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ABSTRACT
Ranking is at the core of Information Retrieval. Classic ranking op-
timization studies often treat ranking as a sorting problem with the
assumption that the best performance of ranking would be achieved
if we rank items according to their individual utility. Accordingly,
considerable ranking metrics have been developed and learning-to-
rank algorithms that have been designed to optimize these simple
performance metrics have been widely used in modern IR systems.
As applications evolve, however, people’s need for information
retrieval have shifted from simply retrieving relevant documents
to more advanced information services that satisfy their complex
working and entertainment needs. Thus, more complicated and
user-centric objectives such as user satisfaction and engagement
have been adopted to evaluate modern IR systems today. Those ob-
jectives, unfortunately, are difficult to be optimized under existing
learning-to-rank frameworks as they are subject to great variance
and complicated structures that cannot be explicitly explained or
formulated with math equations like those simple performance
metrics. This leads to the following research question – how to
optimize result ranking for complex ranking metrics without know-
ing their internal structures? To address this question, we conduct
formal analysis on the limitation of existing ranking optimization
techniques and describe three research tasks in Metric-agnostic
Ranking Optimization: (1) develop surrogate metric models to sim-
ulate complex online ranking metrics on offline data; (2) develop
differentiable ranking optimization frameworks for list or session
level performance metrics without fine-grained supervision signals;
and (3) develop efficient parameter exploration and exploitation
techniques for ranking optimization in metric-agnostic scenarios.
Through the discussion of potential solutions to these tasks, we
hope to encourage more people to look into the problem of ranking
optimization in complex search and recommendation scenarios.
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1 INTRODUCTION
Ranking is at the core of many Information Retrieval (IR) appli-
cations. Examples include but not limited to web page ranking
on search engine result pages (SERPs), item ranking for recom-
mendation, question/answer ranking for conversational search, etc.
Ranking performance affects not only the quality and efficiency
of information access, but also high-level user experience such as
engagement and satisfaction. Therefore, ranking optimization has
long been considered as a key component of modern IR systems
and a core problem in IR research community.

Classic ranking optimization studies often treat ranking as a sort-
ing problem. Based on the Probability Ranking Principle (PRP) [71],
they assume that the utility of a ranking candidate can be quantified
as a scalar, and the quality of ranking can be maximized by showing
results following the decreasing order of their utility scores. This
assumption essentially indicates that ranking performance can be
measured by the individual utility of items on each position (with or
without weighting schemes), and ranking tasks can be formulated
as a set of partial order prediction problems. Therefore, learning-to-
rank algorithms that build machine learning (ML) models to directly
optimize training loss constructed from the weighting schemes of
such ranking metrics can achieve the best performance in theory
and have been shown to be effective in many ranking applications.
For simplicity, we refer to the ranking metrics built from PRP as
simple ranking metrics and learning-to-rank methods designed for
them as simple ranking optimization algorithms.

As applications evolve, however, recent studies have found a
significant gap between the performance scores computed with
simple ranking metrics and the actual ranking quality perceived
by users [7, 45, 98]. In practice, users do not evaluate result util-
ity independently in ranking following the PRP assumption. Their
satisfaction on rankings is often affected by complicated factors
such as the relations between results, the local context of the re-
quest, personal preferences of the users, etc. Thus, research has
been conducted in IR to provide better understanding on user be-
haviors in online systems, which results in numerous user-centric
evaluation metrics such as satisfaction scores [23, 55] and engage-
ments [52, 54, 102]. We refer to these as complex ranking metrics.

Despite the extensive studies on ranking evaluation in complex
interaction scenarios, the techniques to support ranking optimiza-
tion for complex ranking metrics are very much under development.
Unsurprisingly, it is non-trivial, if not impossible, to apply exist-
ing simple ranking optimization techniques to optimize complex
ranking metrics. First, complex ranking metrics, especially those
computed with user logs sampled from online systems, are subject
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to extensive noise produced by systematic bias or unpredictable
user behaviors. Because simple ranking optimization algorithms
assume that each item have unique and fixed utility following the
PRP assumption, the uncertainty in complex ranking metrics could
easily confuse the algorithms and produce unreliable models. Sec-
ond, most existing complex ranking metrics are constructed on
list levels instead of item levels. It is often difficult to decompose
them into an aggregation of partial orders or pointwise losses on
items, which are necessary for existing simple ranking optimization
techniques. Third, and most importantly, the modeling of complex
ranking metrics itself is an unsolved research problem in IR and
it is widely believed that it is impossible to derive a single mathe-
matical framework to explicitly describe or interpret user-related
ranking metrics [60]. In other words, the structures of complex
ranking metrics could be agnostic. This is unacceptable in existing
ranking optimization frameworks as they need explicit loss func-
tions constructed based on target ranking metrics and the predicted
utility (i.e., the ranking score) of each item in order to apply well-
established algorithms (e.g., gradient descent) to optimize model
parameters. This leads to the following question: How to optimize
ranking without knowing the internal structures of ranking metrics?

We believe that the answer to this question, which we refer
to as Metric-agnostic Ranking Optimization, would be to develop
new sets of ranking theory and techniques on metric modeling, pa-
rameter optimization, and ranking construction. Those techniques
would not only provide new ideas for ranking formulation, but also
serve as the foundation of ranking optimization for complicated
IR problems beyond the PRP assumptions and frameworks. More
specifically, to address metric-agnostic ranking optimization, we
propose and discuss three key tasks in this paper, which are (1)
structure-agnostic metric modeling and simulation: how to build
offline surrogate models for complex ranking metrics without ex-
tensive online experiments; (2) differentiable ranking process with
coarse-grained reward: how to make ranking functions or processes
differentiable to coarse-grained reward on list or session level. and
(3) efficient ranking exploration in parameter space: how to conduct
efficient and effective ranking exploration in parameter space with-
out the PRP assumption. Through the formulation and discussion
of potential solutions to these tasks, we hope to inspire novel ideas
and encourage more people to look into the problem of ranking
optimization with complex ranking metrics.

2 STRUCTURE-AGNOSTIC METRIC
MODELING AND SIMULATION

While there is no universal definition on what complex ranking met-
rics should look like, three characteristics are widely acknowledged
to be key factors that make a ranking metric complex for ranking
optimization: (1) complex rankingmetrics are usually noisy and sub-
ject to large variance; (2) complex ranking metrics are usually com-
puted on list or session level, and (3) complex ranking metrics are
often collected online with significant cost. Take user engagement
as an example. The time people spend on a search/recommendation
result pages varies greatly depending on their personalities. This
means that no universal threshold can be defined to distinguish
good rankings from bad ones according to engagement time. Also,
user engagement time on each result is often difficult to collect.
In many cases, we only know how much time the user has spent

on the whole result page but not those on each individual result.
Last but not least, while engagement time has been shown to be a
valuable indicator of ranking performance, it’s also expensive to get
because it requires real users to interact with the online systems,
which restricts both the size and the efficiency of data collection.

Due to these characteristics, direct optimization of complex rank-
ing metrics is mostly impossible under existing learning-to-rank
frameworks. To the best of our knowledge, most existing studies
on learning to rank formulate ranking as a sorting task where the
best ranking is deterministic given the partial orders of item pairs.
The noisy nature of complex ranking metrics, however, indicates
that the same ranking could receive different rewards in practice,
which can easily confuse existing ranking optimization algorithms.
Also, existing learning-to-rank algorithms require explicit labels,
either gathered from user behaviors or domain experts, on each in-
dividual result for partial order prediction. These labels are mostly
unavailable for complex ranking metrics because the metric scores
are computed on list or session level. Further, when ranking metrics
are computed on list levels, the training data built from online or
offline search logs would be extremely sparse as observed data are
only a tiny portion of all possible rankings.

To address these problems, we need to bridge or alleviate the gap
between the noisy and sparse nature of complex ranking metrics
and the need of reliable and extensive training data for ranking op-
timization. We believe that one promising direction is to construct
surrogate models that can predict complex ranking metric scores
on any rankings without online experiments or hypothesizing on
metric structures. Formally, let I, 𝐼 , and 𝑖 be the universal set of
ranking sessions, the set of items in a session, and an item to be
ranked, respectively. Let 𝜋 (𝐼 ) be a specific ranking of items 𝑖 ∈ 𝐼 .
For a complex ranking metric𝑚(𝜋 (𝐼 )), the goal of metric modeling
is to construct a surrogate model 𝑔(𝜋 (𝐼 ), 𝜃∗) that could serve as a
reliable approximation of𝑚(𝜋 (𝐼 )) with parameter 𝜃∗:

𝜃∗ = argmin
𝜃

∑︁
𝐼 ∈I

∑︁
𝜋 (𝐼 ) ∈R (𝐼 )

𝑙
(
𝑔(𝜋 (𝐼 ) |𝜃 ),𝑚(𝜋 (𝐼 ))

)
(1)

where R(𝐼 ) is the universal set of all possible rankings for 𝐼 , and
𝑙 can be defined as any types of errors function such as pairwise
loss (i.e., for two rankings 𝜋 (𝐼 ) and 𝜋 ′(𝐼 ), the loss is 0 if𝑚 and 𝑔
have same preferences on them, and is positive otherwise). In the
rest of this section, we describe how to solve this metric modeling
problem offline. Specifically, we start from proposing new data sam-
pling/weighting scheme for noise and variance quantification, and
then move to the development of context-aware surrogate models
for offline metric prediction. After that, we describe an offline rein-
forcement learning framework to enhance the generalizability of
metric surrogate models for training data generation.

2.1 Noise and Variance Quantification
Noise and variance in ranking evaluation is a common problem
caused by multiple factors such as restrictive annotation process [8,
15], bias in user behaviors [1, 49, 99], etc. Existing studies usually
apply two types of methods to deal with noise in ranking metrics.
The first one is to build user hypothesis through lab or field studies
and use them to explicitly construct metric models to explain and
eliminate noise in ranking evaluation [29, 47]. These methods are
particular useful for specific types of noise, but their generalizability
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is limited as user hypothesis could be inaccurate or out-of-date. The
other type of methods is to build ML models and use large-scale
training data to learn and calibrate ranking metrics [24]. While
thesemethods are attractive due to their theoretical robustness, they
are extremely data hungry. Unfortunately, none of these existing
methods is applicable tometric modeling inmetric-agnostic ranking
optimization because we neither have enough knowledge about
the metric structure nor large-scale training data with annotations.

In fact, the problem of noise quantification with limited data
is not unique to metric modeling. For example, recent studies on
unbiased learning and data sampling has received significant at-
tention in the IR community. Though designed for simple ranking
optimization scenarios (i.e., optimize ranking metrics built on PRP),
these studies show the possibility of combining the modeling of
data noise with the learning of ranking models for effective noise
quantification and reduction with limited data. For instance, previ-
ous studies on unbiased learning to rank [3, 96] show that effective
user bias and examination propensity models can be automatically
built together with ranking models on search logs without online
user experiments. More recently, studies on learning to rank with
partial labeled data [19] also show that by combining the learn-
ing of negative sampling strategies with ranking models, we can
effectively discover noisy training samples in ranking optimization.

Based on these observations, we propose to explore the possi-
bility of collaboratively learning noise quantification and surro-
gate metric models for complex ranking metrics. Formally, given
a complex ranking metric 𝑚(𝜋 (𝐼 )), we collect a set of training
data T = {𝜋 (𝐼 ),𝑚(𝜋 (𝐼 )) |𝐼 ∈ TI , 𝜋 (𝐼 ) ∈ 𝑇𝐼 } with ranking sessions
TI ⊂ I where each session contains multiple rankings 𝑇𝐼 . As dis-
cussed previously,𝑚(𝜋 (𝐼 )) is not noise-free, and a direct quantifica-
tion of noise in𝑚(𝜋 (𝐼 )) is difficult due to the unknown structure of
𝑚 and limited data in T . Thus, instead of training a separate model
to predict noise, we propose to construct a noise-observation model
𝑜 (𝑚, 𝜋 (𝐼 )) together with the surrogate model 𝑔(𝜋 (𝐼 ), 𝜃 ). The key
observation is that a good noise-observationmodel can help us iden-
tify noisy data in training and improve the metric surrogate model,
and a good metric surrogate model can help the noise-observation
model better estimate noise in data. Formally, let (𝜋+(𝐼 ),𝜋−(𝐼 )) be
a pair of rankings over 𝐼 where𝑚(𝜋+(𝐼 ))>𝑚(𝜋−(𝐼 )). An example
training loss of 𝑔(𝜋 (𝐼 )) (short for 𝑔(𝜋 (𝐼 ), 𝜃 )) can be defined as

𝐿(𝑔,T) = −
∑︁
𝐼 ∈TI

∑︁
𝜋+ (𝐼 ),𝜋− (𝐼 ) ∈𝑇𝐼

log 𝑃𝑟 (𝜋+, 𝜋− |𝑔),

𝑃𝑟 (𝜋+, 𝜋− |𝑔) = 𝑒𝑔 (𝜋
+ (𝐼 ))

𝑒𝑔 (𝜋+ (𝐼 )) + 𝑒𝑔 (𝜋− (𝐼 ))

(2)

where we define 𝑃𝑟 (𝜋+, 𝜋− |𝑔) as the probability of 𝜋+ (𝐼 ) being
better than 𝜋− (𝐼 ) given 𝑔(𝜋 (𝐼 )). Intuitively, when there is a higher
probability of observing noise on 𝑚(𝜋+ (𝐼 )) than 𝑚(𝜋− (𝐼 )), the
reliability of (𝜋+ (𝐼 ), 𝜋− (𝐼 )) should be discounted and reflected in
the training of 𝑔(𝜋 (𝐼 )). Inspired by counterfactual learning [3, 49],
we propose to revise Eq. (2) by weighting data with

𝐿(𝑔,T)=−
∑︁
𝐼 ∈TI

( ∑︁
𝜋+ (𝐼 ),𝜋− (𝐼 ) ∈𝑇𝐼

(1−𝑃𝑟 (𝜋+,𝜋− |𝑜,𝑚)) log 𝑃𝑟 (𝜋+,𝜋− |𝑔)
)
(3)

where we define 𝑃𝑟 (𝜋+,𝜋− |𝑜,𝑚)= 𝑒𝑜 (𝑚,𝜋+ (𝐼 ) )

𝑒𝑜 (𝑚,𝜋+ (𝐼 ) )+𝑒𝑜 (𝑚,𝜋− (𝐼 ) ) as the prob-
ability of observing inaccurate data on (𝜋+ (𝐼 ), 𝜋− (𝐼 )), and use

1 − 𝑃𝑟 (𝜋+, 𝜋− |𝑜,𝑚) to weight the data pair. Similarly, we could
also use 𝑔(𝜋 (𝐼 )) to revise our noise-observation model following
the same weighting scheme and build training loss for 𝑜 (𝑚, 𝜋 (𝐼 ))
as

𝐿(𝑜,T) = −
∑︁
𝐼 ∈TI

( ∑︁
𝜋+ (𝐼 ),𝜋− (𝐼 ) ∈𝑇𝐼

(1 − 𝑃𝑟 (𝜋+, 𝜋− |𝑔)) log 𝑃𝑟 (𝜋+,𝜋− |𝑜,𝑚)
)

(4)
where the probability of observing noise should be low when the
surrogate model 𝑔 and the target metric𝑚 agree with each other.
By iteratively optimize Eq. (3)&(4), the two models help each other
and efficiently extract noise and build surrogate model together.
2.2 Metric Prediction with Local Context
The nature of metric-agnostic ranking optimization creates signif-
icant difficulty in training data collection as we can only obtain
metric scores on a whole ranked list that has been shown to users
with no fine-grained feedback on each item. The number of possible
rankings are large in which only one or a tiny proportion of them
has been shown to users. Since real-time ranking optimization with
online user experiments are mostly prohibitive in practice, it’s im-
portant to predict the metric scores, which we refer to as the ranking
rewards, for rankings without involving real users. The most re-
lated studies on this direction are query performance prediction,
which tries to predict the ranking performance of a retrieval system
without actually showing the results to users [40, 101]. Methods
proposed by these studies, however, are tailored for ad-hoc retrieval
tasks [103] and can only predict the performance of a query given a
static ranking system. This makes them inapplicable for our task as
the rankings produced by ranking models are subject to significant
variances during the training process. In fact, how to predict the
performance of a learning-to-rank system in general is an underex-
plored topic in the research community.

In order to predict ranking rewards on unobserved rankings
without online experiments, we need to construct metric surrogate
models purely based on the data available in offline ranking opti-
mization. Among different learning-to-rank applications, one type
of information is universally available in all ranking optimization
scenarios, that is the local ranking context. Local ranking context
refers to structure and feature information of a ranking and the
items in it. Given a reasonable ranking model, the local context of a
ranking produced by this model often contains valuable information
including session-specific feature distributions and inter-relations
between items to rank. Previous studies on context-aware learning-
to-rank [2, 5, 68] have shown that, by reading and utilizing the local
context of an initial ranking, learning-to-rank models can better
understand the meaning of relevance in current sessions and pro-
duce tailored rankings that better satisfies user’s need. We believe
that such information could be a key for offline metric modeling in
metric-agnostic ranking optimization.

In this task, we propose to construct offline surrogate models for
complex rankingmetrics with local ranking context. Formally, given
the training data T = {𝜋 (𝐼 ),𝑚(𝜋 (𝐼 )) |𝐼 ∈ TI , 𝜋 (𝐼 ) ∈ 𝑇𝐼 }, our goal
is to construct function 𝑔 to predict𝑚(𝜋 (𝐼 )) for any 𝜋 (𝐼 ) ∉ 𝑇𝐼 with
the local context of 𝜋 (𝐼 ). Let ®𝑥𝑖 be a feature vector (pre-computed
with hand-crafted algorithms or learned together with ranking
optimization) of item 𝑖 ∈ 𝐼 in the current session, then the local
context of 𝜋 (𝐼 ) can be represented as 𝑋𝑔

𝜋 (𝐼 ) = [®𝑥1, ®𝑥2, ..., ®𝑥 |𝜋 (𝐼 ) |].
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Based on Eq. (1), the surrogatemodel𝑔 can be learned byminimizing
the empirical loss as:

𝐿(𝑔,T) =
∑︁
𝐼 ∈TI

∑︁
𝜋 (𝐼 ) ∈𝑇𝐼

𝑙
(
𝑔(𝑋𝑔

𝜋 (𝐼 ) |𝜃 ),𝑚(𝜋 (𝐼 ))
)

(5)

where 𝜃 is the model parameter of 𝑔. The key idea is to use the
local context 𝑋𝜋 (𝐼 ) as inputs to 𝑔 so that, for any 𝜋 (𝐼 ) ∉ 𝑇𝐼 , we
can predict its ranking reward without information from online
experiments. Note that the design of 𝑔 could be fairly flexible. It
could be as simple as a linear regression or as complicated as a
self-attention network [85]. Also, we can easily adapt the noise
reduction framework proposed in Section 2.1 by jointly optimiz-
ing 𝑔(𝑋𝑔

𝜋 (𝐼 ) |𝜃 ) with a noise-observation model 𝑜 (𝑋𝑜
𝜋 (𝐼 ) |𝜃𝑜 ) where

𝑋𝑜
𝜋 (𝐼 ) is a set of factors that potentially create noise in𝑚(𝜋 (𝐼 )).

2.3 Offline Reinforcement Learning for
Surrogate Metric Modeling

The most straightforward method to optimize the parameters of
surrogate metric function 𝑔 is to directly apply supervised learn-
ing algorithms using the loss functions proposed above. Yet, the
generalizability of a supervised learning algorithm highly depends
on the quality and quantity of training data. In practice, numerous
training data may not be available due to the difficulty of collecting
complex ranking metrics online. This jeopardizes the reliability and
generaliability of metric modeling with supervised learning.

Fortunately, recent advances on reinforcement learning could
provide some new insights on how to solve the data sparsity prob-
lem. Reinforcement learning is originally designed for ML applica-
tions where an agent policy is built to interact with an environment
in order to obtain certain rewards pre-defined for the task. Similar
to the problem of online experiments in IR, learning such agents by
trial-and-error with real users is often detrimental to the system
as it could significant affect user experience. Thus, an appealing
solution is to construct agents purely based on logged transitions
collected from the experiences of a previous policy that has already
interacted with the environment for a while, which is referred to
as offline reinforcement learning. Offline reinforcement learning has
attracted considerable attention in the ML community [16, 93, 95].
Dadashi et al. [30] have conducted a theoretical analysis of offline
reinforcement learning for pseudometric learning and show that it
can help the agent achieve significantly better performance than
traditional supervised learning methods. This gives us new inspira-
tions on how to enhance model generaliability with limited data.

Therefore, we propose to adapt offline reinforcement learning
algorithms to improve the generaliability of surrogate metric mod-
eling. In general, the key to offline reinforcement learning is a
distance function for action states/trajectories and a pseudometric
defined over the distance function. The intuitive idea is that the
reward of an unobserved state-action pair should be similar to an ob-
served state-action pair in the logged transactions if their distance
is small. Formally, let (𝑠, 𝑎) be a state-action pair with observed
reward 𝑟 (𝑠, 𝑎). Let 𝜋𝜔 (𝑠) be a policy parameterized by 𝜔 that takes
the current state as input to predict the next action, and 𝑄𝜃 (𝑠, 𝑎)
be the action value model parameterized by 𝜃 that tries to predict
the true reward of (𝑠, 𝑎). Assuming that there is a distance func-
tion 𝑑 (𝑠1, 𝑎1; 𝑠2, 𝑎2) that measures the distance between two pairs
(𝑠1, 𝑎1) and (𝑠2, 𝑎2), we define 𝑑T (𝑠, 𝑎) = min(𝑠′,𝑎′) ∈T 𝑑 (𝑠, 𝑎, 𝑠 ′, 𝑎′)

as the distance function between (𝑠, 𝑎) to observed data in T . Then,
following a popular actor-critic framework [30, 93], we can learn
𝜋𝜔 (𝑠) and𝑄𝜃 (𝑠, 𝑎) together by sampling transitions (𝑠, 𝑎, 𝑟, 𝑠 ′) ∈ T
(where 𝑠 ′ is the state after action 𝑎 on 𝑠) and optimizing

(critic)min
𝜃

| |𝑄𝜃 (𝑠, 𝑎) − 𝑟 (𝑠, 𝑎) − 𝛼𝑟𝑄𝜃 (𝑠 ′, 𝜋𝜔 (𝑠 ′))

− 𝛼𝑐F (𝑑T (𝑠 ′, 𝜋𝜔 (𝑠 ′))) | |,
(actor)max

𝜔
𝑄𝜃 (𝑠, 𝜋𝜔 (𝑠)) + 𝛼𝑎F (𝑑T (𝑠, 𝜋𝜔 (𝑠)))

(6)

where 𝛼𝑟 , 𝛼𝑐 , and 𝛼𝑎 are hyperparameters, and F (𝑑T (𝑠, 𝑎)) is a
pseudometric function defined over the distance between (𝑠, 𝑎) and
observed data in T . Possible definition of F could be [30]

F (𝑑 (𝑠1, 𝑎1; 𝑠2, 𝑎2)) = |𝑟 (𝑠1, 𝑎1)−𝑟 (𝑠2, 𝑎2) |+𝛼𝑟E𝑎′∼UA𝑑 (𝑠
′
1, 𝑎

′, 𝑠 ′2, 𝑎
′)
(7)

where 𝑠 ′1 is the next state from 𝑠1 after action 𝑎′, and UA is a
uniform distribution over action space A.

Specifically for metric-agnostic ranking optimization, we can
adapt the framework of offline reinforcement learning and define 𝑠
as a specific ranking of items (i.e., 𝜋 (𝐼 )) and 𝑎 as an action of flipping
the positions of two adjacent items in 𝑠 . Further, we can replace
𝑟 (𝑠, 𝑎) with𝑚(𝜋 (𝐼 ), 𝑎) =𝑚(𝜋 (𝐼 )′) (where 𝜋 (𝐼 )′ is the ranking after
flipping action 𝑎 on state 𝜋 (𝐼 )) and define 𝑑 (𝜋 (𝐼 )1, 𝑎1;𝜋 (𝐼 )2, 𝑎2) as

𝑑 (𝜋 (𝐼 )1, 𝑎1, 𝜋 (𝐼 )2, 𝑎2) = Jaccard𝑓 𝑙𝑖𝑝 (𝜋 (𝐼 )′1, 𝜋 (𝐼 )
′
2) (8)

where 𝜋 (𝐼 )′1 and 𝜋 (𝐼 )′2 is the rankings after action 𝑎1 and 𝑎2 on
𝜋 (𝐼 )1 and 𝜋 (𝐼 )2, respectively; and Jaccard𝑓 𝑙𝑖𝑝 (𝜋 (𝐼 )′1, 𝜋 (𝐼 )

′
2) is the

Jaccard distance between (𝜋 (𝐼 )′1, 𝜋 (𝐼 )
′
2) when the only actions are

flipping adjacent items. With different sample and approximation
techniques on pseudometric learning, we can directly construct
F from the distance function above and learn a surrogate metric
model𝑄𝜃 (𝑠, 𝑎) = 𝑔(𝑋𝑔

𝜋 (𝐼 )′ |𝜃 )with the offline actor-critic algorithms
described in Eq. (6). Such learning algorithms have potential to pro-
duce better surrogate metric model 𝑔 as it can effectively regularize
the prediction of 𝑔 on unobserved rankings based on their similari-
ties to observed𝑚(𝜋 (𝐼 )). Also, depending on how we implement
the action policy 𝜋𝜔 (𝑠) (which is essentially a ranking model), we
could improve the generaliability of 𝑔 by letting it interact with
different types of ranking models or even jointly optimize both the
ranking model and the surrogate metric model together.
3 DIFFERENTIABLE RANKINGWITH

COARSE-GRAINED REWARD
Among all existing ML algorithms, gradient descent is one of the
most popular methods that have been applied to a variety of param-
eter optimization problems, especially for deep learning [38]. Yet,
unlike other tasks such as regression and classification, gradient
descent is not directly applicable to ranking due to the discrete
parameter space of ranking problems. For example, when we rank
items by sorting them with ranking scores, a tiny perturbation
on the score of an item wouldn’t change the ranking and corre-
sponding reward if it does not change the partial order between
items. Thus, how to handle the discrete parameter space of ranking
problems and make ranking models differentiable is a key research
problem in learning-to-rank studies [56].

While there are many well-established optimization methods [17,
18, 20, 48] proposed for non-differentiable ranking problems, most
of them are not applicable to model-agnostic ranking optimization.
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Figure 1: An illustration of latent ranking space.

In existing literature, there are two types of methods to compute
gradient from discrete rankings. The first one, which is directly
built on the PRP assumption, is to decompose a ranking as a set
of partial order relations where we can treat each pair of items as
a separate training example and train ranking models for partial
order predictions instead [18, 48]. The second one is to interpret
sorting with a probability framework so that we canmodel the likeli-
hood of creating the best ranking given certain ranking metrics and
simply optimize ranking models with maximum likelihood estima-
tion [59, 94]. Despite their different motivations and formulations,
all these methods assume the accessibility of fine-grained partial-
order labels or information about the structure of ranking metrics
so that they build training losses and apply gradient descent ac-
cordingly. Unfortunately, in metric-agnostic ranking optimization,
whether the best rankings can be achieved by correctly predicting
partial item orders is questionable. And, in many cases, we have
neither fine-grained labels on item pairs nor knowledge on how
the best rankings should look like in each ranking session.

In this section, we discuss the possibility of constructing differ-
entiable ranking and parameter optimization algorithms for metric-
agnostic ranking optimization. Specifically, we propose to start
from three directions: (1) Differentialize discrete and deterministic
ranking states with random item flips; (2) Smooth the distribution
of ranking rewards with stochastic ranking paradigms built on
different sampling strategies; (3) Separate item scoring from item
ranking and propose ranking modules that adaptively decide how
to present items based on score distribution and target metrics.

3.1 Differentializing Ranking States through
Random Flips

In general, rankingmetrics or rewards are non-differentiable mainly
because of the “loose” connection between ranking model outputs
and actual item rankings. For simplicity, assuming that rankings
are created by sorting items based on their ranking scores (i.e.,
we only need a scoring function to rank items). Then, no matter
how we perturb item’s ranking scores, the ranking of items, so
as the ranking reward, would remain unchanged as long as the
partial orders of their ranking scores are unchanged. This makes
it impossible to compute parameter gradients directly from the
reward we observed on each ranking.

More intuitively, let each possible item ranking be a state node in
a latent space (Figure 1(A)). Let’s define a flip as swapping the posi-
tions of two items in a ranked list 𝜋𝑎 , then the state 𝜋𝑎 is connected
to a state 𝜋𝑏 if 𝜋𝑎 is same to 𝜋𝑏 after the flip. Because the changes
of ranking scores do not necessarily trigger a flip, the hyperplane of
ranking metrics is non-differentiable with respect to the parameters
of scoring functions. Therefore, the key of differentiable ranking
optimization is how to make flip actions sensitive to perturbations

on ranking scores. The most popular way to solve this problem in
existing literature is to collect annotations on the partial orders of
items so that we know how to flip items in advance and only need
to train scoring functions to achieve it [18]. This method, however,
is not applicable to metric-agnostic ranking optimization as the
assumption that correct partial orders can guarantee best rankings
(i.e., the PRP assumption) may not hold for complex ranking met-
rics, and we do not have access to partial order annotations on
items in many cases. Thus, new methodology and algorithms are
needed for joint modeling flips and ranking scores.

We believe that the solutions of this problem lie in the modeling
flip actions in ranking space and differentialization of ranking re-
wards on observed rankings. Specifically, we propose to view flip
actions as translation processes through noisy channels. Let 𝜋𝑖 𝑗
be the ranking of items when swapping the 𝑖th and 𝑗th items in
ranking 𝜋 , and let𝑚(𝜋𝑖 𝑗 ) be the observed metric score on 𝜋𝑖 𝑗 . We
can define a noisy channel Γ𝜋𝑖 𝑗 =𝑃𝜋 (𝑖 | 𝑗) that translates the item
on position 𝑗 to 𝑖 (i.e., swapping items on 𝑖 and 𝑗 ). Then, for next
translation on the 𝑖th item, the expected metric score𝑀 (𝜋𝑖 ) can be

𝑀 (𝜋𝑖 ) =
∑︁

𝑗 ∈𝜋 ;𝜋,𝜋𝑖 𝑗 ∈T

Γ𝜋𝑖 𝑗∑
𝑘∈𝜋,𝜋𝑖𝑘 ∈T Γ𝜋𝑖𝑘

·𝑚(𝜋𝑖 𝑗 ) (9)

where T is the observed rankings in training data. Thus, given a set
of observed rankings and corresponding metric scores, the goal of
metric-agnostic ranking optimization is to construct a translation
model that can translate any rankings into the ranking with highest
reward. There have already been mature methods to solve such
problems in markov random fields [61, 74], and we could easily
adapt them to learn the noisy channel parameters. For instance, we
can iteratively maximize the local expected value of𝑀 (𝜋𝑖 ) on all
possible 𝜋𝑖 and stop when𝑀 (𝜋𝑖 ) converges. To connect the noisy
channel Γ𝜋𝑖 𝑗 with ranking models, we could apply different types of
noise models parameterized by the ranking scores of items on 𝑖 and
𝑗 (i.e., 𝑠𝑖 and 𝑠 𝑗 ). For example, we could assume that Γ𝜋𝑖 𝑗 follows a
Gaussian Distribution N(𝜇, 𝜎) where 𝜎 is a pre-defined variance
and 𝜇 is computed as (𝑠𝑖 − 𝑠 𝑗 ) · sign(𝑖 − 𝑗):

Γ𝜋𝑖 𝑗 = 𝑃𝜋 (𝑖 | 𝑗) =
∫ 0

−∞
N(𝑥 ; (𝑠𝑖 − 𝑠 𝑗 )sign(𝑖 − 𝑗), 𝜎)𝑑𝑥 (10)

so that we can directly optimize 𝑠𝑖 by computing its gradient 𝜕𝑀 (𝜋𝑖 )
𝜕𝑠𝑖

through 𝜕𝑀 (𝜋𝑖 )
𝜕Γ𝜋𝑖 𝑗

and
𝜕Γ𝜋𝑖 𝑗
𝜕𝑠𝑖

. Note that the proposed noisy transla-
tion process is fundamentally different from existing studies that
models ranking process as sequential item selection under prob-
ability frameworks [20] as the former directly optimize ranking
models based on observed data while the later requires the access of
explicit metric scores on all possible rankings in order to compute
the global ranking losses. In other words, the proposed method is
particularly suitable for metric-agnostic ranking optimization in
which we have limited knowledge on ranking metric and can only
collect reward scores on limited number of rankings.
3.2 Stochastic Ranking Paradigms
While ranking by sorting items with their ranking scores is a
straightforward method, this paradigm oversimplifies ranking prob-
lems in practice and doesn’t fit the needs of modern IR system today.
For example, item or user exposure fairness is considered to be a key
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problem for modern search and recommendation [9, 79]. To satisfy
users or balance content in different ethnic groups, retrieval results
need to be ranked according to the distribution of user demograph-
ics and available information. Such demands cannot be satisfied
with rankings created by sorting because a deterministic ranking
will inevitably create uneven exposure to items in it. Instead, recent
studies on online learning to rank [65] and fairness [62] usually
create multiple rankings for a set of items and sample based on
pre-computed data distributions to balance the exploration and
exposure of items. These methods provide a new perspective to
view ranking problems and could potentially benefit our research
on metric-agnostic ranking optimization.

The main difference between rankings in fairness studies and
existing learning-to-rank algorithms is a random process that could
produce non-deterministic rankings over the same set of items,
which we refer to as the stochastic ranking paradigm. Intuitively,
stochastic ranking paradigms do not guarantee that the final rank-
ings shown to users would strictly follows the partial orders of items
determined by their ranking scores. Different from the noisy chan-
nel modeling in Section 3.1, stochastic ranking paradigms directly
model the marginal probability of a ranking following a pre-defined
probabilistic ranking generation model so that we can compute the
prior distribution of rankings and sample them directly. Thus, the
key for ranking optimization with stochastic ranking paradigms is
how to derive the prior distribution of ranking and how to compute
or define loss functions on non-deterministic rankings.

Here, we propose to adapt stochastic ranking paradigms for
metric-agnostic ranking optimization. Formally, let 𝑠 = 𝑓 (𝑥 |𝜃 )
be the ranking score of an item 𝑥 ∈ 𝐼 and the scoring function
(i.e., the ranking model) 𝑓 is parameterized by 𝜃 . Assuming that
the metric scores of all possible rankings (i.e., {𝑚(𝜋) |𝜋 ∈ R(𝐼 )})
are available beforehand, we can directly conduct metric-agnostic
ranking optimization by maximizing the expected metric reward as

𝜃∗ = argmax
𝜃

∑︁
𝜋 ∈R(𝐼 )

𝑚(𝜋) · 𝑃𝑟 (𝜋 |𝑓 , 𝜃 ) (11)

where 𝑃𝑟 (𝜋 |𝑓 , 𝜃 ) is the prior probability of observing 𝜋 given the
ranking generation model parameterized by 𝑓 (𝑥 |𝜃 ).

There are two key advantages of stochastic ranking comparing
to traditional rank-by-sort paradigms. First, with the stochastic
ranking process, we can compute the reward of a ranking policy
without knowing the partial order labels on each item pairs. Sec-
ond, by parameterizing the ranking sampling distribution with the
scoring function 𝑓 (𝑥 |𝜃 ), we are able to compute the gradient of ex-
pected ranking reward with respect to 𝑓 and 𝜃 directly. Specifically
in practice, while the cost of collecting𝑚(𝜋) for all possible 𝜋 is
prohibitive, we can approximate𝑚(𝜋) with the offline surrogate
model 𝑔(𝜋) proposed in Section 2 so that we can estimate rewards
on unobserved rankings without online experiments. Further, for
the modeling of prior ranking distribution 𝑃𝑟 (𝜋 |𝑓 , 𝜃 ), we could
apply and test different probabilistic models. For instance, we could
adapt simple methods used in existing online learning-to-rank lit-
erature [59, 65, 83] (e.g., Plackett-luce distribution or multinomial
logit), or try more advanced distributions such as CRS [77]. Also, in-
stead of crafting 𝑃𝑟 (𝜋 |𝑓 , 𝜃 ) purely based on ranking scores 𝑓 (𝑥 |𝜃 ),
one can explore the possibility of incorporating rich model statistics
such as scoring variance and output uncertainty in the construction

of ranking models. Previous studies have shown that uncertainty
in ranking scores can be effectively estimated through Bayesian
network [35] and is helpful for data exploration in online learning
to rank [26, 97]. We believe that such information could be useful
for better modeling of prior ranking distribution and potentially
benefit metric-agnostic ranking optimization.

3.3 Detached Modeling for Scoring and
Ranking

To the best of our knowledge, most existing studies on learning
to rank [56] does not explicitly differentiate the concept of scoring
and ranking. Existing literature usually refers to a ranking model
as a model that generate ranking scores for each item to rank (i.e.,
𝑓 (𝑥 |𝜃 ) in T2.1), and, in the actual ranking process, they directly
sort items with the scores or sample rankings based on pre-defined
probabilistic models over scores. For metric-agnostic ranking opti-
mization, however, the integrated modeling of scoring and ranking
has intrinsic disadvantages. For instance, user’s sensitivity to re-
sult relevance often changes depending on their information needs
and application scenarios. It is possible that items must be strictly
ranked by their relevance in some sessions (e.g., to guarantee user’s
efficiency in information seeking) or could be loosely ranked by
their relative novelty in all candidates (e.g., to encourage user’s
exploration on results). These diverse ranking needs cannot be sat-
isfied with existing algorithms because they couple ranking with
scoring and give almost no flexibility to the ranking process of
items. When optimizing complex ranking metrics of which the
internal structure could be unknown, such flexibility is important
for building an effective ranking system.

To this end, we propose to detach the modeling of ranking with
scoring in ranking problems. Specifically, we can split the con-
struction of a ranking model into two parts: a scoring module that
predicts item relevance based on their content and features; and a
ranking module that generate result rankings based on the scores
produced by the scoring module. Let 𝑠 = 𝑓 (𝑥 |𝜃 ) be the ranking
score of an item 𝑥 , then we define a ranking function H({𝑠}|𝜌)
(parameterized by 𝜌) that generates a ranking 𝜋 (𝐼 ) as

𝜋 (𝐼 ) ∼ H ({𝑓 (𝑥 |𝜃 ) |𝑥 ∈ 𝐼 }|𝜌) (12)

whereH takes all ranking scores and context information as inputs
to predict a ranking. This separated formulation of scoring and
ranking module creates a generic framework for ranking optimiza-
tion as existing ranking paradigms can be treated as special cases
in it, e.g., the sort-by-score paradigm [56] can be viewed as a H
implemented with a sorting algorithm; and the stochastic ranking
paradigms with Plackett-luce [66] can be seen as aH built with a
Markov decision process and softmax functions.

The proposed ranking framework allows us to create separated
models for the ranking module and thus introduce significant flex-
ibility in terms of model design. For instance, under a stochastic
ranking framework, we can defineH with a recurrent neural net-
work and directly train the item sampling distribution based on the
need of complex ranking metrics. Specifically, we plan to explore
collaborative learning algorithms for the training of 𝑓 (𝑥 |𝜃 ) and
H({𝑠}|𝜌). GivenH({𝑠}|𝜌), we can compute the prior probability
of observing each 𝜋 (𝐼 ) (i.e., 𝑃𝑟 (𝜋 |H ({𝑓 (𝑥 |𝜃 ) |𝑥 ∈ 𝐼 }|𝜌)) and the
expected metric reward with Eq. (11). Then, by iteratively fixing 𝜌
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and 𝜃 , we can jointly optimize 𝑓 (𝑥 |𝜃 ) andH({𝑠}|𝜌) as

𝜃𝑡 = argmax
𝜃

∑︁
𝜋 ∈R(𝐼 )

𝑚(𝜋)·𝑃𝑟 (𝜋 |H ({𝑓 (𝑥 |𝜃𝑡−1) |𝑥 ∈ 𝐼 }|𝜌𝑡−1)

𝜌𝑡 = argmax
𝜌

∑︁
𝜋 ∈R(𝐼 )

𝑚(𝜋)·𝑃𝑟 (𝜋 |H ({𝑓 (𝑥 |𝜃𝑡−1) |𝑥 ∈ 𝐼 }|𝜌𝑡−1)
(13)

where 𝜃𝑡 and 𝜌𝑡 are parameters for 𝑓 and H in time step 𝑡 , re-
spectively. Further, we could consider factors that are important
for complex ranking metrics but independent with item relevance
(e.g., user personality) in the construction of H to further improve
the performance of the generated rankings. We believe that this
detached modeling framework for scoring and ranking could have
great potentials for metric-agnostic ranking optimization.

4 EFFICIENT RANKING EXPLORATION IN
PARAMETER SPACE

Efficiency and convergence rate are important factors to analyze
the quality of an optimization algorithm. It’s particularly true for
ranking optimization as the parameter space of ranking problems
grows exponentially, if not faster, with respect to the number of
items to rank. To address this problem, previous studies on rank-
ing optimization often decompose ranking problems into a set of
partial-order classification tasks under the PRP assumption. With
fine-grained annotations on each partial-order pairs, this method
can significantly reduce the parameter space of ranking problems
from 𝑂 (𝑛!) to 𝑂 (𝑛2) where 𝑛 is the number of items. This makes
it possible to optimize ranking models within polynomial time.
In metric-agnostic ranking optimization, however, there isn’t any
trivial solution to reduce the parameter space of ranking prob-
lems. First, when we possess limited knowledge on the structure
of ranking metrics and metric scores can only be obtained on list
or session level, the cost of collecting training data would be high
and fine-grained annotations on each item or item pairs are diffi-
cult or impossible to get. Second, due to their complicated nature,
the reward hyper-surface of complex ranking metrics with respect
to model parameters could have many local optima that hurt the
efficiency and effectiveness of optimization algorithms.

In this section, we discuss the development of efficient learning
algorithms for metric-agnostic ranking optimization. The goal is
to reduce the parameter space or alleviate the need of data col-
lection for complex ranking metric optimization and eventually
make it possible to integrate the proposed metric-agnostic ranking
optimization techniques into real IR systems.

4.1 Initialization with Multi-task Learning
Building large-scale models from scratches is considered to difficult
in many applications such as computer vision and natural language
process. This is also true for metric-agnostic ranking optimization
considering the numerous number of possible rankings and giant
parameter space. Previous studies [32] have found that pre-training
models with large-scale unsupervised or weakly supervised data
could significantly improve the efficiency and effectiveness of model
optimization. A key observation is that, through pre-training, we
could better initialize model parameters and narrow down the pa-
rameter space to explore in further optimization. Previous studies

on learning to rank [2, 3, 96] also show that good parameter initial-
ization or good initial ranker can guarantee the convergence and
performance of ranking models both theoretically and empirically.

Inspired by these observations, one potentially promising direc-
tion to pursue is the exploration of different parameter initialization
and regularization techniques for efficient metric-agnostic ranking
optimization. While the optimization of complex ranking metrics
with unknown structures is still new to the IR community, there
have already been many mature algorithms for how to construct
training data and ranking models for simple metrics under PRP.
Therefore, we could construct a multi-task learning framework that
combines the traditional ranking optimization algorithms with the
proposed methods for complex ranking metrics. Let 𝐿𝐶 (T |𝜃 ) be
the loss function used by a metric-agnostic ranking optimization
algorithm in Section 3 where T and 𝜃 are the training data and
model parameters, respectively. Let 𝐿𝑆 (T ′ |𝜃 ) be the loss function of
an ranking algorithm for simple metric optimization (e.g., pairwise
cross entropy over human-annotated labels). Then, at time step 𝑡 ,
we could update the model parameter 𝜃 as

𝜃𝑡 =𝜃𝑡−1+𝛼
(
𝜙 (𝑡, 𝜃𝑡−1)

𝜕𝐿𝐶 (T |𝜃 )
𝜕𝜃

+(1−𝜙 (𝑡, 𝜃𝑡−1))
𝜕𝐿𝑆 (T ′ |𝜃 )

𝜕𝜃

)
(14)

where 𝛼 is the learning rate and 𝜙 (𝑡, 𝜃𝑡−1) is a function that takes
the historic model parameters or gradients to predict the current
weights for different ranking losses. The learning framework de-
scribed in Eq. (14) can be viewed as a multi-task learning algorithm
that balance parameter optimization for two different targets. The
rational behind this is that, while the simple loss function 𝐿𝑆 (T ′ |𝜃 )
may not be perfect for complex ranking metrics, it should be able
to produce a reasonably good starting point. By combining it with
𝐿𝐶 (T |𝜃 ), we allow the model to quick initialize parameters based
on simple losses built on a separate or the same training data T ′

(with fine-grained labels) and thus increase the overall convergence
rate of the optimization algorithms. Here, the weighting function
𝜙 (𝑡, 𝜃𝑡−1) is introduced to balance the parameter initialization pro-
cess with the final objective inmetric-agnostic ranking optimization.
It should give relatively high weights to 𝐿𝑆 (T ′ |𝜃 ) in the beginning
and gradually move to 𝐿𝐶 (T |𝜃 ) when we have more confidence
on the model parameters. This could be achieved in multiple way
such as implementing 𝜙 (𝑡, 𝜃𝑡−1) with a simulated annealing algo-
rithm [84] or a parameter-free convex learning algorithm (e.g. the
coin betting algorithm using Krichevsky-Trofimov Estimator [67]).
Also, 𝐿𝑆 (T ′ |𝜃 ) is not necessarily a single loss function and could be
a combination of multiple loss functions built with different types
of weak supervision signals [31, 33].
4.2 Exploration with Uncertainty Modeling
Generally, large-scale training data are important, if not essential,
for the generalizability and reliability of learning-to-rank models.
Unfortunately, in metric-agnostic ranking optimization, the scores
of complex ranking metrics have to be collected online and it’s
often prohibitive to get data that are large enough to cover multiple
rankings in each session. Therefore, how to collect training data
wisely is particularly important for the efficiency and convergence
of ranking optimization algorithms.

In information theory [13], information can be viewed as a reso-
lution of uncertainty. This indicates that an informative training
example should be the data samples that can significantly reduce
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Figure 2: Performance of online learning to rank algo-
rithms.

uncertainty in model outputs [78]. Model uncertainty (or variance)
has been extensively studied in explainable AI [10] and account-
able AI [21]. Specifically in ranking optimization, however, it’s
potential hasn’t been fully explored in existing literature. Recently,
studies [26, 97] on online learning to rank has shown that model
uncertainty estimation could be helpful for identifying informative
data for efficient training and model optimization. To better illus-
trate this, we followed the experiment setup on MSLR-30K1 used by
Yang et al. [97] and compared the ranking functions learned with
(1) Top-k: simply sort and show candidate results based on their rel-
evance scores predicted by the current ranking model; (2) Random:
randomly sort and present candidate results; (3) Uncertainty-aware:
sort and show results based on their relevance scores plus the un-
certainty (estimated with random dropout [35]) of current model
outputs. As shown in Figure 2, by selecting and presenting items
based on their ranking score uncertainty (i.e., the orange line), we
can collect training data that significantly increase the convergence
speed and ranking performance of a ranking algorithm. This moti-
vates us to further investigate the potential of uncertainty modeling
for efficient metric-agnostic ranking optimization.

Based on these observations, we propose to conduct uncertainty
estimation for models in metric-agnostic ranking optimization and
use the estimated uncertainty information to improve the efficiency
of training data collection. Our idea is to collect ground truth data on
cases where the current ranking model or surrogate metric model
has the highest uncertainty so that algorithms can converge quickly
with less training data. Formally, let the uncertainty/variance of a
surrogate metric model 𝑔(𝜋) over ranking 𝜋 be 𝛿𝜋 , and the uncer-
tainty/variance of the probability to observe 𝜋 given the ranking
model (i.e., 𝑃𝑟 (𝜋 |𝑓 , 𝜃 ) in Eq. (11) orH({𝑓 (𝑥 |𝜃 ) |𝑥 ∈ 𝐼 }|𝜌) in Eq. (12))
be 𝜖𝑝𝑖 . For simplicity, we assume that 𝑔(𝜋) and 𝑃𝑟 (𝜋) are inde-
pendent variables following normal distribution N(𝑔(𝜋), 𝛿2𝜋 ) and
N(𝑃𝑟 (𝜋), 𝜖2𝜋 ). Then the uncertainty of expected ranking reward in
Eq. (11) or (13), i.e., Δ(𝐼 ), can be computed as

Δ(𝐼 )2 =
∑︁

𝜋 ∈R(𝐼 )
𝑉𝑎𝑟 (𝑔(𝜋) · 𝑃𝑟 (𝜋))2

=
∑︁

𝜋 ∈R(𝐼 )
(𝑔(𝜋)2𝜖2𝜋 + 𝑃𝑟 (𝜋)2𝛿2𝜋 + 𝜖2𝜋𝛿

2
𝜋 )

(15)

where R(𝐼 ) is all possible rankings in session item set 𝐼 . Based on
the theory of active learning [27], annotating data with highest
model uncertainty could sharply decrease the number of training
examples the learner needs in order to achieve a good performance.
1https://www.microsoft.com/en-us/research/project/mslr/
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Figure 3: An illustration of state reorganization.

Therefore, to conduct efficient optimization, we can actively select
ranking session 𝐼 based onΔ(𝐼 ) and select specific ranking 𝜋 ∈ R(𝐼 )
based on 𝑉𝑎𝑟 (𝑔(𝜋) · 𝑃𝑟 (𝜋)) to collect ground truth metric score
𝑚(𝜋) in online experiments. Finally, for the computation of 𝛿𝜋 and
𝜖𝜋 , we could directly utilize variational inference [41] and Monte
Carlo dropout [35, 53, 63] to infer them from the current surrogate
metric models and ranking models.

4.3 Hypersurface and State Reorganization
Existing ML theories and techniques are well-developed for convex
optimization problems. Particularly, gradient descent based optimiz-
ers [14, 72] have been shown to be effective in finding global optima
for differentiable convex loss or reward functions. When the loss or
reward distribution is non-convex, however, there is no guarantee
that those methods could produce good results and gradient de-
scent could easily be stuck by local minimums. Non-convex reward
hypersurface is often an important problem for complex ranking
metrics and it could jeopardize the efficiency and effectiveness of
optimization algorithms.

A key reason behind the non-convex reward hypersurface in
metric-agnostic ranking optimization is the fact that, for complex
ranking metrics, the swap of two adjacent items does not guarantee
a consistent gradient direction for the ranking reward. Previously,
under the PRP assumption, the change of relative positions for two
items would always lead to a better or worse reward in terms of
ranking metrics [71]. Thus, ranking losses built for these metrics
are mostly convex and algorithms that directly optimize the partial
orders of items could converge quickly while achieving reasonably
good performance [56]. In contrast, complex ranking metrics have
more complicated structures and could be affected by factors which
may not be quantified or known in advance. For example, user
engagement in news recommendation is significantly affected by
item novelty. The swap of two items could lead to both increase and
decrease of user engagement depending on the context. Without
proper solutions, these phenomena naturally create non-convex
reward hypersurface that are difficult to optimize.

Therefore, to solve the problem of non-convex reward hyper-
surface, we want to explore the possibility of refining the reward
hypersurface of complex ranking metrics for better optimization
efficiency and effectiveness. We may achieve this through reward
analysis and ranking state reorganization. Similar to the ranking
state formulation in Section 3.1, suppose that we have already cre-
ated a differentiable reward function with techniques proposed
in Section 3, which give us a reward hypersurface over ranking
states such as Figure 3(A). When we connect ranking states naively
through item flips (as discussed in Section 3.1), the reward hypersur-
face of complex ranking metrics could be non-convex with respect
to the changes of ranking states. To solve this problem, one needs
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to conduct detailed analysis on the ranking rewards and group
ranking states with similar properties together. For example, we
could conduct data clustering with both the reward scores and the
local context features of each ranking, assuming that data within
the same cluster would have more consistent characteristics with
respect to parameter perturbations on ranking models. Based on the
result of reward analysis, we could develop new ranking paradigms
that create a new set of transaction actions that connect states
with similar properties intra and inter clusters to build a reward
hypersurface with better convexity.

The development of such ranking paradigms is directly related
to the design of ranking module in Section 3.3. For example, instead
of connecting ranking states with random item flips, we could
build a ranking module that selects both positions and items with
probabilistic models. We could optimize the sampling distributions
together with the surrogate reward model so that ranking states
with similar predicted rewards would be neighbors under the new
ranking paradigm. Intuitively, this means reorganizing ranking
states through a new set of transaction actions so that we could
create a reward hypersurface with less local optima, as shown in
Figure 3(B). Though this is a difficult task with non-trivial solutions,
we believe that any progress on this direction could significantly
contribute to the studies of complex ranking metric optimization
and potentially change the future of ranking optimization research.

5 RELATEDWORK
Learning toRank andRankingOptimization. Learning to rank
(LTR) refers to the techniques of adapting ML algorithms to build
ranking models for IR problems [56]. The basic idea of LTR is to
build feature representations for each item and design a scoring
function that takes the features to predict the ranking score of each
item [56]. Traditional LTRmodels usually assume the independence
of item relevance [71] and score each item purely based on its indi-
vidual feature vector [56]. Recently, more advanced LTR techniques
acknowledge the importance of contextual information and create
multi-variate scoring functions that jointly score multiple items
together with all their feature vectors [2, 5, 46, 68, 69]. To optimize
the parameters in ranking models, classic LTR methods design dif-
ferent loss functions based on hand-crafted ranking metrics such as
NDCG [92]. Depending how many items are concerned in each loss
function, LTR loss functions can be broadly categorized into point-
wise [37], pairwise [18, 48], and listwise[17, 20] methods. Despite
their differences, existing loss functions require explicit knowledge
on the ranking metrics and fine-grained labels on each item [56],
which is often unavailable in metric-agnostic ranking optimization.

RankingEvaluation andPerformanceMetrics. Ranking eval-
uation is critical for IR as it essentially determines the direction
of system optimization [25, 87]. Classic ranking evaluation studies
mostly focus on evaluating IR systems based on their ability to
retrieve relevant documents. For instance, a variety of ranking met-
rics are designed based on the relevance of each item [75] and use
different heuristics to model the importance of different ranking
positions [22, 44, 51]. In late 1990s, ranking evaluation becomes
more complicated when the objective of IR moves from retrieving
topical relevant documents to documents that satisfies the indi-
vidual needs of search engine or recommendation users [86]. For
example, document’s relevance to users depending on multiple

factors such as authority, timeliness, novelty, etc., many of which
cannot be captured by the topical relevance between queries and
documents [60]. Thus, modern ranking evaluation on real IR sys-
tems often rely on user-centric and session-level metrics such as
user engagements, user satisfactions, etc. [28, 57, 64]. These metrics
usually suffer from noisy user behaviors and cannot be explicitly
formulated based on individual relevance labels. How to optimize
these metrics directly is mostly unknown in existing literature.

Unbiased and Online Learning to Rank. Studies on unbiased
and online LTR can be viewed as some initial attempts to optimize
ranking with noisy metrics. In general, user interactions with IR
systems often implicitly reflect their opinions and satisfaction on
result rankings [39]. Therefore, modern IR systems often use user
behavior data (e.g., clicks) as relevance signals to improve ranking
systems [47]. As user behaviors often contain significant noise and
collecting user interactions is expensive and time-consuming, stud-
ies on unbiased LTR and online LTR focus on how to effectively
remove noise and bias from user data and efficiently train LTR
models with less user interactions [4]. Examples include the appli-
cations of counterfactual learning [1, 3, 49, 91], variance reductions
techniques in bandit learning [42, 76, 88, 89], etc.. Nonetheless, ex-
isting studies on unbiased and online LTR mostly focus on how
to interpret item-level user behavior signals and collect relevance
feedback on each result [6]. From this perspective, they are similar
to existing LTR methods using fine-grained relevance annotations.

OptimizationAlgorithms andMLParadigms. In last decades,
we have observed significant improvements in the design of op-
timization algorithms in ML [12, 43, 80]. Depending on the for-
mat of training data, existing ML methods can be broadly cate-
gorized as supervised, semi-supervised, unsupervised algorithms.
Also, depending on the format of supervision signals, a variety
of learning algorithms have been proposed, included reinforce-
ment learning [50, 82], few-shot learning [36, 70, 81], multi-task
learning [34, 73], adversarial learning [58, 90, 100], etc.. Despite
the different formulations used by these algorithms, most of them
optimize model parameters following the classic gradient descent
framework by iteratively updating models with their current gradi-
ents with respect to the learning targets [11].

6 CONCLUSION
In this paper, we discuss the challenges and opportunities of metric-
agnostic ranking optimization, and propose three research tasks, i.e.,
structure-agnostic metric modeling and simulation, differentiable
ranking process with coarse-grained reward, and efficient ranking
exploration in parameter space. Given that ranking has served as
a critical component of most IR systems and IR applications have
become the most important tools for people to access information
online, the development of effective techniques to support better
ranking models and optimization algorithms will be significant.
Besides, studies onmetric-agnostic ranking optimization could have
great value from a broader perspective of AI technology as advanced
ranking optimization techniques could lead to a higher level of
machine intelligence from passive learning to active learning in
real-world environments. Through this paper, we hope to encourage
more researchers to look into the problem and develop new ranking
paradigms and optimization algorithms in future.
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