
Combining Decision Trees and Neural Networks for
Learning-to-Rank in Personal Search
Pan Li∗
UIUC

panli2@illinois.edu

Zhen Qin
Google Inc.

zhenqin@google.com

Xuanhui Wang
Google Inc.

xuanhui@google.com

Donald Metzler
Google Inc.

metzler@google.com

ABSTRACT
Decision Trees (DTs) like LambdaMART have been one of the most
effective types of learning-to-rank algorithms in the past decade.
They typically work well with hand-crafted dense features (e.g.,
BM25 scores). Recently, Neural Networks (NNs) have shown impres-
sive results in leveraging sparse and complex features (e.g., query
and document keywords) directly when a large amount of training
data is available. While there is a large body of work on how to
use NNs for semantic matching between queries and documents,
relatively less work has been conducted to compare NNs with DTs
for general learning-to-rank tasks, where dense features are also
available and DTs can achieve state-of-the-art performance. In this
paper, we study how to combine DTs and NNs to effectively bring
the benefits from both sides in the learning-to-rank setting. Specifi-
cally, we focus our study on personal search where clicks are used
as the primary labels with unbiased learning-to-rank algorithms
and a significantly large amount of training data is easily available.
Our combination methods are based on ensemble learning. We
design 12 variants and compare them based on two aspects, rank-
ing effectiveness and ease-of-deployment, using two of the largest
personal search services: Gmail search and Google Drive search.
We show that direct application of existing ensemble methods can
not achieve both aspects. We thus design a novel method that uses
NNs to compensate DTs via boosting. We show that such a method
is not only easier to deploy, but also gives comparable or better
ranking accuracy.

KEYWORDS
learning to rank, personal search, decision trees, neural networks

ACM Reference Format:
Pan Li, Zhen Qin, Xuanhui Wang, and Donald Metzler. 2019. Combining
Decision Trees and Neural Networks for Learning-to-Rank in Personal
Search. In The 25th ACM SIGKDD Conference on Knowledge Discovery and

∗This work was done while Pan Li was an intern in Google.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
KDD ’19, August 4–8, 2019, Anchorage, AK, USA
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6201-6/19/08. . . $15.00
https://doi.org/10.1145/3292500.3330676

Data Mining (KDD ’19), August 4–8, 2019, Anchorage, AK, USA. ACM, New
York, NY, USA, 9 pages. https://doi.org/10.1145/3292500.3330676

1 INTRODUCTION
How to design effective ranking functions is an important research
topic in Information Retrieval (IR). While traditional IR models such
as BM25 [12] and language models [36] estimate relevance between
queries and documents based on their textual features, many other
features such as PageRank scores of web pages [34], recency of
emails [30], and historical user interactions [1] have been shown
to be useful in ranking functions. Learning-to-rank techniques,
which were introduced more than a decade ago, typically combine
all these dense features into a single ranking function with the
objective of optimizing retrieval accuracy based on labeled training
data [28]. In the traditional learning-to-rank setting, training data
is human labeled and usually has tens of thousands of queries
in total [29]. Each document associated with a given query has
hundreds of hand-crafted dense features. Based on this data, many
different machine learning algorithms, ranging from Support Vector
Machines (SVMs) [21] to Neural Networks (NNs) [5] to Decision
Trees (DTs) [26], have been studied in the past. Among them, DT-
based models (more precisely Gradient-Boosted Decision Trees) [6]
have become the most competitive ones. For example, they took
first place in the Yahoo! Learning-to-Rank Challenges [9] and are
used in commercial search engines [43].

The DT-based models are empirically successful for several rea-
sons. (1) The ranking functions learned by DTs can be highly nonlin-
ear, which can fit the complex query-document relationship better
than simple linear models. (2) DTs are good at handling dense
numerical features, and are less sensitive to the dynamic ranges
and uneven distributions of features [41]. (3) The characteristic
of splitting data into different branches in DTs is a natural fit of
non-smooth ranking metrics such as Normalized Discounted Cu-
mulative Gain (NDCG) [20]. This is reflected in the representative
algorithms LambdaMART [41] and RandomForest-Hybrid [19].

In the traditional learning-to-rank setting with tens of thou-
sands of queries, NN-based models such as RankNet [5] and Lamb-
daRank [8] are less effective than DT-based models. However, in
recent years, there has been a resurgence of interest in NNs given
the availability of large-scale training data that have millions of
queries and significantly more computational resources [24]. One
appealing property of NNs for search ranking is that they can now
effectively learn from highly sparse and complex features such as
query keywords and document sentences. For example, NNs have

https://doi.org/10.1145/3292500.3330676
https://doi.org/10.1145/3292500.3330676

been successfully used to extract semantic representations from
query and document text, which can be further used for relevance
computation [18, 32]. Such representations achieve semantic match-
ing by bridging the vocabulary gap between queries and documents
based on a large scale data set. As opposed to NNs, DTs are best
suited to handle dense features. They are much less efficient at
learning from raw texts directly as they do not scale to the very
large datasets that are necessary to extract meaningful semantic
representations [37].

Despite the promise, relatively little work has compared NNs
with DTs in the learning-to-rank setting where both dense and
sparse features are present. The first reason is lack of large-scale
learning-to-rank training data. Existing work [13] tried to bypass
this problem using weak supervision to increase the training data
size. However, such data is not fully validated for learning-to-rank
tasks. The second reason is the deployment complexity. DTs and
NNs have different internal structures and thus have fundamen-
tally different properties. For example, NNs can be easily sped up
thousands of times via parallelization using specialized hardware
such as graphics processing units (GPUs). However DTs can be
hardly sped up by tens of times on GPUs even with sophisticated
parallelization strategies [25]. Thus, the two models would most
likely be hosted by separate services with different types of devices
in reality. A deeply coupled model is not friendly for practical de-
ployment since separate services may be updated independently.
Hence a loosely coupled model is more desirable.

In this paper, we study how to combine DTs and NNs in the
learning-to-rank setting from two aspects: ranking effectiveness
and ease-of-deployment. To fully exploit the ranking power of both
DTs and NNs, we conduct our study in the setting where both sparse
and dense features are present and where large-scale labeled data is
available. Although our idea could naturally carry over to a broad
range of learning-to-rank scenarios as long as these conditions are
satisfied, in this work, we choose personal search to evaluate our
idea. In personal search, clicks are used as the primary training
data and it is easy to collect millions of queries that is much larger
than the traditional LETOR data sets [29]. Though clicks are known
to be biased, recent progress in unbiased learning-to-rank [22, 39]
addresses this concern. In the past few years, both DTs and NNs
models have been studied for personal search ranking [3, 40, 44].
Ourwork is a continuation of this line on how to effectively combine
DTs and NNs in a deployment friendly way.

Our combination methods are based on ensemble learning tech-
niques [33]. We design 12 different variants and study them from
the ranking accuracy and deployment aspects. We find that a simple
adaption of ensemble learning methods such as linear combination
or standard stacking cannot achieve good results in both aspects at
the same time. We thus propose a novel boosted-stacking approach
where NNs relay the boosting from DTs. In this way, thanks to
their power in capturing complex correlations, NNs are able to
compensate DTs for difficult queries that DTs cannot work well.
Meanwhile, NNs are decoupled from DTs to a large extent. Fur-
thermore, to reduce the dependency of DTs and NNs and make our
proposed model more friendly for deployment, we propose another
structure by adding a lightweight adapter model that can further
decouple DTs and NNs. Such an adapter allows us to update DTs
and NNs independently.

We conduct our experiments using click data from two of the
world-wide large personal search engines — Gmail search and
Google Drive search. Our results show that it is highly beneficial
to combine DTs and NNs, as significantly better ranking accuracy
can be achieved when comparing DT-only and NN-only models.
Our proposed boosted-stacking methods not only provide loosely-
coupled structures that are easy to deploy, but also achieve compa-
rable or even better ranking accuracy than the standard stacking
methods. Comparing across different variants, our experiments also
demonstrate that using the output scores of DTs achieves much bet-
ter results than using ranks and may provide guidance in building
a commercial search engine using both DTs and NNs.

The rest of this paper is organized as follows. In Section 2, we re-
view some related works and introduce basic concepts of ensemble
learning. In Section 3, we describe the methods of combining DTs
and NNs and also analyze their pros and cons in terms of model
deployment. Section 4 presents the extensive experimental results
of the proposed models in terms of their ranking accuracy. We
finally conclude our work in Section 5.

2 RELATEDWORK
Our work is mostly related to ensemble learning, which combines
multiple models to improve the overall learning performance [33].
The techniques can be broadly classified into bagging, boosting, and
stacking. Such techniques are widely used in learning-to-rank tasks,
notably in the well-known “Yahoo! Learning to Rank Challenge” [9].
We review them in this section.

Bagging, which stands for Bootstrap Aggregating, allows one to
train basemodels independently via boostrapping and further aggre-
gates the models by averaging their outputs. The most widely-used
bagging approach is RandomForest, of which each base model cor-
responds to a single DT [4]. Recent work shows that RandomForest-
based learning-to-rank algorithms may achieve competitive per-
formance while these approaches typically require many more
iterations (trees) than models based on the boosting strategy [19].

Boosting works in a more sophisticated way than bagging,
which requires the base models to be trained sequentially and ex-
pects the models added in later iterations to complement the ones
previously added. Boosting algorithms typically focus on how to
adjust the weights of different instances so as to properly empha-
size the ones that former learners fail to produce good predictions
for. A vast number of learning-to-rank approaches fall into this
category [15, 16, 26, 42]. Among them, LambdaMART [41], based
on additive gradient boosting trees, is relatively robust and demon-
strates competitive performance over multiple benchmark datasets.
All of these belong to the DT family of methods.

Note that most bagging- and boosting-based ensembles consist of
multiple base models that are of the same type. Such ensembles are
called homogeneous ensembles. In our case, the ensemble integrates
two different types of base models—DTs and NNs. These types of
ensembles are often called heterogeneous ensembles.

Stacking, similar to boosting, also imposes some order to train
models. In contrast to boosting, stacking allows the latter learners
to use the output of former learners as their input features. The
winner of the Yahoo Ranking Challenge [6] conducted an empirical
study of stacking a neural network (LambdaRank [8]) over the

outputs of a collection of independently trainedmodels (MART [16],
LambdaMART [41] and LambdaRank [8]). However, the results did
not show clear advantage over the simple average.

Recently Yin et al. [43] and Ai et al. [2] investigated a ranking - re-
ranking procedure that essentially stacks two base ranking models.
Different from our setting, the ranking - re-ranking scheme contains
a default order of two base models so both of these approaches use
standard stacking techniques.

Another recent study also considered combiningNNs andDTs [27]
while the target was to improve ads CTR instead of ranking per-
formance in search. Besides the difference in set-ups, the combin-
ing strategies based on NNs-boosting-DTs were missed, which are
demonstrated to be optimal according to our study. Some related
evidence and more subtle difference are discussed in Section 4.2.

3 COMBINATION METHODS
In this section, we discuss different combination methods based
on ensemble learning. Our ensemble model consists of DTs and
a single NN. As these two base models are heterogeneous, our
combination methods can be broadly thought of as stacking while
we may leverage some idea of boosting to achieve the goal of easier
model deployment. Note that the methodology discussed in this
section is applicable to generic learning-to-rank tasks. We first
introduce some preliminaries for learning-to-rank problems and
then describe our proposed methods.

3.1 Preliminaries
Suppose we have a set of queries Q = {qi }

|Q |

i=1 . Each query qi is
associated with a set of documents di = {di,1,di,2, ...,di,ni } where
ni is the total number of documents corresponding to qi . Let xi,k
denote the training features for the query-document pair ⟨qi ,di,k ⟩.
Each query-document pair ⟨qi ,di,k ⟩ is associated with a label yi,k
that denotes the level of relevance of such a pair. Typically, for
click-through data, yi,k (k ∈ [ni]) is a binary indicator of whether
the users has clicked document di,k . The learning-to-rank problem
is to learn a function f that takes xi,k as the input and outputs
a relevance score between qi and di,k to optimize a predefined
ranking objective

max
f

1
|Q|

|Q |∑
i=1

m
({
yi,k , f (xi,k)

}ni
k=1

)
(1)

where the metricm(·) is an evaluation metric like NDCG [11]. Di-
rectly optimizing the above objective is difficult because the metric
m(·) is not smooth. Hence, typical learning-to-rank algorithms use
smooth surrogate objectives such as logistic or hinge loss [28] that
are easier to optimize. Doing so converts (1) into the following
minimization problem.

min
f
ℓ̄ :≜

1
|Q|

|Q |∑
i=1
ℓ
({
yi,k , f (xi,k)

}ni
k=1

)
(2)

where ℓ(·) is the loss function that can be pointwise, pairwise or
listwise [28].

In our case, we define f in (1) as an ensemble function f (д1,д2,xi,k)
that takes DT-based modelд1(·), NN-based modelд2(·), and features
xi,k as input and outputs the ensemble score. In the following, we
describe how to define f based on ensemble learning techniques.
For easy reference, our learning methods are summarized in Table 1.

Table 1: Training Strategies for the combinations of DTs and
the NN; h(·) refers to the mappings in (8) and (11).
Models h(·) Training Procedure

LIN — 1) Train the NN and DTs independently;
2) Combine the outputs optimally linearly.

T-S-N — 1) Train DTs first;
2) Train the NN with outputs of DTs as inputs.

N-S-T — 1) Train the NN first;
2) Train DTs with outputs of NN as inputs.

N-B-T — 1) Train the NN first;
2) Use DTs to boost the NN.

lin 1) Train DTs first;
T-B-N pow 2) Use the NN to boost DTs after mapping (8).

sig
lin 1) Train DTs first;

T-B-NT pow 2) Use the NN to boost DTs after the mapping (8).
sig 3) Train an adapter h′ to transform outputs of the NN.

R-B-N lin 1) Train DTs first and view DTs as a ranker
jum 2) Use the NN to boost DTs after the mapping (11).

3.2 Linear Combination
The most straightforward method is the commonly-used linear
combination. In this method, both DTs and the NN are trained in-
dependently first to obtain д1(xi,k) and д2(xi,k) respectively. Then
we use the approach proposed in [41] to obtain an optimally linear
model over DTs and the NN. We use LIN to denote this method.
Specifically, the final scoring function f becomes

LIN : f (д1,д2,xi,k) = α · д1(xi,k) + (1 − α) · д2(xi,k) (3)

where α is determined by optimally searching in the interval [0, 1]
for a given ranking metric.

LIN can be thought as the simplest ensemble model. It is the
most efficient in both training and inference. Also, it allows us to
find the α that is optimal with respect to a ranking metric without
introducing any surrogate loss functions. While it is possible to
use other methods to combine two scores д1(xi,k) and д2(xi,k), we
found that LIN can in general give optimal results while maintain-
ing simplicity. What’s more, the DTs and the NN can be updated
independently. What we need to do is to retrain the parameter α
any time the DTs or NN are updated.

3.3 Standard Stacking
Following the idea of standard stacking, we stack one model over
the other. Since we have two models, we have the following two
options: (1) train DTs from scratch and then stack its output into
the input of the NN, denoted as T-S-N; (2) train the NN from scratch
and then stack its output into the input of DTs, denoted as N-S-T.

T-S-N : f (д1,д2,xi,k) = д2(д1(xi,k),xi,k) (4)
N-S-T : f (д1,д2,xi,k) = д1(д2(xi,k),xi,k) (5)

Since both DTs and the NN have more complex structures than
linear models, function д1 and д2 are deeply coupled. Both models
are expected to perform better than LIN in terms of ranking met-
rics, but the coupled structures reduce the ease-of-deployment. For
example, in N-S-T, we need to update the DTs whenever the NN is
updated. Such a method is difficult to deploy when the DTs and the
NN are hosted on two different services that are difficult to update
at the same time.

layers 1

layers 𝑙

scores 𝑔# other features

…

+

ℎ	(mono)

loss	function
Boosting

Backpropagation

Backpropagation
layers 1

layers 𝑙

scores 𝑔# other features

…

+
loss	function

Backpropagation

Figure 1: Training of the NNs: T-B-N (left) vs T-S-N (right)

3.4 Boosted Stacking
To reduce the degree of coupling in standard stacking, we design
our combination methods by borrowing from boosting techniques.

3.4.1 The NN boosted by DTs: In this method, the NN is first trained
from scratch to obtain д2(xi,k). Then instead of starting from a null
base function, DTs start from д2(xi,k) for the boosting procedure.
For example, LambdaMART [7] can be used to obtain function д1.
We use N-B-T to denote this method. The final prediction in this
case can be obtained simply as

N-B-T : f (д1,д2,xi,k) = д2(xi,k) + д1(xi,k). (6)

3.4.2 DTs boosted by the NN:. In this method, DTs are trained first,
then we use the NN to relay the boosting from DTs. The intuition
is to let the NN compensate where DTs work poorly. We use T-B-N
to denote this method.

Traditional boosting is usually an iterative procedure. In each
iteration, an additive model is obtained by a weak learner. For ex-
ample, RankBoost [15] and AdaRank [42] use sample reweighting
that gives higher weights for poorly predicted examples by previ-
ous models. GBDT [16] lets the next learner to approximate the
functional gradient of the current objective and essentially makes
the boosting procedure work like gradient descent in functional
spaces. These paradigms are guaranteed to asymptotically achieve
the optimal learning performance with a large number of learn-
ers [31]. However, in our case, we only have a single step boosting
with a strong learner, the NN. So we adopt a strategy other than
sample re-weighting.

Similar to (6) in the N-B-T case, we expect to have a simple com-
bination of the outputs of DTs and NNs in T-B-N as the final output.
However, since NNs are more sensitive to the scaling of their input
features, it is better to introduce a mapping function that can rescale
the outputs of DTs when using NNs for boosting DTs. Note that,
to keep the ranking order output by DTs unchanged, the rescaling
mapping should be monotonously increasing. Specifically, we do
as the follows. During the training of NNs, we first compute a map-
ping of the outputs of DTs, h(д1(xi,k)), where h(·) is monotonously
increasing. Then, we add h(д1(xi,k)) to the output score of NNs,
i.e., д2(xi,k), and then feed the obtained sum into the loss function.
Mathematically, the loss to train NNs follows the substitution:

ℓ
({
yi,k ,д2(xi,k)

}ni
k=1

)
→ ℓ

({
yi,k ,h(д1(xi,k)) + д2(xi,k)

}ni
k=1

)
This manner imposed on the back-propagation during training the
NN helps to optimize both parameters inh and those in the network
itself, respectively. The final inference of T-B-N can be obtained via

T-B-N : f (д1,д2,xi,k) = h(д1(xi,k)) + д2(xi,k), (7)

Note that the main difference between boosted-stacking T-B-N and
standard stacking T-S-N, as shown in Figure 1, is that in T-B-N д1

-5 0 5

x

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

h
(x

)

x
3
/200

sigmoid(x)-1/2

1 2 3 4 5
x

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

h(
x,
n)

𝑢"/(𝑛 + 1)

𝑢)/(𝑛 + 1)

𝑢*/(𝑛 + 1)

Figure 2: Monotonemapping h. Left: equation (8): odd power
and sigmoid; Right: equation (11): jumping

is only combined with the NN after the final layer. T-B-N lets д1
and д2 be inherently decoupled. When this model is deployed, h(д1)
and д2 can make inference in parallel via different services. In the
T-S-N method, because of the highly-nonlinear rectifiers of NNs, it
is almost impossible to decouple д1 from the rest of the features.

For the h function in (7), we consider the following three types:

h(д1) =


w1 ∗ д1, linearity (lin)

w2 ∗ д1 +w3 ∗ (д1)3, odd power (pow)
w4 ∗ д1 +w5 ∗ sigmoid(w6 ∗ д1 + b), sigmoid (sig)

(8)
wherew j ≥ 0 (1 ≤ j ≤ 6) and b are variables that are learned during
the training of the NN. Note that h is fixed to be monotonically
increasing to retain the rank-ordering the same as the relevance
scores д1. The motivation to choose odd power as an option comes
from the Taylor series that can well-approximate any analytic func-
tions in a compact space [23]. We also choose sigmoid as it works
in a different way from odd powers, where sigmoid enlarges the
small values while odd powers expand the large values (See Figure 2
left). We do not use complex parameterization for three reasons:
(1) Avoid large growth of the model complexity for better general-
ization; (2) Keep overhead of the model serving almost unchanged;
(3) In our experiments (See Section 4), even comparing these two
simple non-linear choices of h with the first linear choice, there
is only a slight improvement so it is not promising to try more
complex forms.

3.4.3 Remarks. Comparingwith standard stacking, boosted-stacking
has two major benefits: 1) boosted-stacking allows DTs and the
NN to do inference in parallel; 2) the final inference of boosted-
stacking can be simply expressed as the sum of outputs of two
models, which largely reduces the dependency between DTs and
the NN. We later propose a lightweight adapter that can further
remove the mutual dependency so that each base model can be
deployed independently.

3.5 Boosted Stacking with Lightweight Adapter
Model

It is desirable to be able to update DTs or NNs separately in reality.
We propose a novel lightweight adapter model h′ for the T-B-N
method. h′ is a scalar function over the NNs scores. We choose to
implement h′ as a single boosting tree. This boosting tree merely
takesд2 as the input and thus keeps decoupled fromд1. The training
procedure of this tree follows LambdaMART [7] with д1 as the base
model while the gradient boosting is executed in a layer-by-layer
manner [35]. This approach makes the tree more compact (less

parameters) so as to keep additional inferring overhead small. We
refer to this model as DTs-boosted-NN-with-Boosting-Tree (T-B-
NT) and the final inference made by T-B-NT can be written as

T-B-NT : f (д1,д2,xi,k) = д1(xi,k) + h
′(д2(xi,k)). (9)

Such an adapter allows us to update DTs without updating NNs.
Suppose we want to quickly evaluate an updated version of DTs
without retraining the NN. As the NN is trained based on the origi-
nal DTs, the direct combination of newDTs and the NN via T-B-N (7)
may not be good. However, since this adapter h′ can be easily re-
trained, it provides a soft combiner of new DTs and the original
NN. Such a procedure is analogous to the “coordinate descent” op-
timization technique. Our experimental results in Section 4 show
that this adapter can further improve the performance over T-B-N.

3.6 Boosted Stacking with Ranks
The standard stacking strategies adopted by Yahoo! Search [43]
and DLCM [2] leverage the ranks instead of relevance scores ob-
tained by the first ranker to train the second ranker. This scenario
occurs either when the relevant score obtained by the first ranker
is not stable or the first ranker only provides the ranking order of
candidate documents. For a more comprehensive study, we also
consider the case that the NN boosts the ranks provided by DTs,
termed R-B-N. In R-B-N, without loss of generality, we suppose
д1(xi,k) = ni + 1− ranki,k where ranki,k ∈ {1, 2, ...,ni } is the rank
of document k for query i predicted by DTs. We adopt the simi-
lar idea that is used for T-B-N. We first rescale the output of DTs,
h(д1(xi,k)), and then add it the original output of NNs. So R-B-N
follows the same inference formula as T-B-N:

R-B-N : f (д1,д2,xi,k) = h(д1(xi,k),ni) + д2(xi,k). (10)

As for the intrinsic discreteness of д1 here, we set the parameterized
h to be

h(д1(xi,k),ni) =

{
u ∗ д1(xi,k)/(ni + 1), linearity (lin)∑
1≤j<д1(xi,k) uj/(ni + 1), jumping (jum)

(11)
where uj ≥ 0 (1 ≤ j ≤ maxi ni) and u are learned during the
training of the NN. The first type of h is simply a linear mapping of
the the ranks after normalization. The second type, termed jumping,
is to learn the full parameterization of h. As uk/(ni + 1) can be
viewed as the nonnegative jump from h(k − 1,ni) to h(k,ni), all
monotone mappings h over the discrete set of ranks {1, 2, ...} can
be parameterized according to this formula, which is illustrated in
the right figure of Figure 2. Jumping keeps the monotonicity of h
with respect to д1, and actually lets the NN recover the missing
relevance information underlying the ranks output by DTs.

3.7 Discussion
In this subsection, we analyze the properties of different combina-
tion methods from the perspective of model deployment. Particu-
larly, we compare them in 3 dimensions: parallel training, parallel
inference, and dependency between two models. Our results are
summarized in Table 2. For easy reference, we also include their
ranking performance according to the experiments in Section 4.

Parallel Training: LIN allows for training DTs and the NN
independently and thus holds a good parallel training property. All

Table 2: The properties and ranking performance of models.
“✓”: good; “—”: neutral; “✗”: not good.

Models Para. Train Para. Infer Dependency Performance
LIN ✓ ✓ ✓ ✗

T-S-N ✗ ✗ ✗ ✓
N-S-T ✗ ✗ ✗ —
N-B-T ✗ ✓ — —
T-B-N ✗ ✓ — ✓
T-B-NT ✗ ✓ ✓ ✓
R-B-N ✗ ✓ — —

the other combinations require the two base models to be trained
in a certain order.

Parallel Inference: Different from training, the real-time re-
quirements of model inference is more important as it directly
affects the latency of online serving. LIN and all boosted-stacking
methods allow DTs and the NN to make inference in parallel, be-
cause the scores of two base models can be computed independently
and merged via a simple transformation and sum. The two stan-
dard stacking methods do not have these properties as shown in
equations (4) and (5).

Dependency: Dependency between two models determines
whether these two base models can be developed and maintained
separately. Particularly, practitioners may hope that adjusting each
base model may explicitly affect the overall performance without
retraining the other model. For this purpose, LIN is the best as the
DTs and NN do not have mutual dependency. The boosted-stacking
methods are also good, as the final score is a simple sum of the
outputs of two base models after simple monotone transformations.
Some dependency between the two base models may be introduced
in boosting training, but the adapter in T-B-NT can further decrease
such dependency. The two standard stacking methods, T-S-N and
N-S-T, are the worst as the second base models deeply couple the
outputs of the first base models with other features.

4 EVALUATION
In this section, we conduct a series of experiments over two com-
mercial personal search systems — Gmail search and Google Drive
search, to evaluate different combination strategies proposed in
Section 3. We describe our experimental setup and report the ex-
perimental results. We also provide some in-depth analysis to un-
derstand the behaviors of different strategies.

4.1 Experimental Design
4.1.1 Data Sets and Metric. Our experiments use the click-through
data from Gmail and Google Drive, which we refer to as Email
and File for simplicity in the remainder of this section. In both
services, we regard the clicks of users as the labels (i.e.yi,k ∈ {0, 1}).
We discard all the queries without clicks. We also account for the
selection bias of clicks via our previously proposed approach [39].

We collect Email/File search logs for a consecutive period of
time, resulting in hundreds of millions of queries with clicks for
each system. Each query is associated with about 5 documents
on average, which is a direct result of the search user interface.
Among all the queries, 80% are used for training and 10% are used

for validation and parameter tuning. The remaining 10% are held-
out for testing. We use Mean Reciprocal Rank (MRR) and Negative
Average Click Position (NACP) as the testing metrics, which are
specifically defined as

MRR =
1
|Q|

|Q |∑
i=1

1
ranki

, NACP = −
1
|Q|

|Q |∑
i=1

ranki

where ranki refers to the rank of the first clicked document for
query i inferred by a ranker.

4.1.2 Base Models for Testing. We briefly introduce the specific
base models that we use for testing. We use the standard forms
of these two models and expect the same conclusions to apply to
a wider range of base models. Our DT-based model is based on
LambdaMART [41] with MRR as the metric to compute the lambda
gradient [14]. The final number of leaves of all trees is 1000. The
neural network is a standard feed-forward network with three hid-
den fully connected layers. The number of neurons in these layers
vary from 128 to 512 and the rectifiers are all ReLUs. All the param-
eters are chosen via proper tuning on the condition that each base
model is trained and evaluated independently over the datasets. We
tried different types of loss functions including the softmax cross-
entropy loss for listwise comparison, the logistic loss for pairwise
comparison [5], and the lambda loss [8]. Although the performance
slightly varies among different types, they all achieve similar con-
clusions when we compare different combination strategies. Due
to space constraints, we only show the results based on the cross-
entropy loss. Specifically, the softmax cross-entropy loss can be
viewed as a smooth version of logarithmic reciprocal rank/negative
logarithmic rank, which can be derived as

− ℓ
({
yi,k , f (xi,k)

}ni
k=1

)
= log

1∑
k ∈[ni] exp[f (xi,k) − f (xi,k∗)]

(12)

≈ log
1∑

k ∈[ni] 1(f (xi,k) ≥ f (xi,k∗))
= log

1
ranki

= − log ranki .

where k∗ is the index of the document that is clicked i.e., yi,k∗ = 1
and 1(·) is an indicator function. This may be the reason why the
cross-entropy loss is a proper choice for our click-through data
with MRR and NACP as the metrics.

The training features can be roughly categorized into two types:
sparse and dense features. Sparse features consist of frequent query
and document character n-grams that are encrypted for privacy
reasons. This results in a vocabulary of about 3 million tokens.
Because of encryption, we cannot use generic word embeddings.
Hence, due to scalability concerns, the sparse features are not fed
into DTs and only go through the NN with an embedding layer of
600 linear neurons. Dense features contain some categorical values
like document types, binary features like being starred or not and
floats like document age result into a vector with more than 20
dimensions for each query-document pair. Dense features are fed
into both models.

4.2 Main Evaluation Results and Analysis

In this subsection, we extensively compare different types of
combining methods proposed in Section 3 (See Table 1).

For comparison, we choose one of the base models — the NN
as the baseline (trained independently) and show the relative im-
provement of different ensemble learning methods. We also provide
the performance of sole DTs for comparison. Cheng et al. [10] pro-
posed a wide&deep NN (W&D for brevity) which improved the
performance of NN by adding a wide and shallow network that
processed dense features extracted from complex feature engineer-
ing. Our boosted-stacking strategy seems to share some similar
idea as the scores/ranks predicted by DTs play a similar role to
learn interactions amongst dense features. Hence, we also add the
W&D for comparison. In W&D, based on the NN, we additionally
duplicate dense features and further concatenate them and their
transformations obtained via a cross layer [38] (with about 500
dimensions in total) to the original last hidden layer.

The overall performance is shown in Table 3. Please note that in
large commercial search systems such as Gmail search and Google
Drive search, an approach with an improvement like 0.2% improve-
ment over a large-scale evaluation data set is fairly significant [39].
For both datasets, we observe the following 5 types of consistent
trends:

(1) Sparse features are extremely informative since the NN solely
achieves much better performance than DTs.

(2) Ensembles of DTs and the NN outperform each base model
and W&D.

(3) Among all methods, T-S-N, T-B-N, and T-B-NT achieve the
first-level performance. Among these three schemes, T-B-NT
works the best.

(4) Among the three T-B-N methods, more complex monotone
mappings h give better prediction, although the improve-
ment is not significant. This improvement may be compen-
sated by the adapter h′, if we compare the three results for
T-B-NT over the Email dataset.

(5) By comparing T-B-N-lin and T-B-N-jum, T-B-N-jum consis-
tently works better.

Based on these observations, we may draw five major conclusions.
(1) Ensemble models of DTs and NNs are particularly useful

for ranking tasks. Moreover, an ensemble model of DTs and
NN performs significantly better than W&D. The underlying
reason may come from the difference in the training pro-
cedures of DTs and NNs. DTs iteratively make partitions
of the feature space while NNs leverage gradient descent
that gradually adjusts the boundaries of partitions in some
greedy manner, which makes DTs in the ensemble model
perform substantially different from the wide network of
W&D.

(2) Boosted-stacking is the optimal strategy to combine DTs
and NNs. Besides its ease-of-deployment and low latency in-
ference, boosted-stacking also achieves comparable or even
better performance than the standard stacking, and much
better performance than LIN. Among the different mappings
h for strategies T-B-N and T-B-NT, complex monotone map-
pings h only yields slightly better performance. Considering
Occam’s razor principle, we suggest to choose h as simple
as a weighted linear mapping.

(3) Comparing T-B-N with T-B-NT, the final adapter helps with
the performance to some extent. Given the final adapter is

Data Models DTs W&D LIN T-S-N N-S-T N-B-T T-B-N R-B-N T-B-NT
lin pow sig lin jum lin pow sig

Email △MRR(%) -3.73 0.01 0.10 0.27* 0.14* 0.13* 0.26* 0.27* 0.27* 0.09* 0.13* 0.31* † 0.29*† 0.30*†
△NACP(%) -6.93 0.01 0.13 0.43* 0.17 0.16 0.43* 0.43* 0.43* 0.09 0.17 0.48*† 0.47* 0.48*†

File △ MRR(%) -1.50 0.02 0.14 0.37* 0.18* 0.16 0.35* 0.40*† 0.39* 0.13 0.17 0.40*† 0.46*† 0.41*†
△NACP(%) -3.25 0.06 0.31 0.86* 0.50* 0.39 0.86* 0.94*† 0.94*† 0.31 0.44* 0.94*† 1.00*† 0.94*†

Table 3: Comparison of Different methods on Email and File. The △ in front of MRR and NACP indicates relative improve-
ment over a well-trained NN. The values for △ MRR, △ NACP are in percentile scales. * and † denote statistically significant
improvements (at the p < 0.05 level using a two-tailed t-test) over the optimally linear combination LIN and the standard
stacking model N-D-T, respectively. The boldfaced values refer to the best results achieved.

also useful of independent model updates, we suggest to
use T-B-NT. Note that adding the adapter may increase the
latency of inference but as it only transforms one feature д2,
the additional complexity is typically very low.

(4) By comparing T-B-N with N-B-T, we see using the NN to
boost DTs is better than using DTs to boost the NN. This
is because the NN effectively leverages sparse features to
understand on the subspace that DTs cannot learn well.

(5) If the base ranker only provides ranks, i.e., R-B-N-lin and R-
B-N-jum, we suggest using the complex mapping “jumping”
as more improvements may be achieved. By comparing R-
B-N and T-B-N, we claim that the output scores of DTs are
much more informative than simple ranks, which should be
used to train the boosting NN when available.

As aforementioned, the study targeted at Ads CTR [27] also
considered combining NNs and DTs. However, some opposite con-
clusions were drawn because of the difference in the settings. NNs
therein were not directly fed with sparse features but with sum-
marized dense scores obtained via logistic regression. This manner
degraded the representation power of NNs so even the DTs-only
model could beat NNs. Moreover, our suggested strategies including
T-B-N and T-B-NT were not considered in [27]. In next subsection,
we further look into the experimental results to better understand
why using NNs as boosters provides the right direction.

4.3 Understanding Behavior of Base models
4.3.1 Behavior of the Neural Network in Boosted-Stacking. In this
subsection, we investigate why boosted-stacking strategies work
better than others.

Intuitively, by taking the combination h(д1) + д2 to compute the
loss, boosted-stacking strategies reserve the power of the NN for
the queries that the decision tree fails to handle well. We further
quantify the insight above. We denote rank[DT] (or rank[NN]) as
the rank of the clicked document among all documents associated
with a given query according to scoring functions obtained by
DTs (or the NN respectively). Figure 3 draws the distributions of
rank[NN] given rank[DT] of different combining strategies over
two datasets. For LIN, as DTs and the NN are trained independently,
two models behave similarly: if rank[DT]= j it is most likely that
rank[NN]= j for any j. However, when using boosted-stacking
strategies, the behavior of the NN tends to compensate DTs. That
is, for easy queries (rank[DT]= 1), rank[NN] is still most likely
to be 1, but the percentages of rank[NN]= 1 are much less than
that of LIN (Email: 79% → 60%, 68%, File: 90% → 75%, 87% for
T-B-N, R-B-N); For difficult queries (rank[DT]= 5), the majority

Data Models
Evaluating only the neural network (д2)

T-B-N R-B-N
lin pow sig lin jum

Email △ MRR (%) -3.76 -3.96 -4.44 -1.77 -1.85
△ NACP (%) -5.37 -5.67 -6.28 -2.42 -2.51

File △ MRR (%) -5.59 -5.69 -5.78 -0.42 -0.56
△ NACP (%) -11.19 -11.44 -11.63 -2.13 -2.31

Table 4: Performance of NNs via boosted-stacking training.
All values are significantly below 0 at thep < 0.05 level using
a two-tailed t-test.

of rank[NN] obtained via boosting becomes rank 1. As Table 4
shows, because boosted-stacking forces the NN to focus on hard
queries, the performance of the NN itself can deteriorate a lot while
the overall performance in Table 3 remains good. We further com-
pare among boosted-stacking strategies. Figure 3 shows T-B-N can
compensate better than R-B-N. This observation is consistent with
the conclusion summarized from Table 3, which implies the scores
output by DTs are more informative than the ranks. Moreover, the
more complex h’s tend to give slightly stronger compensation but
the difference is not much.

The standard stacking strategy, T-S-N, which takes the output
of DTs as an input feature of the NN, performs such compensation
in a similar but implicit way. T-S-N may further learn the complex
interactions between the output of DTs and other features, which
the boosted-stacking strategy T-B-N cannot. But our experimental
results show that the gain from this part is limited.

As a remark, our strategies to use NN for boosting also shares
some insight from the prestigious ResNet [17] that carried out
ground-breaking improvements in extracting image representa-
tions. Both models force the NN to focus on some smaller spaces
of the original problem by introducing plus operations among the
layers (Figure 1). As experiments showed in both cases, such tricks
alleviate some learning difficulty of NNs. The main difference be-
tween our models and ResNet is where such focused improvements
come from (DTs vs. the NN itself).

4.3.2 Behavior of the adapter in the model T-B-NT. As described
in Section 3, this adapter (boosting tree) can essentially be viewed
as a transformation h′ which tweaks the output of the NN so that
д1 + h′(д2) may achieve better ranking performance. According
to Table. 3, by comparing T-B-N and T-B-NT, we have seen that
this operation can result in slight but consistent improvement. To
understand the underlying reason, let us compare the final training
step of T-B-N and T-B-NT. For T-B-N, the final “plus” layer (see
Figure 1) can be viewed as a one-layer NN with two dense features

1 2 3 4 5

rank[NN]

0

10

20

30

40

50

60

70

80

p
e
rc

e
n
t

Email, rank[DT]=1

LIN

T-B-N-lin

T-B-N-pow

T-B-N-sig

R-B-N-lin

R-B-N-jum

1 2 3 4 5

rank[NN]

0

5

10

15

20

25

30

p
e
rc

e
n
t

Email, rank[DT]=3

1 2 3 4 5

rank[NN]

0

5

10

15

20

25

p
e
rc

e
n
t

Email, rank[DT]=5

1 2 3 4 5

rank[NN]

0

10

20

30

40

50

60

70

80

90

p
e
rc

e
n
t

File, rank[DT]=1

LIN

T-B-N-lin

T-B-N-pow

T-B-N-sig

R-B-N-lin

R-B-N-jum

1 2 3 4 5

rank[NN]

0

5

10

15

20

25

30

35

p
e
rc

e
n
t

File, rank[DT]=3

1 2 3 4 5

rank[NN]

0

5

10

15

20

25

30

35

p
e
rc

e
n
t

File, rank[DT]=5

Figure 3: Distributions of rank[NN] given rank[DT]= j, j ∈ {1, 3, 5} of different ensemble learning stategies over Email and
File datasets. rank[DT] (or rank[NN]) denotes the rank of the clicked document among all documents associated with a given
query according to scoring functions obtained by DTs (or the NN respectively).

piecewise linear approximation
of the boosting tree h’

Figure 4: The functionality of the adapter h′ in T-B-NT trained over the Email dataset

h(д1) and д2 to minimize the cross-entropy loss (12), while, for
T-B-NT, the adapter h′ is learned via a DT-based approach Lamb-
daMART [7]. So the superiority of T-B-NT over T-B-N essentially
comes from the better expressiveness of LambdaMART versus NNs
when dealing with dense features for learning-to-rank metrics. To
see the functionality of the adapter h′, Figure 4 shows a piecewise
linear approximation of h′ and how it adjusts the distribution of
д2. Essentially, it helps to shrink the extreme values obtained via a
trained NN (See h′(x) when x < −0.3 and x > 4.2) so that the final
ensemble works more properly for the ranking task.

4.3.3 Faster training speed of boosted-stacking. Although exper-
iments show that T-S-N achieves comparable performance with
T-B-N, the training speed of NN in standard stacking should be
slower than that in boosted-stacking. As the effect of scores from
DTs on the final performance of T-B-N is more direct, training NN
in T-B-N is easier and thus demonstrates a better rate of conver-
gence. We demonstrate the idea by evaluating the MRRs of two
models after being trained over certain numbers of epochs. We use
the same learning rate to train these two models and also normalize
their MRRs with the optimal MRRs they achieve correspondingly.
The results are shown in Figure 5.

0 2 4 6 8 10 12

epochs

0.975

0.98

0.985

0.99

0.995

1

M
R

R
/o

p
ti
m

a
l
M

R
R

T-B-N-lin

T-S-N

Figure 5: MRR/optimal MRR vs training epochs (Email).

5 CONCLUSION
In this work, we studied how to combine DTs and NNs for learning-
to-rank problems with both dense and sparse features. Inspired
by the idea of boosting and stacking for ensemble learning, we
proposed 12 combining strategies and compared them in terms of
ranking performance and ease-of-deployment. Through extensive
experiments over two of the world’s largest personal search engines,
we observed that an ensemble of DTs and NNs can significantly
improve ranking performance. We also found that using NNs to

compensate DTs through a boosted-stacking strategy offers both
competitive performance and engineering flexibility, and provided
some in-depth analysis to understand the compensating behavior
of the boosting approaches.

There are a few of interesting directions for future study. (1)
Our methods were evaluated in the context of large-scale personal
search with clicked data. It would be interesting to evaluate them on
other eligible scenarios where both dense and sparse features can
be used, and where large-scale data is available. (2) Since NNs are
most likely used to extract representations of raw texts, it would
be interesting to investigate the underlying semantics of those
embeddings when NNs work as boosters. (3) We adopted a boosting
tree as the adapter to merge the output of two models. We would
like to explore if other methods are better in learning an adapter.

REFERENCES
[1] Eugene Agichtein, Eric Brill, and Susan Dumais. 2006. Improving web search

ranking by incorporating user behavior information. In Proceedings of the 29th
annual International ACM SIGIR Conference on Research and Development in
Information Retrieval. ACM, 19–26.

[2] Qingyao Ai, Keping Bi, Jiafeng Guo, and W Bruce Croft. 2018. Learning a Deep
Listwise Context Model for Ranking Refinement. In Proceedings of the 41st annual
International ACM SIGIR Conference on Research and Development in Information
Retrieval. ACM, 135–144.

[3] Michael Bendersky, Xuanhui Wang, Donald Metzler, and Marc Najork. 2017.
Learning from user interactions in personal search via attribute parameterization.
In Proceedings of the Tenth ACM International Conference on Web Search and Data
Mining. ACM, 791–799.

[4] Leo Breiman. 2001. Random forests. Machine learning 45, 1 (2001), 5–32.
[5] Chris Burges, Tal Shaked, Erin Renshaw, Ari Lazier, Matt Deeds, Nicole Hamilton,

and Greg Hullender. 2005. Learning to rank using gradient descent. In Proceedings
of the 22nd International Conference on Machine learning. ACM, 89–96.

[6] Christopher Burges, Krysta Svore, Paul Bennett, Andrzej Pastusiak, and Qiang
Wu. 2011. Learning to rank using an ensemble of lambda-gradient models. In
Proceedings of the Learning to Rank Challenge. 25–35.

[7] Christopher JC Burges. 2010. From RankNet to LambdaRank to LambdaMART:
An overview. Learning 11, 23-581 (2010), 81.

[8] Christopher J Burges, Robert Ragno, and Quoc V Le. 2007. Learning to rank with
nonsmooth cost functions. In Advances in Neural Information Processing Systems.
193–200.

[9] Olivier Chapelle and Yi Chang. 2011. Yahoo! learning to rank challenge overview.
In Proceedings of the Learning to Rank Challenge. 1–24.

[10] Heng-Tze Cheng, Levent Koc, Jeremiah Harmsen, Tal Shaked, Tushar Chandra,
Hrishi Aradhye, Glen Anderson, Greg Corrado, Wei Chai, Mustafa Ispir, et al.
2016. Wide & deep learning for recommender systems. In Proceedings of the 1st
Workshop on Deep Learning for Recommender Systems. ACM, 7–10.

[11] W Bruce Croft, Donald Metzler, and Trevor Strohman. 2010. Search engines:
Information retrieval in practice. Vol. 283. Addison-Wesley Reading.

[12] Christopher D Manning, Prabhakar Raghavan, and Hinrich Schutza. 2008. Intro-
duction to information retrieval. An Introduction To Information Retrieval 151,
177 (2008), 5.

[13] Mostafa Dehghani, Hamed Zamani, Aliaksei Severyn, Jaap Kamps, and W Bruce
Croft. 2017. Neural ranking models with weak supervision. In Proceedings of
the 40th International ACM SIGIR Conference on Research and Development in
Information Retrieval. ACM, 65–74.

[14] Pinar Donmez, Krysta M Svore, and Christopher JC Burges. 2009. On the local
optimality of LambdaRank. In Proceedings of the 32nd International ACM SIGIR
Conference on Research and Development in Information Retrieval. ACM, 460–467.

[15] Yoav Freund, Raj Iyer, Robert E Schapire, and Yoram Singer. 2003. An efficient
boosting algorithm for combining preferences. Journal of Machine Learning
Research 4, Nov (2003), 933–969.

[16] Jerome H Friedman. 2001. Greedy function approximation: a gradient boosting
machine. Annals of statistics (2001), 1189–1232.

[17] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual
learning for image recognition. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition. 770–778.

[18] Po-Sen Huang, Xiaodong He, Jianfeng Gao, Li Deng, Alex Acero, and Larry
Heck. 2013. Learning deep structured semantic models for web search using
clickthrough data. In Proceedings of the 22nd ACM International Conference on
Conference on Information & Knowledge Management. ACM, 2333–2338.

[19] Muhammad Ibrahim and Mark Carman. 2016. Comparing pointwise and listwise
objective functions for random-forest-based learning-to-rank. ACM Transactions

on Information Systems (TOIS) 34, 4 (2016), 20.
[20] Kalervo Järvelin and Jaana Kekäläinen. 2002. Cumulated gain-based evaluation

of IR techniques. ACM Transactions on Information Systems (TOIS) 20, 4 (2002),
422–446.

[21] Thorsten Joachims. 2006. Training linear SVMs in linear time. In Proceedings of
the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining. ACM, 217–226.

[22] Thorsten Joachims, Adith Swaminathan, and Tobias Schnabel. 2017. Unbiased
learning-to-rank with biased feedback. In Proceedings of the Tenth ACM Interna-
tional Conference on Web Search and Data Mining. ACM, 781–789.

[23] Steven G Krantz and Harold R Parks. 2002. A primer of real analytic functions.
Springer Science & Business Media.

[24] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. 2015. Deep learning. Nature
521, 7553 (2015), 436.

[25] Francesco Lettich, Claudio Lucchese, Franco Maria Nardini, Salvatore Orlando,
Raffaele Perego, Nicola Tonellotto, and Rossano Venturini. 2018. Parallel Tra-
versal of Large Ensembles of Decision Trees. IEEE Transactions on Parallel and
Distributed Systems (2018).

[26] Ping Li, Qiang Wu, and Christopher J Burges. 2008. Mcrank: Learning to rank
using multiple classification and gradient boosting. In Advances in Neural Infor-
mation Processing Systems. 897–904.

[27] Xiaoliang Ling, Weiwei Deng, Chen Gu, Hucheng Zhou, Cui Li, and Feng Sun.
2017. Model ensemble for click prediction in bing search ads. In Proceedings of
the 26th International Conference on World Wide Web Companion. International
World Wide Web Conferences Steering Committee, 689–698.

[28] Tie-Yan Liu. 2009. Learning to rank for information retrieval. Foundations and
Trends® in Information Retrieval 3, 3 (2009), 225–331.

[29] Tie-Yan Liu, Jun Xu, Tao Qin, Wenying Xiong, and Hang Li. 2007. Letor: Bench-
mark dataset for research on learning to rank for information retrieval. In Pro-
ceedings of SIGIR 2007 workshop on learning to rank for information retrieval,
Vol. 310. ACM Amsterdam, The Netherlands.

[30] Yoelle Maarek. 2017. Mail Search: It’s Getting Personal!. In Proceedings of the 40th
International ACM SIGIR Conference on Research and Development in Information
Retrieval (SIGIR ’17). ACM, New York, NY, USA, 3–3. https://doi.org/10.1145/
3077136.3080642

[31] LlewMason, Jonathan Baxter, Peter L Bartlett, andMarcus R Frean. 2000. Boosting
algorithms as gradient descent. In Advances in Neural Information Processing
Systems. 512–518.

[32] Bhaskar Mitra and Nick Craswell. 2017. Neural Models for Information Retrieval.
arXiv preprint arXiv:1705.01509 (2017).

[33] David Opitz and Richard Maclin. 1999. Popular ensemble methods: An empirical
study. Journal of artificial intelligence research 11 (1999), 169–198.

[34] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. 1999. The
PageRank citation ranking: Bringing order to the web. Technical Report. Stanford
InfoLab.

[35] Natalia Ponomareva, Thomas Colthurst, Gilbert Hendry, Salem Haykal, and
Soroush Radpour. 2017. Compact multi-class boosted trees. In 2017 IEEE Interna-
tional Conference on Big Data. IEEE, 47–56.

[36] Jay M Ponte and W Bruce Croft. 1998. A language modeling approach to in-
formation retrieval. In Proceedings of the 21st annual International ACM SIGIR
Conference on Research and Development in Information Retrieval. ACM, 275–281.

[37] Si Si, Huan Zhang, Sathiya Keerthi, Druv Mahajan, Inderjit Dhillon, and Cho-Jui
Hsieh. 2017. Gradient boosted decision trees for high dimensional sparse output.
In International Conference on Machine Learning.

[38] Ruoxi Wang, Bin Fu, Gang Fu, and Mingliang Wang. 2017. Deep & cross network
for ad click predictions. In Proceedings of the ADKDD’17. ACM, 12.

[39] Xuanhui Wang, Michael Bendersky, Donald Metzler, and Marc Najork. 2016.
Learning to rank with selection bias in personal search. In Proceedings of the 39th
International ACM SIGIR Conference on Research and Development in Information
Retrieval. ACM, 115–124.

[40] Xuanhui Wang, Nadav Golbandi, Michael Bendersky, Donald Metzler, and Marc
Najork. 2018. Position bias estimation for unbiased learning to rank in personal
search. In Proceedings of the Eleventh ACM International Conference on Web Search
and Data Mining. ACM, 610–618.

[41] Qiang Wu, Christopher JC Burges, Krysta M Svore, and Jianfeng Gao. 2010.
Adapting boosting for information retrieval measures. Information Retrieval 13,
3 (2010), 254–270.

[42] Jun Xu and Hang Li. 2007. AdaRank: a boosting algorithm for information
retrieval. In Proceedings of the 30th annual International ACM SIGIR Conference
on Research and Development in Information Retrieval. ACM, 391–398.

[43] Dawei Yin, Yuening Hu, Jiliang Tang, Tim Daly, Mianwei Zhou, Hua Ouyang,
Jianhui Chen, Changsung Kang, Hongbo Deng, Chikashi Nobata, et al. 2016.
Ranking relevance in yahoo search. In Proceedings of the 22nd ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining. ACM, 323–
332.

[44] Hamed Zamani, Michael Bendersky, Xuanhui Wang, and Mingyang Zhang. 2017.
Situational context for ranking in personal search. In Proceedings of the 26th
International Conference on World Wide Web. 1531–1540.

https://doi.org/10.1145/3077136.3080642
https://doi.org/10.1145/3077136.3080642

	Abstract
	1 Introduction
	2 Related Work
	3 Combination Methods
	3.1 Preliminaries
	3.2 Linear Combination
	3.3 Standard Stacking
	3.4 Boosted Stacking
	3.5 Boosted Stacking with Lightweight Adapter Model
	3.6 Boosted Stacking with Ranks
	3.7 Discussion

	4 Evaluation
	4.1 Experimental Design
	4.2 Main Evaluation Results and Analysis
	4.3 Understanding Behavior of Base models

	5 conclusion
	References

