register-resident, correspond to the microkernel. Apart from the reduction loop on 𝑐 , these
loops are unrolled and vectorized, in order to use fully the capability of the CPU’s computational
units. Then, the microkernel is repeated across the whole iteration space. The enclosing loops are
the result of multi-level tiling.
A 2D convolution is a 7-dimensional nested loop. Its optimized implementation requires multi-

level tiling. Given a d-dimensional nested loop (𝑑 = 7 here), and a 5-level memory hierarchy
(main-memory, L3, L2, L1 caches and registers), the total number of nested loops for tiling at all
levels is 5𝑑 (35 here). This is illustrated in Fig. 2(a) as a set of outermost 𝑑 tile-loops that step
through L3-level tiles. Each L3-level tile has 𝑑 tile-loops to step through a set of L2-level tiles,
and so on, with the register-level tiles being marked as a microkernel. In practice, efficient tiled
implementations will only have a small subset of active tile loops at a level, while the remaining

ACM Trans. Arch. Code Optim., Vol. 1, No. CONF, Article 1. Publication date: January 2022.

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

1:4
Nicolas Tollenaere, Guillaume Iooss, Stéphane Pouget, Hugo Brunie, Christophe Guillon, Albert Cohen, P. Sadayappan,

and Fabrice Rastello

for (𝑛 = 0 ; 𝑛 < 𝑁 ; 𝑛 += 1)
for (𝑘 = 0 ; 𝑘 < 𝐾 ; 𝑘 += 1)
for (𝑐 = 0 ; 𝑐 < 𝐶 ; 𝑐 += 1)
for (ℎ = 0 ; ℎ < 𝐻 ; ℎ += 1)
for (𝑤 = 0 ; 𝑤 <𝑊 ; 𝑤 += 1)
for (𝑟 = 0 ; 𝑟 < 𝑅 ; 𝑟 += 1)
for (𝑠 = 0 ; 𝑠 < 𝑆 ; 𝑠 += 1)
𝑂 [𝑛,𝑘,ℎ, 𝑤] = 𝐾 [𝑛,𝑘, 𝑐, 𝑟, 𝑠] ∗ 𝐼 [𝑛, 𝑐,ℎ + 𝑟, 𝑤 + 𝑠]

Fig. 1. 2D Convolution (unit stride).

. . .
r,s
k

w
h
c
n

⇒
Reg_Tile (microkernel)

. . .

d

L1_Tile

d

L2_Tile

d

L3_Tile

d
d

Offline
`kernel

synthesis{

• Once per HW platform
• Agnostic to layer specification

(a) Multi-level tiling and split two-level optimization.

Vectorized on k
Unroll k by 2
Unroll h by 8
c: 0..127

Vectorized on k
Unroll k by 2

Unroll h by 13
c: 0..127

iter twice along h

k: 0..1
w: 0..135
h: 0..3

(b) Yolo9000 layer 5.

Fig. 2. Code generation sketch using microkernel composition. The left side (a) shows the generated code’s
generic structure aligned with the memory hierarchy. The right side (b) shows a concrete example for the
convolution sizes 𝐾 = 64, 𝐶 = 128, 𝐻 =𝑊 = 136 and 𝑅 = 𝑆 = 1. Note that 136 = (8 + 13 × 2) × 4. Loop colors
match the cache level they fit into.

ones are degenerate with a range of a single iteration and hence removed from the code. However,
we cannot know a priori which tile-loops are active versus degenerate; figuring this out is one of
the responsibilities of autotuning.
Fig. 2(b) shows the code we generate on one sample convolution for a target platform with a

vector size of 16 elements. It uses two microkernels, one corresponding to a slice of the convolution
iteration space with tile extents [𝐻 : 8,𝑊 : 1,𝐶 : 1, 𝐾 : 2 × 16], and another with tile extents
[𝐻 : 13,𝑊 : 1,𝐶 : 1, 𝐾 : 2 × 16]. The L1-level tile (color-coded blue) spans the full range of 128
iterations along C, which covers the full problem extent along C. An L2-level tile (color-coded red)
spans a range of 8+2×13 = 34 along H and a range of 2×32 = 64 along K (which is the full problem
extent). An L3-level tile (color-coded green) spans 4 × 34 = 136 along H, 136 along W. At this
point the full problem extent has been covered and therefore the outermost tile loops (color-coded
black in Fig. 2(a)) are degenerate. This example illustrates how combining two well-performing
microkernels can be used to perfectly cover the full iteration space using a small collection of
pre-selected microkernels, without needing to use any low-performance code for “partial” tiles.

Structure of the search space. Based on the code structure observations above, we elaborate on
general principles about our structuring of the search space.

ACM Trans. Arch. Code Optim., Vol. 1, No. CONF, Article 1. Publication date: January 2022.

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

Autotuning Convolutions is Easier Than You Think 1:5

• Preselecting microkernels: High-performing candidates require high-performing microker-
nels. It is essential for any multi-level tiling strategy to eventually decompose the problem
into one or more unrolled microkernels with the following properties: fully vectorized arith-
metic operations, fully vectorized loads and stores in innermost loops, enough Instruction
Level Parallelism (ILP) to saturate vector compute units, while keeping register pressure
under control to avoid spilling. We define a sufficiently broad space of possible microkernels,
varying the number of dimensions considered for unrolling as well as lower and upper bounds
on the unroll factor. We measure the performance of all these microkernels, and retain those
approaching the peak performance of the target CPU. This process is independent of the
problem size and needs to be performed only once per microarchitecture. Compared to
AutoScheduler, this approach eliminates all choices about vectorization (which dimensions
to be considered) and unrolling (which dimensions to unroll and how much) from the search
space for a specific problem size.

• Divisibility constraint: Partial tiles hurt performance and pollute the search space with sub-
par candidates. In particular, as a consequence of the previous principle, we exclude situations
where sub-optimal microkernels would be necessary to handle trailing iterations when the
unroll factor for a problem dimension does not divide the size of this dimension. To eliminate
such situations, we only consider microkernels and tiles whose sizes divide those of enclosing
tiles and the problem itself. This eliminates vasts regions of the search space, compared to
AutoScheduler, where the density of high-performing candidates is extremely low.

• Combination of microkernels: Enforcing divisibility is sometimes inconvenient; it can be
relaxed by combining microkernels with the appropriate multiplicity. Indeed, when a problem
extent is a large prime number, it may be impossible to enforce strict divisibility and stay
within cache capacity constraints. Combining two microkernels of different sizes, repeated
an appropriate number of times, allows us to match any problem size or any enclosing tile
size. This marginally increases the size of the search space, in cases where divisibility alone
does not allow for a sufficiently broad range of tile and microkernel sizes.

We will analyze the effect of these principles on the performance distribution, and show that (i) this
search space contains implementations whose performance is on par with AutoScheduler’s best
candidates, and (ii) the performance distribution is such that even random sampling is sufficient to
find good configurations much faster than AutoScheduler.

3 SEARCH SPACE PRINCIPLES
We now present the principles underlying our search space in greater details. Section 3.1 starts with
notations and background concepts. In Section 3.2, we discuss the relation between the divisibility
constraint, the need to consider a large number of microkernels, and the possibility of combining
two of those. Section 3.3 formalizes the representation of candidates within the search space. We
introduce the notion of an optimization configuration, a list of specifiers, each one corresponding to
a (potentially unrolled or vectorized) loop level in the generated code. This notion specializes the
notion of schedule in Halide or TVM to reflect the structural principles and domain-specific nature
of our search space. We finally discuss in Section 3.4 how to generate code from a configuration.

3.1 Background: Sketching the generated code
Notations and targeted tensor operations. In the rest of the paper, lowercase variables refer to

problem dimensions or loop iterations (𝑖 , 𝑗 , 𝑘), and uppercase variables to problem sizes or loop
bounds on each corresponding dimension (resp. 𝐼 , 𝐽 , 𝐾). The iteration space is the set of integer
vectors formed by the iterations of loops enclosing a given computational statement.

ACM Trans. Arch. Code Optim., Vol. 1, No. CONF, Article 1. Publication date: January 2022.

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

1:6
Nicolas Tollenaere, Guillaume Iooss, Stéphane Pouget, Hugo Brunie, Christophe Guillon, Albert Cohen, P. Sadayappan,

and Fabrice Rastello

for (𝑖𝑡 = 0 ; 𝑖𝑡 < 𝐼 ; 𝑖𝑡 += 6)
for (𝑗𝑡 = 0 ; 𝑗𝑡 < 𝐽 ; 𝑗𝑡 += 32)

for (𝑘 = 0 ; 𝑘 < 𝐾 ; 𝑘 += 1)
`kernel_gemm6,32 (𝐶,𝐴, 𝐵, 𝑖𝑡 , 𝑗𝑡 , 𝑘)

Fig. 3. Tiled sgemm with microkernel.

In the class of computations we consider, we assume that any dimension is either parallel—𝑖 and
𝑗—or a reduction—𝑘 and all dimensions are permutable (i.e., amenable to loop interchange). While
associativity can be used to parallelize reductions, we do not exploit it.

We also assume that a tensor may be accessed multiple times but always with the same subscript
expressions, which are affine functions of surrounding loop iterators. For example, tensor A of
shape {𝑖, 𝑘 | 0 ≤ 𝑖 < 𝐼 , 0 ≤ 𝑘 < 𝐾} may be subscripted by [𝑖, 𝑘], corresponding to the access
function (𝑖, 𝑗, 𝑘 ↦→ 𝑖, 𝑘). We also assume that a loop index cannot appear twice inside an access
function: for example, 𝐸 [𝑖, 𝑖] is forbidden. These conditions are satisfied by all tensor contractions
and convolutions, including strided variants.

Microkernel and tiling. A microkernel refers to an efficient region of code composed of a (large)
basic block resulting from the full unrolling of innermost parallel loops, enclosed into zero or
more perfectly nested reduction loops. It is generally written in assembly language or using vector
intrinsics, aiming for the following objectives: (i) effective utilization of vector ALUs; (ii) effective
reuse of (vector) registers across iterations through unrolling and register promotion; (iii) adequate
Instruction-Level Parallelism (ILP) to hide the latency of pipelined functional units (multiply-and-
add).
Tiling [Coleman and McKinley 1995; Rivera and Tseng 1999] is a loop transformation that

partitions the iteration space into sets, called tiles and executed atomically. We only consider
programs with rectangular iteration spaces, and rectangular tiles. Tiled code has additional loops
compared to the original code: loops over tiles called tile-loops, and loops inside a tile called
point-loops. Such a partitioning allows us to control the amount of data accessed per tile, a.k.a.
footprint, to make sure it does not exceed a given cache capacity.

Fig. 3 shows a tiled matrix multiplication kernel as an illustrative example. It relies on an (inline)
fully-unrolled and vectorized microkernel of size 6 × 32.

High-performance libraries, such as BLIS, TCCG, oneDNN, rely on the use of a single microkernel
with some fixed tile sizes within the microkernel, e.g., 6 and 32 in the example of Fig. 3. When
tile sizes do not divide tensor shapes, the traditional approach involves conditional execution or
padding to manage partial tiles.

As we will see in rest of this section, we consider a broader configuration space, using a collection
of microkernels for use with different problem sizes. This also allows us to relax the divisibility
constraint that must be satisfied in order to avoid partial tiles, by combining multiple fully-optimized
microkernels in sequence.

3.2 Divisibility constraint and microkernels
In this section, we demonstrate the importance of combining microkernels instead of relying on
(sub-optimal) partial tiles. We consider the multiplication of very small matrices, such that the data
footprint fits inside the L1 cache, and we measure performance for a continuous range of problem
sizes.
If the microkernel size perfectly divides the problem sizes, we observe a peak in performance.

If the microkernel size does not perfectly divide the problem size, the classical options are (i) to

ACM Trans. Arch. Code Optim., Vol. 1, No. CONF, Article 1. Publication date: January 2022.

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

Autotuning Convolutions is Easier Than You Think 1:7

Fig. 4. Performance of small matrix multiplication kernels, for 𝐽 = 𝐾 = 128 and 8 ≤ 𝐼 ≤ 50.

have a partial tile, smaller than the microkernel that completes the work along the non-divisible
dimensions; or (ii) to pad with zeros to make all dimensions divisible, at the cost of extraneous
computations and data movements. We also consider a third route: (iii) to combine two different
microkernels to cover the space without partial tiles. The method to determine the best performing
microkernel will be described in Section 4.1, and the selection algorithm is explained in Section 4.2.

Comparison of different microkernel strategies. Figure 4 compares the sequential performance of
small matrix multiplication implementations, for problem sizes 𝐽 = 𝐾 = 128 and 8 ≤ 𝐼 ≤ 49, on an
Intel Xeon Gold 6230R CPU (Cascade Lake-SP, with AVX512). Performance is shown as percentage
of the absolute peak, corresponding to the maximal utilization of the two vectorized FMA units of
the microarchitecture.

MKL [Wang et al. 2014], Blis [Van Zee and van de Geijn 2015] and libxsmm [Heinecke et al. 2016]
report the performance of these libraries. Notice the peak every 8 elements of 𝐼 for MKL and a peak
every 12 elements for BLIS. This gives us an indication about the size of their microkernel along
dimension 𝑖 . Libxsmm also considers combinations of microkernels, but restricted to predefined
sizes such as powers of 2 along the 𝑖 dimension. Our experiment shows that this is not enough to
obtain consistent performance for all problem sizes.

“Single microkernel, partial tile” reports the performance of the code generated by our framework,
restricted to using the BLIS microkernel only, with an unrolled partial tile to complete non-divisible
dimensions. We observe a fluctuation of periodicity 12 in its performance. As expected, for values
of 𝐼 with a low remainder modulo 12, the performance is worse than for a high remainder due to
the low performance of the partial tile.
“Single microkernel, padded” is also the performance of the code generated by our framework,

but using a padding strategy instead of a partial tile. We optimistically assumed that the padding
overhead is free. As expected, the performance for low remainders is quite poor due to the significant
overhead. However, this penalty decreases on larger sizes.
Finally, “Combination of microkernels” corresponds to our microkernel combination strategy,

which uses two microkernels with a different size along the 𝐼 dimension. We observe much more
stability and high performance overall for any value of 𝐼 .
This experiment shows the importance of using all the microkernels available and to combine

them, to avoid loss of performance due to padding or partial tiles. This is particularly important

ACM Trans. Arch. Code Optim., Vol. 1, No. CONF, Article 1. Publication date: January 2022.

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

1:8
Nicolas Tollenaere, Guillaume Iooss, Stéphane Pouget, Hugo Brunie, Christophe Guillon, Albert Cohen, P. Sadayappan,

and Fabrice Rastello

for some convolution benchmarks, such as Yolo9000, which have small problem sizes along most
dimensions, which amplifies the penalty due to a partial tile and which can have uncooperative
divisors (such as 34 = 2 × 17 for Yolo9000-12).

In order to build such combination, we also need a larger variation of efficient microkernels, in
order to cover as many problem sizes as possible while respecting the divisibility constraint.

3.3 Optimization configuration
As discussed earlier, we embed the following constraints in our configuration search space:

• We configure tile loops over microkernels from a set of pre-selected high-performing versions
generated in an off-line kernel synthesis stage.

• As mentioned in Section 3.2, we forbid partial tiles, which are particularly inefficient on the
innermost levels of the generated code.

• Because the divisibility constraint would be too strict for some problem sizes, we consider
combinations of microkernels.

To formally define this space, we need to describe a precise selection of code generation choices.
This is the role of the so-called optimization configuration, a specialized form of schedule in Halide
or TVM, matching the domain-specific structure of the code we aim to generate. A configuration is
a list of specifiers that describe the layered structure of the generated code from the outermost loop
inwards:

• R𝑑 inserts the outer loop along dimension 𝑑 . This loop will iterate over the outer-level tiles
along 𝑑 . The size of these tiles should divide the problem size 𝐷 . Besides, R𝑑 may appear at
most once for a given dimension 𝑑 .

• T𝛼,𝑑 inserts a tile loop along dimension 𝑑 . It iterates exactly 𝛼 times along 𝑑 . Again, 𝛼 must
divide the size of the iteration space along 𝑑 .

• U𝛼,𝑑 virtually inserts a tile loop with T𝛼,𝑑 then fully unrolls it (register tile). The divisibility
constraint holds.

• V𝑑 virtually inserts a tile loop with T𝑣,𝑑 where 𝑣 the vector length, then vectorizes it. Vector-
ization occurs at the innermost level only: there may be at most one V•.

• _seq𝑑𝛼 . [ℓ], where ℓ = [(𝑟𝑖 , 𝑎𝑖)]1≤𝑖<𝑠 is a list of 𝑠 ≥ 2 pairs introducing a sequence of 𝑠 loops
of size 𝑟𝑖 along dimension 𝑑 . Each one iterates over next-level tiles, defining parameter 𝛼 = 𝑎𝑖
for the specifier introducing these tiles. This specifier generates non-perfectly nested tiles,
composing microkernels whose sizes do not individually divide the size of a given dimension.
For example, splitting a dimension 𝑦 of size 𝑌 = 34 into two non-equal parts 22 and 12
with ℓ = [(2, 11), (1, 12)] fulfills the divisibility constraint (no partial tiles) while involving
high-performance microkernels of size 11 and 12 along 𝑦.

Example. The naive implementation of a matrix multiplication would be represented as [R𝑖 ,R𝑗 ,
R𝑘]. A higher performance implementation, based on the BLIS [Van Zee and van de Geijn 2015]
microkernel for floats (f32) on AVX2 would be

[R𝑗 ,R𝑘 ,R𝑖 , T𝑛𝑐
16 , 𝑗
, T𝑚𝑐

6 ,𝑖
, T𝑛𝑘 ,𝑘 ,U6,𝑖 ,U2, 𝑗 ,V𝑗]

The generated code contains a microkernel of size (𝑖 = 6, 𝑗 = 16, 𝑘 = 𝑛𝑘) known to be efficient,
as it requires only 15 vector registers and exposes enough ILP (12 independent multiply-add
instructions issued between two accumulation steps) [Van Zee and van de Geijn 2015]. Above
it, loops 𝑖 and 𝑗 induce a 2D tile of size (𝑚𝑐 , 𝑛𝑐). One may immediately notice that this approach
assumes that 𝐼 is a multiple of𝑚𝑐 , itself being a multiple of 6 (similar constraints apply to 𝑗 and 𝑘).

ACM Trans. Arch. Code Optim., Vol. 1, No. CONF, Article 1. Publication date: January 2022.

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

Autotuning Convolutions is Easier Than You Think 1:9

for (𝑗 = 0 ; 𝑗 < 128 ; 𝑗+= 16) {
for (𝑖 = 0 ; 𝑖 < 72 ; 𝑖+= 6)

for (𝑘 = 0 ; 𝑘 < 𝑛𝑘 ; 𝑘+= 1)
`kernel_gemm6,16

for (𝑖 = 72 ; 𝑖 < 128 ; 𝑖+= 7)
for (𝑘 = 0 ; 𝑘 < 𝑛𝑘 ; 𝑘+= 1)

`kernel_gemm7,16
}

Fig. 5. Microkernel composition example.Both microkernels must have the same sizes except for one di-
mension. This dimension may be split into two loop nests, relaxing the divisibility constraint at the level of
microkernels. This accommodates for the partitioning of more problem sizes while guaranteeing near-optimal
performance for all iterations of the split dimension.

State-of-the-art libraries rely on fixed-size microkernels and tuned tiles sizes, and thus introduce
partial, sub-optimal tiles to cope with arbitrary problem sizes that do not fulfill such a divisibility
constraint. Assume for example a matrix-multiplication of size 𝐼 × 𝐽 × 𝐾 = 128 × 128 × 64. 128 is
not divisible by 6, but 128 = 12 × 6 + 8 × 7, and efficient code can be obtained using the following
configuration:

[R𝑗 , _seq𝑖𝛼 . [(12, 6), (8, 7)] , T𝑛𝑘 ,𝑘 ,U𝛼,𝑖 ,U2, 𝑗 ,V𝑗]
which leads to the loop structure shown in Fig. 5.

3.4 Code generation
We next show how we generate C code from a computation specification, problem size and the
associated configuration. Generating a loop requires knowledge of the sizes of the sub-tiles, and
so our code generator proceeds from innermost loop outwards. Calling a sub-configuration the
suffix of a configuration, at a given step the already generated code (that corresponds to inner
levels) is fully specified by the corresponding sub-configuration. In the following, the size of a
sub-configuration refers to the size of the corresponding (parameterized) sub-iteration space. For
the example from Sec. 3.1, the sub-configuration of the BLIS microkernel (including the reduction
loop on 𝑘) is: 𝑆`kernel = [T𝑛𝑘 ,𝑘 ,U6,𝑖 ,U2, 𝑗 ,V𝑗]. Its size along 𝑖 , 𝑗 , and 𝑘 is respectively 6, 16 and 𝑛𝑘 .

Overview. Our code generator traverses the configuration right to left in a single pass. At every
level, we keep track of the following information: (i) the size of the loops that are already generated;
(ii) for each dimension, the name of the last index used by a for loop (to handle tiling).

Before applying our code generation algorithm, we apply a preprocessing step to get rid of
the _seq specifier and its parameter 𝛼 . We introduce a new specifier Seq that corresponds to the
sequential composition of a list of sub-configurations. In our case, the list of the _seq specifiers is
always of size 2. The corresponding rewriting rule is:

[. . . , _seq𝑑𝛼 . [(𝑖1, 𝑣1), (𝑖2, 𝑣2)] , 𝑆] ⇒ [. . . , Seq([T𝑖1,𝑑 , 𝑆 [𝛼/𝑣1]], [T𝑖2,𝑑 , 𝑆 [𝛼/𝑣2]])]

where 𝑆 is the sub-configuration following the _seq specifier, and 𝑆 [𝛼/𝑣] is this sub-configuration
where 𝛼 was substituted by the value 𝑣 . We now have a tree of specifiers instead of a list of specifiers,
on which we can still iterate from the leaves (innermost loops) to the root of the tree (outermost
loops).

Code generation rules. Let us now survey the different specifiers and how code generation operates
for each one:

ACM Trans. Arch. Code Optim., Vol. 1, No. CONF, Article 1. Publication date: January 2022.

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

1:10
Nicolas Tollenaere, Guillaume Iooss, Stéphane Pouget, Hugo Brunie, Christophe Guillon, Albert Cohen, P. Sadayappan,

and Fabrice Rastello

• Sequence Seq: combine sequentially the generated code corresponding to the sub-configurations
inside the Seq.

• Vectorization V𝑑 : based on the hypotheses on the code structure presented in Sec. 3.1, one
may determine which operations should be vectorized by traversing the graph starting from
the loads:
– read (𝑇, 𝑓) is vectorized if 𝑑 appears in the access function 𝑓 .
– Op (𝑥,𝑦) is vectorized if one of its operands (𝑥 or 𝑦) is vectorized. If one of them is a scalar,
it is broadcasted.

– write (𝑣,𝑇 , 𝑓) is vectorized if 𝑣 is a vector and 𝑑 appears in the access function 𝑓 . These
conditions must be both true or false, else this is an error.

The C code uses Intel intrinsics to manipulate vectors.
• Unroll U𝑘,𝑑 : Unroll the computation over the 𝑑 dimension 𝑘 times by duplicating the gen-
erated code of its sub-configuration, while updating the value of the loop index on the 𝑑
dimension in each duplication.

• Tiling T𝑘,𝑑 or R𝑑 : Add a loop over the generated code of its sub-configuration that iterates
𝑘 times, and whose value is increased by the value of the sub-configuration. In the case
of R𝑑 , one may deduce the correct number of iterations by comparing the size of the sub-
configuration with the problem sizes. This changes the current loop index in use over the 𝑑
dimension.

4 STRUCTURED SEARCH SPACE CONSTRUCTION AND EXPLORATION
Let us now present the overall autotuning strategy. We restrict ourselves to 2D convolutions in the
following (shown in Fig. 1). Our strategy can be generalized to any program in the class of programs
described in Section 3.1, provided the identification of a suitable class of microkernels, identifying
a vectorization dimension (here 𝑘), a microkernel reuse dimension (here 𝑐) and a dimension along
which we can compose two microkernels (here ℎ).

4.1 Offline stage
The offline stage consists of identifying the best performing microkernels, which will effectively
structure the search space (through divisibility constraints) and serve as building blocks for code
generation.

Microkernel space definition. As mentioned in Section 3.1, a good microkernel must satisfy several
constraints to be efficient: usage of vector units, good ILP to hide latency, and keeping vector
register pressure under control.
In the context of 2D convolutions, these guidelines translate into the following constraints on

the formation of a microkernel and its enclosing loop:
• The dimension 𝑘 is the one being vectorized, because it contains the simplest access pattern
among𝑤 , ℎ and 𝑘 . This allows to store the elements of the output tensor O and the parameter
tensor K in the vector registers.

• The microkernel must have a loop along the 𝑐 dimension surrounding it. This allows to reuse
partially accumulated reductions in the output array promoted to vector registers. Keeping
register pressure under control translates into imposing constraints on the dimensions of the
microkernel.

Let us consider a microkernel whose unrolling factors are size𝑥 along the 𝑥 dimension. Notice
that these unrolling factors correspond to the sizes of the microkernel, except for the vectorized
dimension 𝑘 , where the size of the microkernel is (vector_size × size𝑘). Let us count the number
of vector registers it requires. The output tensor uses size𝑤 × sizeℎ × size𝑘 vector registers and its

ACM Trans. Arch. Code Optim., Vol. 1, No. CONF, Article 1. Publication date: January 2022.

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

Autotuning Convolutions is Easier Than You Think 1:11

Fig. 6. Performance of microkernels in isolation for AVX512 in percentage of the machine peak, for the slice
of the space where 𝐶 = 𝐻 = 𝑅 = 𝑆 = 1. Microkernel sizes—𝛼 along the 𝑘 dimension (horizontal axis) and 𝛽
along the ℎ dimension (vertical axis)—vary between 1 and 15. Only the upper-left triangle was evaluated,
because high register pressure induces spills, dramatically impacting performance on the other half. The
red-bordered microkernels are the highest performing, thus are the ones selected (offline).

elements must stay in them to have reuse. The input tensor accesses are not vectorized, thus they
need at least 1 vector register to perform a broadcast. The parameter tensor requires size𝑟 × size𝑠 ×
size𝑐 × size𝑘 vector loads, and can erase them once they are used. Thus, it is better to have specific
vector registers for them, but it is not required.

From this reasoning, we consider the following collection of microkernels, considering an AVX512
architecture with 32 vector registers:

[Usize𝑠 ,𝑠 ,Usize𝑟 ,𝑟 ,Usize𝑐 ,𝑐 ,Usize𝑤 ,𝑤,Usizeℎ,ℎ,Usize𝑘 ,𝑘 ,V𝑘]
with the following set of constraints:

• 16 ≤ size𝑤 × sizeℎ × size𝑘 + size𝑟 × size𝑠 × size𝑐 × size𝑘 ≤ 36 (constraint on the footprint of
the output and the parameter tensors)

• 14 ≤ size𝑤 × sizeℎ × size𝑘 ≤ 28 (constraint to prioritize the output tensor)
• 1 ≤ size𝑤, sizeℎ, size𝑘 , size𝑐 ≤ 16
• (size𝑟 , size𝑠) ∈ {1, 3, 5, 7} such that if size𝑟 , size𝑠 > 1 then size𝑟 = size𝑠 .

This makes a total of 3059 microkernels, and we remark that the AVX512 BLIS microkernel (
(𝑘, 𝑐,𝑤, ℎ, 𝑟, 𝑠) = (2, 1, 12, 1, 1, 1)) is one of them.

Microkernel evaluation. To evaluate performance, we repeat the resulting unrolled basic block
many times along the 𝑐 dimension (T512,𝑐) and run the microkernel on a matching problem size. The
results for a slice of the space on AVX512 are shown in Fig. 6 (on an Intel Xeon Gold 6130, frequency
set to 2.1 GHz, Debian GNU/Linux, kernel version 4.19, and hardware counters monitored with
PAPI v5.7.0).

Within this collection, 540 microkernels reach at least 80% of peak performance. We observe that
the graph is roughly convex with some local fluctuations. We sort these microkernels into classes:
a class is a set of microkernels above the 80% performance threshold with identical sizes except

ACM Trans. Arch. Code Optim., Vol. 1, No. CONF, Article 1. Publication date: January 2022.

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

1:12
Nicolas Tollenaere, Guillaume Iooss, Stéphane Pouget, Hugo Brunie, Christophe Guillon, Albert Cohen, P. Sadayappan,

and Fabrice Rastello

for sizeℎ . Since the graph is roughly convex, the values of sizeℎ in a given class typically form an
interval. For example, {[Usizeℎ,ℎ,U2,𝑘 ,V𝑘], 8 ≤ sizeℎ < 15} is one of the classes of microkernels
that is selected for AVX-512, as shown with the leftmost red vertical rectangular contour on Fig. 6.
When combining microkernels to mitigate the divisibility constraint, we will pick two of those
from the same class (by using a _seqℎ𝛼 . [ℓ] specifier).

The measurement of all these microkernels takes about 50 minutes to complete on this architec-
ture. This step is problem-size agnostic and needs to be done only once per target architecture.

4.2 Online stage
Given a problem size, we will now describe how to derive a structured search space of optimization
candidates from the offline selection of microkernels. In particular, we will show how to select and
combine two different microkernels to satisfy the divisibility constraint, which is a fundamental
issue when the size of a problem dimension does not have many small prime divisors.

Microkernels and combination. The search space construction starts by considering all classes
of microkernels and selecting those whose sizes divide the problem sizes. Then, we look for the
combination of two microkernels differing only along the ℎ dimension that allows to cover the size
of the ℎ dimension. For all pairs of microkernels in the same class, of sizes ℎ1 and ℎ2, and given
a problem size 𝐻 , we look for a number of repetitions 𝑎 and 𝑏 of these microkernels such that:
(𝑎 × ℎ1 + 𝑏 × ℎ2) divides 𝐻 . For example, if 𝐻 = 34 and considering two microkernels of the same
class of size ℎ1 = 11 and ℎ2 = 12, one may combine two microkernels of size 11 followed by a
microkernel of size 12, for a total of 34.
If no single microkernel or combination of microkernels would be found with this process, the

fallback would be to use a suboptimal microkernel, which is what we wanted to avoid by ruling out
partial tiles. Fortunately, this situation never happens on the architectures and micro-architectures
we considered. Indeed, the classes of microkernels identified in Section 4.1 are large enough to
accommodate for any possible size through the combination of two microkernels (as long as the
size of the convolution dimension of interest is greater than or equal to the smallest microkernel in
the selected class). For example, for the microkernel class {[U𝑠𝑖𝑧𝑒ℎ,ℎ,U2,𝑘 ,V𝑘], 8 ≤ 𝑠𝑖𝑧𝑒ℎ < 16}, all
problem sizes 𝐻 above 8 can be obtained by a linear combination of two integral elements ℎ1 and
ℎ2 from the interval [8, 15] (e.g. 17 = 8 + 9).

Completing the configuration. For each single microkernel that divides the problem sizes, or
microkernel combination that divides the problem sizes, we can enumerate all the possibilities of
completing this microkernel selection into a full configuration:

• Set the configuration (the list of specifiers) to the one corresponding to the chosenmicrokernel
or combination of microkernels.

• Then, one needs to complete the configuration along all dimensions for which the problem
size is greater than the microkernel size. For each dimension 𝑑 , consider a divisor 𝑛 of the
dimension’s size 𝐷 divided by the size of the matching microkernel dimension. We can
complete the configuration by appending the corresponding specifier T𝑛,𝑑 to the left of
the current configuration. By performing this operation recursively, and by considering all
possible choices of dimension and divisor, we obtain the set of all possible configurations
built on top of the selected microkernel.

• To benefit from register reuse, we impose that the first dimension above the microkernel is 𝑐 .
• When considering a sequence of two microkernels at dimension 𝑑 with the combination
𝑎×ℎ1 +𝑏 ×ℎ2, we can insert _seq𝑑𝛼 . [ℓ] at any occurrence of dimension 𝑑 in the configuration.
Thus, we also consider all possibilities of placement of this insertion. The value of the list ℓ is
[(𝑎, ℎ1), (𝑏, ℎ2)].

ACM Trans. Arch. Code Optim., Vol. 1, No. CONF, Article 1. Publication date: January 2022.

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

Autotuning Convolutions is Easier Than You Think 1:13

Example. Consider the following class of microkernels (among others):

{[U𝛽,ℎ,U2,𝑘 ,V𝑘], 8 ≤ 𝛽 ≤ 15}

for AVX512 and the Yolo9000-13 problem sizes (𝐾,𝐶, 𝐻/𝑊,𝑅/𝑆) = (512, 256, 34, 3).
The problem size 𝐻 on dimension ℎ is 34 = 2 × 17, hence there is no single microkernel from the

considered class that matches one of its divisors. Next, we consider combinations of 2 microkernels
from that class; 2 × 11 + 12 is one such combination.

We need to complete this configuration. By comparing the sizes of the combination of microkernel
and the problem, there is factor of 16 = 24 along the𝑘 dimension, no factor left along theℎ dimension,
and the whole problem size left, along all other dimensions.
We have to pick 𝑐 as the first dimension above the microkernel, so let us pick 256 as his factor.

The configuration is now:
[T256,𝑐 ,U𝛽,ℎ,U2,𝑘 ,V𝑘]

We continue completing the configuration by picking a dimension and a factor at every level. At
some point, we need to decide at which level to place the sequential combination between the
microkernel _seqℎ𝛽 . [(2, 11), (1, 12)], which separates the two portions of the generated code that
combines two different microkernels.

Finally, an example of full completions (among others) is:

[T16,𝑘 , _seqℎ𝛽 . [(2, 11), (1, 12)] , T17,𝑤, T3,𝑠 , T3,𝑟 , T2,𝑤, T256,𝑐 ,U𝛽,ℎ,U2,𝑘 ,V𝑘]

The construction of the structured search space is summarized in Fig. 7. We will see in the
next section that the resulting search space is sufficiently small and sufficiently dense with good
candidates to yield excellent results with random search only.

5 PERFORMANCE RESULTS
In this section, we evaluate the effectiveness of random sampling as a search algorithm. We
compare the performance of the generated code with oneDNN [Intel 2018] (Intel library, V2.3),
AutoScheduler [Zheng et al. 2020a] (Ansor, autotuning, in TVM, 22 July 2021) and Mopt [Li et al.
2021] (analytical modeling). We also compare its convergence rate against AutoScheduler, in terms
of the number of configurations generated and run.

Setup. The experiments were carried out on three architectures: (a) an 18-core Intel Xeon Gold
5220 Cascade Lake processor (frequency set to 2.2 GHz) with 1 socket and 1 AVX512 fused multiply-
add unit per core; and (b) a 32-core Intel Xeon Gold 6130 Skylake processor (frequency set to 2.3
GHz) with 2 sockets and 2 AVX512 fused multiply-add units per core. Both architectures have 32KB
L1 cache and 1024KB L2 cache per core. The first processor has a 24.75MB shared L3 cache, while
the second one has a 22MB shared L3 cache. (c) a 32-core ARM ThunderX2 CN99xx processor
(frequency set to 2.2 GHz) with 2 sockets and 2 Neon vector units per core. This high-end ARM
microarchitecture has 32KB L1 cache, 256KB L2 cache per core and a 32MB shared L3 cache.
The OS is Debian GNU/Linux with kernel version 4.19, monitoring hardware counters using

PAPI version 5.7.0. We compile the generated C code using gcc with the flags -O3 -march=native
-fno-align-loops for the Intel x86 architectures. For the ARM AArch64 architecture, we use clang
instead of gcc because we observed it produced faster code on our benchmarks. For AutoSched-
uler, we used the recommended template conv2d_ NHWC from the TVM library. This template is
significantly faster than the alternative NCHWc.

We evaluate performance over the convolutions of two networks: Yolo-9000 [Redmon and Farhadi
2017] and ResNet-18 [He et al. 2016].The sizes of their convolution layers can be found in Fig. 8.

ACM Trans. Arch. Code Optim., Vol. 1, No. CONF, Article 1. Publication date: January 2022.

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

1:14
Nicolas Tollenaere, Guillaume Iooss, Stéphane Pouget, Hugo Brunie, Christophe Guillon, Albert Cohen, P. Sadayappan,

and Fabrice Rastello

Offline stage: microkernel exploration (Sec. 4.1).
• Build the set of microkernel candidates with unroll factors satisfying a predefined,
architecture-specific set of constraints (range of unroll factors, footprint of the output and
parameter tensors).

• Generate fully vectorized code for every candidate and run all of them to table their
performance.

• Sort the fastest ones into classes of microkernels (with identical sizes except for the sizeℎ
dimension).

Online stage: construction of the optimization search space (Sec. 4.2).
Given the exact problem sizes:

• Build the set of (combinations of) microkernels from the classes, that divide the problem
sizes.

• If the previous set is empty, fallback to a sub-optimal microkernel.
• For a given microkernel/combination:
– For each dimension:
∗ Compute the number of outer loop iterations for every dimension at (coarser)
microkernel granularity, by dividing each problem size by the corresponding
microkernel/combination size.

∗ Enumerate all the ordered factorizations of these outer loop sizes satisfying the
divisibility constraint. Each integer factor in the ordered factorization for a given
dimension yields one level of tiling in the generated code.

– Select a nesting order between the tiling levels collected across all dimensions, to form the
tiling strategy above the microkernel.

– If we consider a combination of microkernels, place the _seq𝑑𝛼 . [ℓ] somewhere above the
microkernel.

Fig. 7. Construction of the structured optimization space.

To measure performance in a consistent, we embed the generated code in the TVM framework
by using a tensorize operator. We measure performance using the TVM function evaluator, with
parameters repeat set to 5 and min_repeat_ms set to 100ms. This means that TVM repeats the
operation for at least 100ms, then it repeats this process 1+5 times, i.e., the first iteration is discarded.
Among the remaining 5, TVM removes the exterma and takes the average of the rest. Consistently
with the majority of the reported performance experiments [Zheng et al. 2020a], we consider a hot
cache hypothesis: memory is not flushed between each run.

Performance measurement. Fig. 9 presents the performance results, reported as a fraction of the
peak performance of the multicore CPU. The performance of random sampling after 1000 runs
is well above oneDNN and Mopt, and is comparable to AutoScheduler after 1000 runs (which
is the recommended amount of time for it to converge [Zheng et al. 2020a]). For Yolo9000_00
and ResNet_01, the reduction size 𝐶 is very small, so our microkernel-based approach does not
have much reuse potential above the selected pair of microkernels. In comparison, AutoScheduler
exploits the kernel dimensions 𝑅 and 𝑆 to increase the size of the reduction. For Yolo9000_23, the
output of AutoScheduler is not even vectorized, which explains the huge performance difference.
A few Mopt results are missing due to reproducibility issues with the available artifact. We

reported such situations with a performance at 0% of themachine peak. The performance of oneDNN
is surprisingly low, despite our efforts to explore the relevant configuration and performance

ACM Trans. Arch. Code Optim., Vol. 1, No. CONF, Article 1. Publication date: January 2022.

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

Autotuning Convolutions is Easier Than You Think 1:15

Benchmark Problem sizes
(K, C, H/W, R/S)

Yolo9000-0 32, 3, 544, 3
Yolo9000-2 64, 32, 272, 3
Yolo9000-4 128, 64, 136, 3
Yolo9000-5 64, 128, 136, 1
Yolo9000-8 256, 128, 68, 3
Yolo9000-9 128, 256, 68, 1
Yolo9000-12 512, 256, 34, 3
Yolo9000-13 256, 512, 34, 1
Yolo9000-18 1024, 512, 17, 3
Yolo9000-19 512, 1024, 17, 1
Yolo9000-23 28269, 1024, 17, 1

Benchmark Problem sizes
(K, C, H/W, R/S)

ResNet18-1* 64, 3, 224, 7
ResNet18-2 64, 64, 56, 3
ResNet18-3 64, 64, 56, 1
ResNet18-4* 128, 64, 56, 3
ResNet18-5* 128, 64, 56, 1
ResNet18-6 128, 128, 28, 3
ResNet18-7* 256, 128, 28, 3
ResNet18-8 256, 128, 28, 3
ResNet18-9 256, 256, 14, 3
ResNet18-10* 512, 512, 14, 3
ResNet18-11* 512, 256, 14, 1
ResNet18-12 512, 512, 7, 3

Fig. 8. Convolution benchmarks and sizes. The stride is 1 by default, unless marked with a * (stride 2
convolutions). Dimension 𝑘 of Yolo9000-23 was padded to 28272 (a multiple of 16) to vectorize it on AVX512.

evaluation settings. However, we have confirmed with the Intel developers that such results are in
line with their expectations.

Convergence rate. Fig. 10 compares the convergence rate of AutoScheduler and our random
sampling method. We have run 6000 candidates in our space and we randomly picked 3000 of them,
in order to produce the 8 traces in the graph on the right. To understand these graphs, let us recall
how the autotuning process in AutoScheduler works: every 64 measurements, it rebuilds its cost
model using the performance data collected so far. In particular, the first 64 candidates are picked
randomly in the AutoScheduler search space, and model is updated every 64 runs.
Thanks to the structure of our space (resulting from staging the selection of microkernels and

imposing the divisibility constraint), we observe that random sampling alone converges much
faster than AutoScheduler despite the lack of a cost model. The high density of good candidates in
our structured space results in a high probability of reaching performance close to the maximum
after 10–20 runs only.
We also observed that AutoScheduler’s output is not very stable. Sometimes it converges very

late, eliminating much hope of reducing the number of runs below 3000. And the final result
itself is not very stable, with up to 10% performance variation across autotuning experiments.
AutoScheduler seems to suffer from insufficient flexibility in adapting its exploitation/exploration
ratio, which results in its search algorithm getting stuck in local maxima for too long.
About compilation time, the offline microkernel code generation and compilation stage takes

about 50mn on a single machine (and only needs to be run once). Selecting configurations is almost
instantaneous, and executing them takes 30mn for 1000 configurations (less than 2 seconds to
compile and measure a single configuration). AutoScheduler needs to refine and retrain a model
every 64 measurements, so it takes about 2h to perform 3000 measurements. So, the average time
spent per measurement is similar for both sides. It also needs to start over for every new problem
size, while running 20 random samples in our search space takes a few tens of seconds per problem
size.

ACM Trans. Arch. Code Optim., Vol. 1, No. CONF, Article 1. Publication date: January 2022.

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

1:16
Nicolas Tollenaere, Guillaume Iooss, Stéphane Pouget, Hugo Brunie, Christophe Guillon, Albert Cohen, P. Sadayappan,

and Fabrice Rastello

Fig. 9. Sequential performance comparison with AutoScheduler, oneDNN, Mopt for AVX512 (Intel Xeon Gold
5220 and 6130), and with AutoScheduler only for Neon (ARM ThunderX2), shown as percentage of machine
peak. The averages given for each CNN are weighted by the amount of computation in every layer.

6 ABLATION STUDY OF THE SEARCH SPACE PRINCIPLES
Important research questions remain, such as what aspect the structured search space contributes
to improving the density of good candidates, and to what extent each component of its design
contributes to the performance of the generated code.

6.1 Performance distribution in the search space
We would first like to characterize the density of good candidates. To achieve this, we simply
perform a random sampling of the search space and report the performance distribution of the
generated code. The methodology for this random sampling is the following: list all microkernels
and combinations of microkernels that divide the problem sizes, then draw from this list uniformly,
then draw a divisor of 𝑐 (the reuse dimension) to nest the microkernel in a reuse loop, then
draw uniformly over the set of pairs (dimension, factor) for the levels above the reuse loop, and

ACM Trans. Arch. Code Optim., Vol. 1, No. CONF, Article 1. Publication date: January 2022.

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

Autotuning Convolutions is Easier Than You Think 1:17

Fig. 10. Comparison of the convergence rate of 8 random samplings in our space, against 8 independent
executions of AutoScheduler (in blue), for sequential code generation, on Yolo9000_12, targeting an Intel Xeon
Gold 6130. (i) The left figure shows the maximum of the performance of the first 64 chosen implementations.
The boxplot for AutoScheduler summarizes the 8 executions, while the boxplot for random sampling represents
20 executions. (ii) The right figure shows the best candidate found by AutoScheduler after each batch of 64
runs, and compares it to the best candidate found by random sampling for an equivalent number of runs.

(if applicable) insert the _seq𝑑𝛼 . [ℓ] specifier at the appropriate level. We perform these draws
until completion of the configuration. Notice that this algorithm is not uniform over the space of
configurations: it has a bias in favor of the larger factors for a dimension, which is preferable as it
tends to avoid inadequately small tiles.

The resulting distributions are shown on Fig. 11. We observe that some problem sizes are easier
to optimize than others. Reaching good performance is particularly easy for ResNet-11, for example.
On the contrary, some problem sizes such as ResNet-01 and Yolo9000-00 are much harder to
optimize, due to a small 𝑐 dimension which makes the microkernel reuse strategy less efficient. In
such cases, exploiting other dimensions (𝑟 and 𝑠) for reuse may be needed. Except for those difficult
cases, the distribution is clearly favorable to random search. This explains why random search
quickly approaches the best performing candidate after a few draws.

6.2 Evaluation of the combination of microkernels
The next question is to evaluate the performance benefits of combining microkernels. We consider
the randomly drawn configurations from the previous subsection, and we split them into two sets:
the set of configurations that use a single microkernel, and the set of configurations that use a
combination of microkernel. Figure 12 compares the distribution of both sets of configurations on
a variety of problem sizes.

We observe that the performance with and without combinations of microkernels is comparable
when both possibilities are available. However, the last three Yolo9000 benchmarks only has
combination configurations. Indeed, the size of the ℎ dimension is the prime number 17 for these
three benchmarks. Since 17 is above the unrolling limit (it breaks all register pressure limits), the
only microkernels available in our space are those unrolled along the 𝑘 and 𝑐 dimensions only. And
these yield around 30% of peak performance, while combining microkernels reach 85%.

To complement this analysis, we focused on the Yolo9000-18 benchmark and considered a micro-
kernel with an unrolling factor of 17 on dimension ℎ (U17,ℎV𝑘). We ran 500 random configurations
while forcing the use of this microkernel. We observed a maximum performance of 68% of the
machine peak, clearly limited by register spilling.

ACM Trans. Arch. Code Optim., Vol. 1, No. CONF, Article 1. Publication date: January 2022.

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

1:18
Nicolas Tollenaere, Guillaume Iooss, Stéphane Pouget, Hugo Brunie, Christophe Guillon, Albert Cohen, P. Sadayappan,

and Fabrice Rastello

Fig. 11. Cumulative performance distribution for a random sampling algorithm, for 1000 sequential configu-
rations, on an Intel Xeon Gold 6130 CPU. The horizontal axis is the percentage of machine peak. The vertical
axis is the ratio of draws that has a performance above a given percentage of machine peak. The more area
on the right side below the curve, the better the distribution is. The red bar marks the maximal performance
observed over these 1000 draws.

This study confirms the importance of combining microkernels, especially when the problem
sizes are too small and do not have small prime factors. In the majority of cases, it does not
significantly impact the performance distribution.

6.3 Evaluation of the tile size divisibility constraint
Let us finally investigate the impact of the divisibility constraint at tile level, i.e., the pros and
cons of forcing tile sizes to divide each other and the problem size along a given dimension.

ACM Trans. Arch. Code Optim., Vol. 1, No. CONF, Article 1. Publication date: January 2022.

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

Autotuning Convolutions is Easier Than You Think 1:19

Fig. 12. Study of the impact of the combination of microkernels on the distribution on an Intel Xeon Gold
6130. We report the cumulative distribution of the space where combinations of microkernels are allowed (All)
and where these combinations are forbidden (Single). The ratio reported is the percentage of configurations
using a single microkernel, on the totality of the draws. Note that all the draws for the last 3 Yolo9000s
are combinations of microkernels. For Yolo9000-18, we have added (in green) 1000 runs that use a single
suboptimal microkernel. This microkernel falls outside of our classes of high-performing microkernels, but
divides exactly the problem sizes. This is a situation where the combination of microkernels is particularly
useful (nearly 90% of peak instead of 70%).

Note that we still enforce that any microkernel is executed as a whole, i.e., tiles are composed of
complete microkernels; in other words, the size of tile dimension must always be a multiple of the
corresponding microkernel size along that dimension.1 If divisibility is not enforced at the tile level,
some control flow may be needed for early termination of one or more tile dimensions.

In order to compare both spaces, we consider a different random selection algorithm, with two
variations, for the divisible configuration space and for the non-divisible configuration space. This
ensures we have an identical sampling bias across both spaces, to make the comparison as fair as
possible.

The sampling algorithm is the following:
• First, we list all the microkernels and combination of microkernels that divide the problem
sizes, then we select one of them uniformly.

• For each dimension 𝑑 , we randomly pick the level of tiling 𝑙𝑑 on this dimension, between 1
and 4 (4 being the height of the memory hierarchy, not including the register level).

• For the non-divisible space: we select uniformly 𝑙𝑑 tile sizes between twice the microkernel
sizes and the problem sizes, then we sort them in increasing order.

• For the divisible space: we consider 𝑘𝑑 the ratio between the problem size and the microkernel
size on dimension 𝑑 . We build all the decompositions of 𝑘𝑑 in 𝑙𝑑 elements (greater than 1, if
possible), and we select uniformly one of these decompositions.

1We evaluated the impact of this microkernel-specific constraint in Section 3.2.

ACM Trans. Arch. Code Optim., Vol. 1, No. CONF, Article 1. Publication date: January 2022.

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

1:20
Nicolas Tollenaere, Guillaume Iooss, Stéphane Pouget, Hugo Brunie, Christophe Guillon, Albert Cohen, P. Sadayappan,

and Fabrice Rastello

Fig. 13. Study of the impact of the divisibility constraint on an Intel Xeon Gold 6130. We choose randomly
1000 configurations in a space with the divisibility constraint on the tile sizes above the microkernel, then we
choose 1000 other configurations without the divisibility constraint.

• Finally, to select the permutation, we consider the set of pairs (dimension, tile sizes or factor),
plus the _seq𝑑𝛼 . [ℓ] specifier in case of combination of microkernels, and we pop uniformly
elements of this set, until completion of the configuration.

Notice that a slight bias discrepancy remains in the tile size selection: the divisible space samples
ratios between two levels of tiling, while the non-divisible space samples tile size directly. So, for
example, it will be impossible for the divisible space to have a tile size whose value is strictly
between half the problem size and the problem size, while for the non-divisible space no such
constraint exist.
Figure 13 shows the distribution of 1000 random configurations, for the divisible space and

for the non-divisible space. We observe that the maximal performance is similar across for both
distributions. Also, observing the portion corresponding to the best performing configurations,
we do not observe a significant trend. We conclude that the divisibility constraint does not induce
performance loss in practice.

7 RELATEDWORK
TVM AutoScheduler. AutoScheduler [Zheng et al. 2020a] is TVM’s [Chen et al. 2018a] state of

the art integrated autotuner for tensor operations (in particular CNNs). It is formed of several
components:

• The program sampler builds randomly the loop structure (sketch) from some specific deriva-
tion rules. These rules reduce the size of the search space, for example by imposing constraints
to the order of the loops. In the case of a single tensor operation, any program generated
through AutoScheduler’s program sampler can be expressed in terms of the specifiers intro-
duced in Section 3.3.

• The performance tuner proceeds iteratively over batches of 64 sampled programs. It collects
newly sampled programs, and 20% of the best-performing programs so far. Then, it resorts to
evolutionary search to mutate these programs. The mutated programs are evaluated through

ACM Trans. Arch. Code Optim., Vol. 1, No. CONF, Article 1. Publication date: January 2022.

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

Autotuning Convolutions is Easier Than You Think 1:21

a cost model (a gradient boosting decision tree), to estimate their performance without having
to execute them. From these estimations, a batch of 64 new programs is built and run.
Performance measurements on the new batch allow retraining (and improving) the cost
model. In particular, because the cost model is untrained on the first 64 runs, its selection is
effectively random.

• The task scheduler partitions the different compute operations. All the operators of a given
partition are optimized as a whole. In our context of a single operation, this part is not
relevant.

Optimization of affine programs. To optimize affine programs, some methods are based on an-
alytical models and operation research. This is the main approach used by polyhedral based
compilers [Baghdadi et al. 2019; Bondhugula et al. 2008; Elango et al. 2018; Grosser et al. 2012;
Vasilache et al. 2018; Verdoolaege et al. 2013] that leverage parametric integer linear programming.
Although such approaches are well suited to expose parallelism [Feautrier 1992a,b] and coarse
grain locality [Bondhugula et al. 2008], we believe it may not be the right formalism for tile size
selection or register level optimizations. On the other hand, the ability to count points in a polyhe-
dron [Barvinok 1994] allows to automatically generate (non-linear) cost models, which in turns
enabled Li et al. [Li et al. 2019] to build and analytical model for the selection of a permutation
scheme.2
Cloog [Bastoul 2004] is a powerful algorithm to automatically generate imperative code for

scanning a union of polyhedra. Polyhedral compilers leverage such code generation capabilities,
but face the challenge of dealing with a very general class of imperfect nests and transformations.
It is difficult in such a broad context to compete with domain-specific optimizations. Our code
generator involves simple polyhedron scanning algorithms, and the divisibility constraint enables
generation of high-quality compiler friendly code without heroic efforts [Grosser et al. 2015].

Optimization of machine learning programs. There exist many compilers specialized for machine
learning: PlaidML [Chen et al. 2019] using polyhedral techniques, XLA [Google [n.d.]] for Tensor-
Flow [Abadi et al. 2016], Halide [Ragan-Kelley et al. 2013], or TVM [Chen et al. 2018a]. TVM, as
opposed to most approaches, does not rely on numerical libraries. Its strategy is to select the best
schedule using autotuning with an ML-based performance model. Contrary to our approach that
decouples the search into microkernel optimization and loop tiling/permutation search, the TVM
search space is flat. In TVM, optimizations related to strength reduction and register tiling are left
to the compiler. TVM has been extended with FlexTensor [Zheng et al. 2020b] and Ansor (a.k.a.
AutoScheduler) [Zheng et al. 2020a]. We also compare to AutoTVM, the auto optimizer of TVM.
Telamon [Beaugnon et al. 2017] tackles this problem by building a very large, flat search space
where optimization choices are tied together by dependency constraints. Then the exploration
combines an elaborate performance model to prune the search space with feedback from actual
executions.

A recent paper [Gibson and Cano 2022] considers the problem of transferring a schedule found
by AutoScheduler across problem sizes. This transfer is performed by relaxing the ratio of the last
tile along each dimension, in order to match other similar problem sizes. They report a significant
speed-up in convergence, which is coherent with our observations. Indeed, the transfer conserves
the inner loops, which contain a performant microkernel, which contributes significantly to obtain
a good strategy.

2Note that the MobileNet results presented by Li et al. are actually not MobileNet but 2D convolutions with identical shapes
as the CNN’s original depthwise separable convolutions; we choose to leave these layers out to avoid propagating the
confusion any further, but our results on those shapes are consistent with the results presented earlier.

ACM Trans. Arch. Code Optim., Vol. 1, No. CONF, Article 1. Publication date: January 2022.

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1:22
Nicolas Tollenaere, Guillaume Iooss, Stéphane Pouget, Hugo Brunie, Christophe Guillon, Albert Cohen, P. Sadayappan,

and Fabrice Rastello

Linear algebra and CNN libraries. Frameworks such as TBLIS [Matthews 2018] or TCCG [Springer
and Bientinesi 2016] aim at creating portable optimized code for BLAS or tensor contraction kernels.
These frameworks implement an efficient predefined scheduling scheme which is very effective,
in particular for matrix multiplication [Goto and Van De Geijn 2008]. These frameworks take
advantage of advanced optimizations: tensor transposition, tensor blocking or sub-viewing, data
prefetching, vectorization, block scheduling, unrolling and register promotion. The register tile
shape is predefined using expert knowledge on instruction level and register pressure. Thanks to
aggressive autotuning and JIT/AoT code versioning, MKL [Wang et al. 2014] and oneDNN [Intel
2018] are the best available Intel libraries which implement all these techniques.

8 CONCLUSION
We presented a structured search space for tensor compiler construction and autotuning. Our
approach allows a simple random search to match or outperform the state-of-the-art tool, Au-
toScheduler, at a fraction of the cost. This search space is based on the automatic generation and
preselection of near-peak performance microkernels, and on the imposition of divisibility con-
straints on tile sizes and unroll factors. These principles allow pruning the search space, increasing
the density of near-optimal candidates. The divisibility constraint can be relaxed, in cases where it
does not allow a sufficient number of tiling scenarios, by allowing the sequential combination of
microkernels.

Our results show that in exploring a search space to look for the best candidates, the structure of
the space and its domain-specific pruning can be as important as the metric and the search strategy.
This may sound obvious, but much of the recent work focuses on the latter design dimensions,
using elaborate analytical modeling or learning processes. Of course, it would be interesting to
further improve the effectiveness of domain-specific code generators and autotuners, by combining
rather than choosing between these strategies. This is the topic of our current efforts, building on
analytical as well as empirical, ML-based modeling. We also would like to broaden the search space
to include transformations such as packing or prefetching, to carefully study their performance
impact and determine when they are needed. And of course this study needs to be extended beyond
CPU architectures, and beyond convolutions.

Acknowledgments. Thisworkwas supported in part by the Bpifrance Programme d’Investissements
d’Avenir (PIA) as part of the ES3CAP project. Experiments presented in this paper were car-
ried out using the Grid’5000 testbed, supported by a scientific interest group hosted by Inria
and including CNRS, RENATER and several Universities as well as other organizations (see
https://www.grid5000.fr).

REFERENCES
Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat,

Geoffrey Irving, Michael Isard, et al. 2016. Tensorflow: A system for large-scale machine learning. In 12th USENIX
symposium on operating systems design and implementation (OSDI’16). USENIX Association, USA, 265–283.

Riyadh Baghdadi, Jessica Ray, Malek Ben Romdhane, Emanuele Del Sozzo, Abdurrahman Akkas, Yunming Zhang, Patricia
Suriana, Shoaib Kamil, and Saman P. Amarasinghe. 2019. Tiramisu: A Polyhedral Compiler for Expressing Fast and
Portable Code. In IEEE/ACM International Symposium on Code Generation and Optimization, (CGO 2019), Mahmut Taylan
Kandemir, Alexandra Jimborean, and Tipp Moseley (Eds.). IEEE, 193–205.

Alexander I. Barvinok. 1994. A polynomial time algorithm for counting integral points in polyhedra when the dimension is
fixed. Mathematics of Operations Research 19, 4 (1994), 769–779.

Cedric Bastoul. 2004. Code Generation in the Polyhedral Model Is Easier Than You Think. In Proceedings of the 13th
International Conference on Parallel Architectures and Compilation Techniques (PACT ’04). IEEE Computer Society, 7–16.

Ulysse Beaugnon, Antoine Pouille, Marc Pouzet, Jacques Pienaar, and Albert Cohen. 2017. Optimization Space Pruning
without Regrets. In Proceedings of the 26th International Conference on Compiler Construction (Austin, TX, USA) (CC 2017).

ACM Trans. Arch. Code Optim., Vol. 1, No. CONF, Article 1. Publication date: January 2022.

https://www.grid5000.fr

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

Autotuning Convolutions is Easier Than You Think 1:23

Association for Computing Machinery, New York, NY, USA, 34–44. https://doi.org/10.1145/3033019.3033023
Uday Bondhugula, Albert Hartono, J. Ramanujam, and P. Sadayappan. 2008. A Practical Automatic Polyhedral Program

Optimization System. In ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI).
Association for Computing Machinery, New York, NY, USA, 101–113.

Huili Chen, Rosario Cammarota, Felipe Valencia, and Francesco Regazzoni. 2019. PlaidML-HE: Acceleration of Deep
Learning Kernels to Compute on Encrypted Data. In 37th IEEE International Conference on Computer Design, ICCD 2019,
Abu Dhabi, United Arab Emirates, November 17-20, 2019. IEEE, 333–336. https://doi.org/10.1109/ICCD46524.2019.00053

Tianqi Chen, Thierry Moreau, Ziheng Jiang, Lianmin Zheng, Eddie Yan, Haichen Shen, Meghan Cowan, Leyuan Wang,
Yuwei Hu, Luis Ceze, Carlos Guestrin, and Arvind Krishnamurthy. 2018a. TVM: An Automated End-to-End Optimizing
Compiler for Deep Learning. In 13th USENIX Symposium on Operating Systems Design and Implementation (OSDI 18).
USENIX Association, 578–594.

Tianqi Chen, Lianmin Zheng, Eddie Yan, Ziheng Jiang, Thierry Moreau, Luis Ceze, Carlos Guestrin, and Arvind Krishna-
murthy. 2018b. Learning to Optimize Tensor Programs. Advances in Neural Information Processing Systems 31 (2018),
3389–3400.

Stephanie Coleman and Kathryn S McKinley. 1995. Tile size selection using cache organization and data layout. ACM
SIGPLAN Notices 30, 6 (1995), 279–290.

Venmugil Elango, Norm Rubin, Mahesh Ravishankar, Hariharan Sandanagobalane, and Vinod Grover. 2018. Diesel: DSL for
Linear Algebra and Neural Net Computations on GPUs. In Proceedings of the 2nd ACM SIGPLAN International Workshop
on Machine Learning and Programming Languages. ACM, 42–51.

Paul Feautrier. 1992a. Some Efficient Solutions to the Affine Scheduling Problem: I. One-dimensional Time. International
Journal of Parallel Programming 21, 5 (Oct. 1992), 313–348. https://doi.org/10.1007/BF01407835

Paul Feautrier. 1992b. Some Efficient Solutions to the Affine Scheduling Problem. Part II. Multidimensional Time. International
Journal of Parallel Programming 21, 6 (Dec. 1992), 389–420. https://doi.org/10.1007/BF01379404

Perry Gibson and José Cano. 2022. Transfer-Tuning: Reusing Auto-Schedules for Efficient Tensor Program Code Generation.
In 31st International Conference on Parallel Architectures and Compilation Techniques (PACT). Chicago.

Google. [n.d.]. XLA : optimiser le compilateur pour le machine learning. https://www.tensorflow.org/xla?hl=fr
Kazushige Goto and Robert Van De Geijn. 2008. High-Performance Implementation of the Level-3 BLAS. ACM Trans. Math.

Software 35, 1, Article 4 (2008), 14 pages.
Tobias Grosser, Armin Größlinger, and Christian Lengauer. 2012. Polly - Performing Polyhedral Optimizations on a

Low-Level Intermediate Representation. Parallel Processing Letter 22, 4 (2012).
Tobias Grosser, Sven Verdoolaege, and Albert Cohen. 2015. Polyhedral AST Generation Is More Than Scanning Polyhedra.

ACM Transactions on Programming Languages Systems 37, 4, Article 12 (July 2015), 50 pages. https://doi.org/10.1145/
2743016

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep Residual Learning for Image Recognition. In IEEE
Conference on Computer Vision and Pattern Recognition (CVPR). 770–778. https://doi.org/10.1109/CVPR.2016.90

Alexander Heinecke, Greg Henry, Maxwell Hutchinson, and Hans Pabst. 2016. LIBXSMM: Accelerating Small Matrix
Multiplications by Runtime Code Generation. In Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis (Salt Lake City, Utah) (SC ’16). IEEE Press, Article 84, 11 pages.

Intel. 2018. oneAPI deep neural network library (oneDNN). https://01.org/.
Rui Li, Aravind Sukumaran-Rajam, Richard Veras, Tze Meng Low, Fabrice Rastello, Atanas Rountev, and P. Sadayappan.

2019. Analytical cache modeling and tilesize optimization for tensor contractions. In Proceedings of the International
Conference for High Performance Computing, Networking, Storage and Analysis (SC), Michela Taufer, Pavan Balaji, and
Antonio J. Peña (Eds.). ACM, 13.

Rui Li, Yufan Xu, Aravind Sukumaran-Rajam, Atanas Rountev, and P. Sadayappan. 2021. Analytical Characterization and
Design Space Exploration for Optimization of CNNs. In Proceedings of the Twenty-Fifth International Conference on
Architectural Support for Programming Languages and Operating Systems. Association for Computing Machinery, New
York, NY, USA, 928–942.

Devin A. Matthews. 2018. High-Performance Tensor Contraction without Transposition. SIAM Journal on Scientific
Computing 40, 1 (2018), C1–C24.

NVIDIA. 2018. CuDNN: GPU Accelerated Deep Learning. https://developer.nvidia.com/cudnn.
Jonathan Ragan-Kelley, Connelly Barnes, Andrew Adams, Sylvain Paris, Frédo Durand, and Saman P. Amarasinghe. 2013.

Halide: a language and compiler for optimizing parallelism, locality, and recomputation in image processing pipelines. In
ACM SIGPLAN Conference on Programming Language Design and Implementation, PLDI ’13, Seattle, WA, USA, June 16-19,
2013, Hans-Juergen Boehm and Cormac Flanagan (Eds.). ACM, 519–530. https://doi.org/10.1145/2491956.2462176

Joseph Redmon and Ali Farhadi. 2017. YOLO9000: Better, Faster, Stronger. In IEEE Conference on Computer Vision and Pattern
Recognition. IEEE Computer Society, 6517–6525.

ACM Trans. Arch. Code Optim., Vol. 1, No. CONF, Article 1. Publication date: January 2022.

https://doi.org/10.1145/3033019.3033023
https://doi.org/10.1109/ICCD46524.2019.00053
https://doi.org/10.1007/BF01407835
https://doi.org/10.1007/BF01379404
https://www.tensorflow.org/xla?hl=fr
https://doi.org/10.1145/2743016
https://doi.org/10.1145/2743016
https://doi.org/10.1109/CVPR.2016.90
https://01.org/
https://developer.nvidia.com/cudnn
https://doi.org/10.1145/2491956.2462176

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1:24
Nicolas Tollenaere, Guillaume Iooss, Stéphane Pouget, Hugo Brunie, Christophe Guillon, Albert Cohen, P. Sadayappan,

and Fabrice Rastello

Gabriel Rivera and Chau-Wen Tseng. 1999. A comparison of compiler tiling algorithms. In International Conference on
Compiler Construction. Springer, Springer Berlin Heidelberg, Berlin, Heidelberg, 168–182.

Paul Springer and Paolo Bientinesi. 2016. Design of a high-performance GEMM-like Tensor-Tensor Multiplication.
arXiv:1607.00145

Field G. Van Zee and Robert A. van de Geijn. 2015. BLIS: A Framework for Rapidly Instantiating BLAS Functionality. ACM
Trans. Math. Software 41, 3, Article 14 (June 2015), 33 pages.

Nicolas Vasilache, Oleksandr Zinenko, Theodoros Theodoridis, Priya Goyal, Zachary DeVito, William S. Moses, Sven
Verdoolaege, Andrew Adams, and Albert Cohen. 2018. Tensor Comprehensions: Framework-Agnostic High-Performance
Machine Learning Abstractions. arXiv:1802.04730 [cs.PL]

Sven Verdoolaege, Juan Carlos Juega, Albert Cohen, José Ignacio Gómez, Christian Tenllado, and Francky Catthoor. 2013.
Polyhedral Parallel Code Generation for CUDA. ACM Transactions on Architecture and Code Optimization 9, 4, Article 54
(Jan. 2013), 23 pages.

Endong Wang, Qing Zhang, Bo Shen, Guangyong Zhang, Xiaowei Lu, Qing Wu, and Yajuan Wang. 2014. Intel Math Kernel
Library. Intel, 167–188.

Lianmin Zheng, Chengfan Jia, Minmin Sun, Zhao Wu, Cody Hao Yu, Ameer Haj-Ali, Yida Wang, Jun Yang, Danyang Zhuo,
Koushik Sen, Joseph E. Gonzalez, and Ion Stoica. 2020a. Ansor: Generating High-Performance Tensor Programs for Deep
Learning. In 14th USENIX Symposium on Operating Systems Design and Implementation (OSDI 20). USENIX Association,
863–879. https://www.usenix.org/conference/osdi20/presentation/zheng

Size Zheng, Yun Liang, Shuo Wang, Renze Chen, and Kaiwen Sheng. 2020b. FlexTensor: An Automatic Schedule Exploration
and Optimization Framework for Tensor Computation on Heterogeneous System. In ASPLOS ’20: Architectural Support
for Programming Languages and Operating Systems, James R. Larus, Luis Ceze, and Karin Strauss (Eds.). ACM, 859–873.
https://doi.org/10.1145/3373376.3378508

ACM Trans. Arch. Code Optim., Vol. 1, No. CONF, Article 1. Publication date: January 2022.

https://arxiv.org/abs/1607.00145
https://arxiv.org/abs/1802.04730
https://www.usenix.org/conference/osdi20/presentation/zheng
https://doi.org/10.1145/3373376.3378508

	Abstract
	1 Introduction
	2 Overview of the Approach
	3 Search space principles
	3.1 Background: Sketching the generated code
	3.2 Divisibility constraint and microkernels
	3.3 Optimization configuration
	3.4 Code generation

	4 Structured search space construction and exploration
	4.1 Offline stage
	4.2 Online stage

	5 Performance results
	6 Ablation Study of the Search Space Principles
	6.1 Performance distribution in the search space
	6.2 Evaluation of the combination of microkernels
	6.3 Evaluation of the tile size divisibility constraint

	7 Related work
	8 Conclusion
	References

