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Low rank representations for quantum simulation of electronic
structure
Mario Motta1✉, Erika Ye 2✉, Jarrod R. McClean3, Zhendong Li 1,4, Austin J. Minnich2, Ryan Babbush 3✉ and Garnet Kin-Lic Chan1✉

The quantum simulation of quantum chemistry is a promising application of quantum computers. However, for N molecular
orbitals, the OðN4Þ gate complexity of performing Hamiltonian and unitary Coupled Cluster Trotter steps makes simulation based
on such primitives challenging. We substantially reduce the gate complexity of such primitives through a two-step low-rank
factorization of the Hamiltonian and cluster operator, accompanied by truncation of small terms. Using truncations that incur errors
below chemical accuracy allow one to perform Trotter steps of the arbitrary basis electronic structure Hamiltonian with OðN3Þ gate
complexity in small simulations, which reduces to OðN2Þ gate complexity in the asymptotic regime; and unitary Coupled Cluster
Trotter steps with OðN3Þ gate complexity as a function of increasing basis size for a given molecule. In the case of the Hamiltonian
Trotter step, these circuits have OðN2Þ depth on a linearly connected array, an improvement over the OðN3Þ scaling assuming no
truncation. As a practical example, we show that a chemically accurate Hamiltonian Trotter step for a 50 qubit molecular simulation
can be carried out in the molecular orbital basis with as few as 4000 layers of parallel nearest-neighbor two-qubit gates, consisting
of fewer than 105 non-Clifford rotations. We also apply our algorithm to iron–sulfur clusters relevant for elucidating the mode of
action of metalloenzymes.
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INTRODUCTION
The electronic structure (ES) problem, namely, solving for the
ground- or low-lying eigenstates of the Schrödinger equation
for atoms, molecules, and materials, is an important problem in
theoretical chemistry and physics. There are several
approaches to solving this problem on a quantum computer,
including projecting approximate solutions to eigenstates
using phase estimation1–3, directly preparing eigenstates using
the adiabatic algorithm4–6, or using quantum variational
algorithms7,8 to optimize parameterized circuits corresponding
to unitary Coupled Cluster (uCC)9–11 or approximate adiabatic
state preparation12,13.
Time evolution, under the Hamiltonian or the uCC cluster

operator, is a common component in these algorithms. For
near-term quantum devices (especially with limited connectiv-
ity), Trotter-Suzuki based methods for time evolution, (which
break the evolution of a complex sum of operators such as the
Hamiltonian into a sequence of Trotter steps each evolving only
a single term in the sum) are most compelling since they lack
the complex controlled operations required by asymptotically
more precise methods14–16. In order to perform a discrete
simulation, the Hamiltonian or cluster operator is first repre-
sented in a single-particle basis of dimension N. However, in
many bases, including the molecular orbital and active spaces
bases common in ES, the Hamiltonian and cluster operator
contain OðN4Þ second-quantized terms. This leads to at least
OðN4Þ gate complexity for a single Trotter step17,18, a
formidable barrier to practical progress. While complexity can
be reduced using alternative bases19,20, such representations
are not usually as compact as the molecular orbital one (i.e. a
longer basis expansion is required to represent typical physical
states of interest). Thus, reducing the cost of the Trotter step for

general bases is an important goal, particularly within the
context of near-term simulation paradigms.
In this article, we introduce a method to rewrite the Trotter step

of a general quantum chemistry Hamiltonian evolution, as well
other exponentials of quartic fermionic operators such as the uCC
operator, solely in terms of unitary single-particle rotations and
Trotter steps of two-body operators. This allows for the efficient
implementation of Trotter steps on a linearly connected quantum
device within the Jordan-Wigner fermionic encoding20,21. It further
allows for a systematic low-rank truncation (whose applicability
derives from sparsity in the number of terms in the sum) which
can executed in a gate-count efficient manner by the above class
of circuits. The procedure starts from a nested matrix factorization
of the four-body two-electron interaction term, related to the one
described in the Hamiltonian evolution context by Poulin et al.22.
A key additional idea is that the nested matrix factorization
exposes a low-rank structure when the interaction term is a
physical operator. This was observed empirically in the classical
electronic structure context for the Hamiltonian by Peng and
Kowalski in ref. 23 (although that work obtained an incorrect
empirical scaling) and studied more deeply by some of us in ref. 24,
where we presented mathematical evidence for the correct
scaling. Here, we demonstrate that the low-rank structure allows
one to perform truncations that significantly reduce the gate
complexity of the Trotter step for the Hamiltonian operator, as
well as for the unitary cluster operator. In particular, we achieve a
Hamiltonian Trotter step with an asymptotic gate complexity
scaling as OðN2Þ with system size, and OðN3Þ for fixed systems
and increasing basis size. These scalings require only linear
nearest-neighbor connectivity. We give numerical evidence that
we can carry out a Hamiltonian Trotter step on a 50 qubit
quantum chemical problem with as few as 4000 layers of
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two-qubit gates on a linear nearest-neighbor architecture, a viable
target for implementation on near-term quantum devices.
Compiled to Clifford gates and single-qubit rotations, this requires
fewer than 105 non-Clifford rotations, an improvement of orders of
magnitude over past Trotter-based methods in a fault-tolerant
cost model25.

RESULTS
Double-decomposition structure
We first define the Hamiltonian H and cluster operator τ. In second
quantization H is

H ¼
XN
pq¼1

hpqa
y
paq þ

1
2

XN
pqrs¼1

hpqrsa
y
pa

y
qaras � hþ V ; (1)

where ayp and ap are fermionic creation and annihilation operators
for spin orbital ϕp, and the scalar coefficients hpq and hpqrs are the
one- and two-electron integrals over the basis functions ϕp (here
assumed real).
The uCC cluster operator τ= T− T†, where T is the standard

(non-unitary) coupled cluster (CC) operator. For uCCSD (uCC with
single and double excitations applied to a single determinant
reference),

τ ¼ PNo

i¼1

PN
a¼Noþ1

taiðayaai � ayi aaÞ

þ 1
4

PNo

ij¼1

PN
ab¼Noþ1

tabijðayaaybaiaj � ayi a
y
j aaabÞ

� PN
pq¼1

t0pqa
y
paq þ 1

4

PN
pqrs¼1

t0pqrsa
y
pa

y
qaras ;

(2)

where ij, ab index the No occupied and Nv virtual spin orbitals
respectively, and No+ Nv= N. For the scaling arguments with
system size, we assume No, Nv∝ N, while increasing basis size
corresponds to increasing Nv only. Both H and τ contain OðN4Þ
second-quantized terms. Thus, for arbitrary Hamiltonian integrals
or cluster amplitudes, regardless of the gate decomposition or
fermion encoding used, implementing the time-evolution Trotter
step requires at least OðN4Þ gates.
The integrals and cluster amplitudes that one encounters in

molecular ES applications, however, are not arbitrary, but contain
considerable structure. We now show that this allows us to
construct approximate operators H0 or τ0, accurate to within a
desired tolerance ε, that can be implemented with greatly reduced
gate counts. The physical basis for this result is the pairwise-nature
of the Hamiltonian interactions, arising from the 1/r12 Coulomb
kernel in real-space. More precisely, we will rewrite the two-
fermion parts of H and iτ associated with the integrals hpqrs and
t0pqrs as a double-factorized form

XN
pq¼1

Spqa
y
paq þ

XL

‘¼1

Xρ‘
ij¼1

λ
ð‘Þ
i λ

ð‘Þ
j

2
nð‘Þi nð‘Þj � Sþ

XL

‘¼1

V ð‘Þ ; (3)

where, defining ψ
ð‘Þ
i ¼ PN

p¼1 U
ð‘Þ
pi ϕp,

nð‘Þi ¼
XN
ps¼1

Uð‘Þ
pi a

y
pasU

ð‘Þ
si ¼ ay

ψ
ð‘Þ
i

a
ψ
ð‘Þ
i

(4)

are number operators in a rotated basis. Approximate H0 and τ0
with reduced complexity can then be obtained by truncating the
summations over L, ρℓ. The dependence of the error ε on L and ρℓ
is discussed further below.
The doubly-decomposed form of V can be obtained using a

nested matrix factorization, a type of tensor factorization
introduced in ref. 23. We illustrate this for the Hamiltonian
operator. First, the creation and annihilation operators are

reordered,

V ¼ 1
2

XN
pqrs¼1

hps;qrðaypasayqar � ayparδqsÞ ¼ V 0 þ S ; (5)

and V 0 is recast into a supermatrix indexed by orbitals (ps), (qr)
involving electrons 1,2 respectively. Due to the eight-fold
symmetry hpqrs= hsrqp= hpqsr= hqprs= hqpsr= hrsqp= hrspq= hsrpq
this matrix is real symmetric, thus we can write a matrix
decomposition in terms of a rank-three auxiliary tensor L such
that

V 0 ¼
XL

‘¼1

Lð‘Þ
� �2

¼
XL

‘¼1

XN
pqrs¼1

Lð‘Þ
ps Lð‘Þ

qr a
y
pasa

y
qar : (6)

A simple way to obtain L is to diagonalize the V 0 supermatrix,
although other techniques26–32, such as Cholesky decomposi-
tion (CD), are also commonly used; we use the Cholesky
decomposition in our numerical simulations below. (Note that
the positive nature of the Coulomb kernel means that V 0 is
positive also, as is used in the Cholesky decomposition). The
next step is to decompose each auxiliary matrix Lð‘Þ . Again for
the Hamiltonian, this is also real symmetric, thus we can
similarly diagonalize it,

XN
ps¼1

Lð‘Þ
ps a

y
pas ¼

Xρ‘
i¼1

Uð‘Þ
pi λ

ð‘Þ
i Uð‘Þ

si a
y
pas ; (7)

where λ(ℓ), U(ℓ) are the eigenvalues and eigenvectors of Lð‘Þ .
Combining the two eigenvalue decompositions yields the
double-factorized result, Eq. (3).
In the cluster operator, amplitudes t have four-fold mixed

symmetry and antisymmetry, tabij= tjiba=−tbaij=− tabji. Thus
because the cluster operator is not simply symmetric, we cannot
use a Cholesky decomposition and must modify the arguments
above. However, as shown in the Supplementary Discussion, using
a singular value decomposition of the cluster operator, we can
write iτ ¼ P

‘μY
2
‘;μ , where Yℓ,μ are normal and can be diagonalized

giving the same double-factorized form.

Accuracy of low-rank approximations
For an exact decomposition of H, L= N2 and ρℓ= N. However, it is
well established from empirical ES calculations that the ranks L
and ρℓ can be significantly reduced if we approximate H by
truncating small terms. The low-rank truncations are performed as
follows: in the case of L, we truncate the CD in the AO basis or
localized MO basis based on the L∞ norm, i.e. use the smallest L
such that maxpsqr jhps;qr �

PL
‘¼1 Lð‘Þ

ps Lð‘Þ
qr j< εCD. The computational

cost of the modified Cholesky decomposition scheme is known to
scale asymptotically like OðN3Þ within the AO basis for a fixed
error threshold33. For ρℓ, we perform an eigenvalue truncation (ET)
based on the L1 norm, i.e. use the smallest ρℓ such thatPN

j¼ρ‘þ1 jλð‘Þj j< εET. Note that for H, εCD and εET have dimension
energy and square root of energy. For simplicity, we have chosen
εCD= εET≡ ε in atomic units. For this truncation of H it has been
shown that when increasing the molecular size or simulation
basis, L � OðNÞ, while hρ‘i ¼ 1

L

PL
‘¼1 ρ‘ � Oð1Þ for increasing

molecular size in the asymptotic limit24.
For the uCC operator, the amplitudes t can be cast in a

supermatrix tai,bj that is symmetric, tai,bj= tbj,ai, but not positive.
Therefore, we substitute the Cholesky decomposition with a
singular value decomposition, obtaining L � OðNÞ with increasing
basis size but L � OðN2Þ with increasing molecular size (albeit
with a small coefficient); the scaling properties of ρℓ,μ have not
previously been studied. Note that, for the uCC operator, the
truncations εSVD, εET are dimensionless, unlike for H.
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In Fig. 1 we show L and 〈ρℓ〉 for different truncation thresholds
in: (set 1) a variety of molecules that can be represented with a
modest number of qubits (CH4, H2O, CO2, NH3, H2CO, H2S, F2,
BeH2, HCl) using STO-6G, cc-pVDZ, 6-31G*, cc-pVTZ bases; (set 2)
alkane chains CnH2n+2, n ≤ 8, using the STO-6G basis; (set 3) Fe–S
clusters ([2Fe–2S], [4Fe–4S], and the nitrogenase PN cluster, in
active spaces with N= 40, 72, 146 respectively. Further details the
of calculations are given in the Methods section.
We first give some context to these sets for quantum

simulation. The valence active space models considered in the
Fe–S systems in set 3 are representative of a nearer-term quantum
application where not all degrees of freedom are treated on a
quantum computer. In this set, the underlying Gaussian basis
dependence is largely removed by the reduction to an active
space, as such calculations converge exponentially quickly with
basis size34. All electron simulations of molecules of the kind in set
1 and 2 may be considered in the context of quantum resources
available in the longer-term. While we have considered only a
representative set of systems, additional intuition for the
Hamiltonian ranks in these classes of molecules can be obtained
from quantum Monte Carlo calculations, which work well for sets 1
and 2, and where a similar decomposition has been applied24.
For the uCC operator, in order to treat sufficiently large systems

to observe the scaling trends, we have used the (classically
computable) traditional CC amplitudes, equal to the uCC
amplitudes in the weak-coupling limit (they agree through third
order in perturbation theory). The uCC and traditional CC
amplitudes are thus similar for all molecules in sets 1 and 2 near
their equilibrium geometries, and molecules in set 3 in the highest
spin electronic state.
For Hamiltonian evolution, we clearly see the L∝ N scaling

across different truncation thresholds, for both increasing system
size and basis. For τ, L∝ N with increasing basis in a fixed
molecule, while L∝ N2 with increasing size (e.g. in alkane chains).
Interestingly, the value of L in the Hamiltonian decomposition is

quite similar across different molecules for the same number of
spin orbitals (qubits). In the subsequent ET for the Hamiltonian,
〈ρℓ〉 features sublinear scaling for set 2 (alkanes, n ≥ 5, represented
here with 75–125 qubits), as well as for set 3 (Fe–S clusters). While
we have shown in 1D systems that ρℓ ~O(1) rigorously in the
asymptotic size regime, these systems are still too small to see this
saturation, although the practical reduction in ρℓ from full rank in
sets 2 and 3 is significant. For the uCC operator, we observe that
〈ρℓ〉 scales like OðNÞ for alkane chains and increasing molecular
size, while it is approximately constant for increasing basis set size.
The less favorable scaling of L, 〈ρℓ,μ〉 with system size for the uCC
operator, relative to H, stems from the antisymmetry properties of
the amplitudes, which in the current factorization means that Yℓ,μ
do not show the same sparsity as Lð‘Þ.

First-order correction
The error arising from the truncations leading to H0 and τ0 can be
understood in terms of two components: (i) the error in the
operators, and (ii) the error in the states generated by time evolution
with these operators. It is possible to substantially reduce both errors
using quantities that can be computed classically. We illustrate this
for the error in H0. First, the correlation energy, defined as Ec= E−
EHF with E the total energy and EHF the Hartree–Fock energy, is
usually a much smaller quantity than the total energy in chemical
systems. It is expected to be subject to much smaller truncation
errors, mainly due to cancellation of errors between exact and
mean-field truncations. Thus, using the classically computed mean-
field energy of H0, we can obtain the truncated correlation energy as
E0c ¼ E0 � E0HF. Second, we can estimate the remaining error in E0c
from first-order perturbation theory as hψjH � H0jψi, where a
classical approximation to ψ is used. If the classical ψ is accurate,
the corrected E0c is then accurate to Oðε2Þ. In Fig. 2 we plot jE0c � Ecj
for H2O at the cc-pVDZ level. Adding the perturbative correction
from the classical CC ground-state reduces the error by about an
order of magnitude, such that even an aggressive truncation

Fig. 1 Truncation results for H and τ. a Linear scaling of the number L of vectors with basis size N, in the low-rank approximation of H.
b Sublinear scaling of the average eigenvalue number 〈ρℓ〉. c Error jE0c � Ecj in the ground-state correlation energy from the low-rank
approximation of H, compared with chemical accuracy (horizontal black line). Data points in all of the main figures comprise small molecules
with fixed size and increasingly large basis (set 1); insets show alkane chains with up to 8 C atoms (set 2) and iron–sulfur clusters of
nitrogenase (set 3). Lines indicate N (left, middle) and the chemical accuracy (right). d–f Same as the upper panel, for the uCC operator τ, with
〈ρℓ〉 averaged over μ. The symbol ε indicates ε= εCD= εTH.
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threshold of εCD= εTH≡ ε= 10−2 a.u. yields the total correlation
energy within the standard chemical accuracy of 1.6 × 10−3 a.u.
For the τ0 truncation, one could include a similar error correction

for the correlation energy derived from approximate cluster
amplitudes (although we do not do so here). Note that we have
only considered taking a given amplitude τ0 and the error from
implementing the corresponding uCC operator with truncation.
However, there is the additional possibility of optimizing the
amplitude τ0 within the truncated form in a variational uCC
approach. In this case, the stationary condition can formally be
obtained by differentiating through the ansatz. While we reserve a
detailed error analysis in this setting for future work, so long as
one is close to the variational minimum, it is clear that the
resulting error in the variational energy remains quadratic with
respect to small truncations of τ0.

Gate counts for quantum computers
The double-factorized decomposition Eq. (3) provides a simple
circuit implementation of the Trotter step. For example, for the
Hamiltonian Trotter step, we write

eiΔtH ¼ eiΔtðhþSÞUð1Þ YL
‘¼1

eiΔtV
ð‘Þ ~U

ð‘Þ þ OðΔtÞ2 ; (8)

where ~U
ð‘Þ ¼ Uyð‘ÞUð‘þ1Þ . Time evolution then corresponds to

(single-particle) basis rotations with evolution under the single-
particle operator h+ S and pairwise operators V(ℓ). Note that
because h+ S is a one-body operator, it can be exactly
implemented (with Trotter approximation) using a single-particle
basis change U(0) followed by a layer of N phase gates (the latter
being a simultaneous application of one-qubit gates to all qubits).
The single-particle basis changes U(ℓ) can be implemented using
N
2

� �
� N � ρ‘

2

� �
Givens rotations35 (detailed in the Supple-

mentary Discussion). These rotations can be implemented
efficiently using two-qubit gates on a linearly connected
architecture20,21.
Taking into account SZ spin symmetry to implement basis

rotations separately for spin-up and spin-down orbitals gives a

count of 2
N=2
2

� �
� 2

ðN � ρ‘Þ=2
2

� �
with a corresponding

circuit depth (on a linear architecture) of (N+ ρℓ)/2. Using a
fermionic swap network, a Trotter step corresponding to

evolution under the pairwise operator V(ℓ) can be implemented

in
ρ‘
2

� �
linear nearest-neighbor two-qubit gates, with a two-

qubit gate depth of exactly ρℓ.
Summing these terms, counts thus are
N
2

� �
þP

‘μ½
N
2

� �
� N � ρ‘;μ

2

� �
� þ ρ‘;μ

2

� �
, where the μ sub-

script can be ignored when considering the Hamiltonian.
To realize this algorithm on a near-term device, where the

critical cost model is the number of two-qubit gates, one can
either implement the gates directly in hardware36, which requiresPL

‘¼1½ Nρ‘4 þ ρ2
‘

4 � ρ‘� gates on a linear nearest-neighbor architec-

ture, with circuit depth
PL

‘¼1
N
2 þ 3ρ‘

2 . If decomposing into a
standard two-qubit gate set (e.g. CZ or CNOT), the gate count
would be three times the above count.
To realize this algorithm within an error-corrected code such as

the surface code37, where the critical cost model is the number of
T gates, one can decompose each Givens rotation gate in two
arbitrary single-qubit rotations and each diagonal pair interaction
in one arbitrary single-qubit rotation. Thus, the number of single-
qubit rotations is

PL
‘¼1½ Nρ‘2 � 2ρ‘�. Using standard synthesis

techniques for single-qubit rotations, the number of T gates
depends on the desired precision as 1:15log 2ð1=εRSÞ þ 9:2 times
this count38, where εRS is the tolerance of rotation synthesis.

Fig. 3 Gate counts per Trotter step of the Hamiltonian and uCC
operator, for εCD= εET= εSVD= 10−2, 10−3, and 10−4 (red, green,
blue). Gate counts per Trotter step of the (a) Hamiltonian and (b)
uCC operator. Black lines indicate power-law fits, with optimal
exponents 3.06(3) and 3.2(1), respectively. Both gate counts scale as
the third power of the basis size N across a wide range of truncation
thresholds, an improvement over the O(N4) scaling assuming no
truncation.

Fig. 2 Error jE0c � Ecj for H2O (cc-pVDZ) as a function of ε= εTH=
εCD, with and without perturbative correction (blue, orange points
respectively) for CD and CD+ET truncation schemes (crosses,
diamonds), measured using HF and CC wavefunctions. The error
increases with ε, and is visibly smaller with perturbative correction.

M. Motta et al.

4

npj Quantum Information (2021)    83 Published in partnership with The University of New South Wales



Note that while defining εRS is needed to obtain the final T gate
count (see e.g. ref. 39), if we assume a given synthesis threshold,
the relative cost of two algorithms in the error-corrected cost
model is obtained simply by comparing the number of single-
qubit rotations.
In Fig. 3 we show the total gate counts needed to carry out a

Trotter step of H0 and τ0 with different truncation thresholds. Using
the scaling estimates obtained above for L, ρℓ in the gate count
expression, we expect the Hamiltonian Trotter step to have a gate
count Ngates � OðN2Þ for increasing molecular size, and OðN3Þ for
fixed molecular size and increasing basis size, and the uCC Trotter
step to show Ngates � OðN4Þ for increasing molecular size and
OðN3Þ with increasing basis size. This scalings are confirmed by the
gate counts in Fig. 3. As seen, the crossover between N3 and N2

behavior of the Hamiltonian Trotter gate cost, for alkanes (set 2),
occur at larger N than one would expect from the 〈ρℓ〉 data alone
from Fig. 1, due to tails in the distribution of ρℓ.
The threshold for classical-quantum crossover in recent

quantum supremacy experiments (although dependent on the
precise computational task) has been studied in detail at roughly
50 qubits, see for example ref. 40. For near-term devices, the
number of layers of gates on a parallel architecture with restricted
connectivity is often considered a good cost model. Using the
circuit depth estimate ∑ℓ(N+ ρℓ), we see that we can carry out a
single Hamiltonian Trotter step on a system with 50 qubits with as
few as 4000 layers of parallel gates on a linear architecture. Within
cost models appropriate for error correction, the most relevant
cost metric is the number of T gates25,41,42. For our algorithms, T
gates enter through single-qubit rotations and thus, the number
of non-Clifford single-qubit rotations is an important metric. Based
on the gate count estimate for basis changes, the number of non-
Clifford rotations required for our Trotter steps is roughly 100,000.
For a fixed εRS= 10−6, the number of T gates obtained after
rotation synthesis would then be approximately 30 times this
number.

DISCUSSION
In summary, we have introduced a nested decomposition of the
Hamiltonian and uCC operators, leading to substantially reduced
gate complexity for the Trotter step both in realistic molecular
simulations with under 100 qubits, and in the asymptotic regime.
The discussed decomposition is by no means the only one
possible and, for the uCC operator, it is non-optimal, as more
efficient decompositions for antisymmetric quantities exist43.
Future work to better understand the interplay between classical
tensor decompositions and the components of quantum algo-
rithms thus presents an exciting possibility for further improve-
ments in practical quantum simulation algorithms.
Note: since the time this paper was first posted as a preprint,

many other works have further applied the decomposition in this
work, or very closely related decompositions. Some examples of
such applications include the implementation of a cluster-Jastrow

ansatz44; its use as a component in efficient Hamiltonian evolution
in conjunction with other techniques and under different cost
models45,46; and use of this form to reduce the cost of
measurements47,48).

METHODS
The Hartree–Fock calculations for the small molecules were obtained using
chemistry package PySCF49, and calculations for the iron–sulfur clusters
were obtained using density-matrix renormalization group (DMRG)50,51

implemented within PySCF as BLOCK.

Details of calculations
Here, we provide further details about the calculations yielding the data
shown in the main text, focusing on each of the three studied sets (set 1,
set 2, set 3).
Set 1—comprises 9 small molecules (namely CH4, H2O, CO2, NH3, H2CO,

H2S, F2, BeH2, HCl), studied at experimental equilibrium geometries from
ref. 52. Molecules in this set have been studied with restricted Hartree–Fock
(RHF) and restricted classical coupled cluster with single and double
excitations (RCCSD) on top of the RHF state. Matrix elements of the
Hamiltonian and classical RCCSD amplitudes have been computed with
the PySCF software49, using the STO-6G, 6-31G*, cc-pVDZ, cc-pVTZ bases.
Set 2—comprises alkane chains (namely ethane, propane, butane,

pentane, hexane, heptane and octane, all described by the chemical
formula CnH2n+2 with n= 2…8), studied at experimental equilibrium
geometries from ref. 52. Molecules in this set have been studied with RHF,
RCCSD methods. Matrix elements of the Hamiltonian and classical RCCSD
amplitudes have been computed with the PySCF software49, using the
STO-6G basis.
Set 3—comprises Fe–S clusters [2Fe–2S] [2Fe(II)] and [4Fe–4S]

[2Fe(III),2Fe(II)], and the PN-cluster [8Fe–7S] [8Fe(II)]) of nitrogenase.
The active orbitals of [2Fe–2S] and [4Fe–4S] complexes were prepared

by a split localization of the converged molecular orbitals at the level of
BP86/TZP-DKH, while those of the [8Fe–7S] were prepared at the level of
BP86/def2-SVP. The active space for each complex was composed of Fe 3d
and S 3p of the core part and σ-bonds with ligands, which is the minimal
chemically meaningful active space. The structure of the iron–sulfur core
and the numbers of active orbitals and electrons for each complex are
summarized in Fig. 4.
Molecules in this set were treated with density-matrix renormalization

group (DMRG)50,51, using the PySCF software. The DMRG calculations were
performed for the S= 0 states, which are the experimentally identified
ground states, with bond dimensions 8000, 4000, and 2000 for [2Fe–2S],
[4Fe–4S], and [8Fe–7S]. Note that the active space employed in the present
work for the PN-cluster is larger than the active space previously used to
treat the FeMoco cluster of nitrogenase, having the same number of
transition metal atoms25.
Broken-symmetry unrestricted Hartree–Fock (UHF) (MS= 0) calculations

were carried out for [2Fe–2S] and [4Fe–4S]. For [8Fe–7S], due to
convergence issues, high-spin UHF calculations were used instead.

DATA AVAILABILITY
Data regarding the electronic structure calculations can be provided upon request.
The matrix elements hpq, hpqrs for the iron–sulfur cluster are made available in a
compressed archive form (FeS_integrals.tar).

Fig. 4 Iron–sulfur clusters used in the present work, and their active spaces (specified by numbers of active electrons and orbitals).
a [2Fe-2S] (30e,20o), b [4Fe-4S] (54e,36o), c [8Fe-7S] (114e,73o).
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CODE AVAILABILITY
Code performing the double-decomposition and electronic structure calculations are
available upon request. PySCF is available on GitHub (https://github.com/pyscf/pyscf).
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