
Take it to the Limit: Peak Prediction-driven Resource
Overcommitment in Datacenters

Noman Bashir
University of Massachusetts Amherst

nbashir@umass.edu

Nan Deng
Google

dengnan@google.com

Krzysztof Rzadca
Google and University of Warsaw

kmrz@google.com

David Irwin
University of Massachusetts Amherst

deirwin@umass.edu

Sree Kodak
Google

skodak@google.com

Rohit Jnagal
Google

jnagal@google.com

Abstract
To increase utilization, datacenter schedulers often overcom-
mit resources where the sum of resources allocated to the
tasks on a machine exceeds its physical capacity. Setting the
right level of overcommitment is a challenging problem: low
overcommitment leads to wasted resources, while high over-
commitment leads to task performance degradation. In this
paper, we take a first principles approach to designing and
evaluating overcommit policies by asking a basic question:
assuming complete knowledge of each task’s future resource
usage, what is the safest overcommit policy that yields the
highest utilization? We call this policy the peak oracle. We
then devise practical overcommit policies that mimic this
peak oracle by predicting future machine resource usage.
We simulate our overcommit policies using the recently-
released Google cluster trace, and show that they result in
higher utilization and less overcommit errors than policies
based on per-task allocations. We also deploy these policies
to machines inside Google’s datacenters serving its internal
production workload. We show that our overcommit policies
increase these machines’ usable CPU capacity by 10-16%
compared to no overcommitment.

Keywords: Datacenters, resource management, overcommit

ACM Reference Format:
Noman Bashir, Nan Deng, Krzysztof Rzadca, David Irwin, Sree
Kodak, and Rohit Jnagal. 2021. Take it to the Limit: Peak Prediction-
driven Resource Overcommitment in Datacenters. In Sixteenth Eu-
ropean Conference on Computer Systems (EuroSys ’21), April 26–29,
2021, Online, United Kingdom. ACM, New York, NY, USA, 18 pages.
https://doi.org/10.1145/3447786.3456259

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).
EuroSys ’21, April 26–29, 2021, Online, United Kingdom
© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8334-9/21/04.
https://doi.org/10.1145/3447786.3456259

1 Introduction
An important goal of datacenters is minimizing their infras-
tructure and operating costs. Low utilization of allocated
resources is one of the key impediments to achieving this
goal, since it may require adding more physical resources
to support increasing workload demands [4, 16]. Low uti-
lization is common: as applications’ resource usage varies
over time, they typically request, and are allocated, enough
resources to satisfy their expected peak resource demand,
which may rarely occur. One way to increase resource uti-
lization is to overcommit resources such that the sum of re-
sources allocated to tasks on a machine exceeds its physical
resources. Overcommitment is supported by many resource
management platforms [5, 18, 19, 27–29, 44], and is evident
in production datacenters [2, 50, 59].
The benefits of overcommitment come at the expense

of a higher risk of task performance degradation or evic-
tion [5, 44]. Without overcommitment, the sum of resources
allocated to tasks on a machine is always less than its phys-
ical capacity. As long as the host operating system (OS) or
the hypervisor isolates resources and enforces that tasks
stay within their allocated resources’ limits, they will never
evict tasks or degrade their performance by depriving them
of resources. In contrast, with overcommitment, even if all
tasks are using less than their allocated resources, the sum
of their desired resource usage may be greater than the ma-
chine’s physical capacity. Thus, if the CPU is overcommitted,
the OS may have to throttle some tasks by preventing them
from using their allocated CPU shares, which can degrade
their performance, e.g., by increasing the latency of users’
requests. Similarly, if memory is overcommitted, the OS may
have to suspend or kill some tasks. In these cases, overcom-
mitment disrupts the infrastructure’s workload and degrades
its quality of service, which is normally expressed in terms
of Service Level Objectives, or SLOs [36]. Thus, in designing
overcommit policies, the task scheduler must carefully bal-
ance the benefits to platform utilization, which increases
efficiency and reduces costs, with the risk of degrading task
performance. Importantly, as long as the scheduler can main-
tain its SLOs, overcommit policies are effectively transparent
to end-users, and can be deployed in production.

556

https://doi.org/10.1145/3447786.3456259
https://doi.org/10.1145/3447786.3456259
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current

EuroSys ’21, April 26–29, 2021, Online, United Kingdom Bashir, et al.

In this work, we take a first-principles approach to design-
ing and evaluating overcommit policies. We argue that the
overcommit policy is largely orthogonal to the scheduling
policy. We formalize the overcommitment problem as the
problem of predicting, on a per-machine basis, the free re-
source capacity at all times in the future. This future free
capacity can then be used by the scheduler to decide if an
additional task still fits on the machine. Given a workload
and a machine’s future free resource capacity, we then de-
rive the best possible overcommit policy that guarantees no
performance degradation. We call this the peak oracle pol-
icy, since it reduces to predicting a machine’s peak resource
usage in the future. Our peak oracle policy is clairvoyant:
knowing the future load, it determines the remaining future
free capacity on the machine. Our peak oracle maximizes uti-
lization, which also maximizes savings, while guaranteeing
no task evictions or performance degradation due to over-
commitment. Any overcommit policy that achieves higher
utilization than our peak oracle must eventually cause some
task to not receive its allocated resources. Likewise, any pol-
icy yielding lower utilization can be improved to yield more
savings, i.e., more resources available for other tasks. We use
the peak oracle policy as the baseline to design and evaluate
practical overcommit policies.

Our approach shifts the focus of designing an overcommit
policy from optimally setting per-task resource usage limits,
to instead accurately predicting per-machine peak resource
usage. That is, a scheduler can overcommit resources on a
machine as long as its future peak usage does not exceed
its physical capacity. Since a machine’s future peak depends
on the resource usage of the tasks running on it, the future
peak varies both over time and across machines, as does
the static level of resource overcommitment in the classic
sense, i.e., where a fixed fraction of resources allocated to
tasks on a machine is permitted to exceed its physical ca-
pacity. Thus, in our policies, the level of overcommitment
depends on a machine’s utilization: a highly utilized machine
is overcommitted less than an lowly utilized machine.
This paper’s principal contribution is showing that over-

commit policies that rely on per-machine predictions of peak
resource usage are both efficient and readily applicable to
the standard model of datacenter scheduling, e.g., used by
Borg [59, 61], Omega [53], and Kubernetes [9, 19]. In contrast
to our peak oracle, which serves only as our baseline, we
design our remaining peak predictors to operate in a realistic
environment that is: on-line, non-clairvoyant, and stochas-
tic. Importantly, our predictors require no modifications to
existing schedulers, and thus can support all their complex
features, such as constraints on proximity and hardware
architectures. Using both a simulator and a prototype de-
ployed in production, we demonstrate that widely used static,
limit-based overcommit polices are both more risky and less
efficient than our usage-based predictors. Our experimental

environment consists of ≈24,000 machines sampled from sev-
eral geographically-distributed datacenters that mainly serve
Google’s end-user generated, revenue generating workloads.

To summarize, we make the following contributions:
• We propose an optimal clairvoyant overcommit algorithm

that provides a best case scenario using future data. While
impossible to implement in practice, we show — using
large-scale data from Google datacenters — how this algo-
rithm serves as a baseline for evaluating practical overcom-
mit policies. By simulating these policies and the clairvoy-
ant algorithm and comparing their results, we can evaluate
which policy yields the best performance. This simulation-
based methodology enables us to quickly evaluate over-
commit policies without risking production workloads.

• For a realistic, non-clairvoyant setting, we propose multi-
ple practical overcommit policies that rely on predicting
a machine’s future peak usage, and simulate them on the
Google workload trace [59, 65]. We implement the best-
performing policy and deploy it to ≈12,000 machines in
multiple datacenters serving Google’s internal workloads.

• To enable future work on designing overcommit policies,
we publicly release our simulator’s source code under
a free and open source license.1 The simulator uses the
Google workload trace, and mimics Google’s production
environment in which Borg [59, 61] operates.

2 Motivation and Background
IIn this section, we provide background on the overcommit-
ment problem and discuss the current overcommit policies
used in production cluster schedulers capable of managing
both batch workloads and service workloads with latency re-
quirements [9, 59, 61]. We use the terminology introduced in
our prior work on Borg [59, 61]. A job corresponds to a single
execution of a batch workload, or a continuously-running
service. A job is composed of one or more tasks that perform
the actual processing. Each task runs on a single machine,
but a single machine typically hosts dozens of tasks.
2.1 Datacenter Scheduling
Our work targets a datacenter software/hardware architec-
ture of Borg [59, 61] or Kubernetes [19], which we claim is
representative of the problems faced by all cloud providers.
We assume that each task has a known limit on the maxi-
mum amount of resources it can use, e.g., 4 cores or 3GB
of memory. These limits are either set manually by the job
owner, or automatically by a service such as Autopilot [52].
During execution, if a task tries to use more resources than
its assigned limit, the machine-level infrastructure, such as
the OS, may throttle the CPU, reject the memory alloca-
tion, or evict tasks to ensure performance isolation across
tasks [20, 30, 61, 67]. For CPU, the limits are usually soft, i.e.,
they are enforced only in the case of resource contention. In
addition, not all tasks are equally important. Usually, there

1https://github.com/googleinterns/cluster-resource-forecast

557

https://github.com/googleinterns/cluster-resource-forecast

Take it to the Limit EuroSys ’21, April 26–29, 2021, Online, United Kingdom

are at least two classes of jobs: a batch class and a serving
class [45, 52, 61]. Jobs from the serving class typically have
well-defined SLOs [36] to ensure resources are available up
to their allocated limit. The metrics used to define the SLOs,
i.e., Service Level Indicators, depend on the type of resource
and can vary. For CPU, a typical Service Level Indicator is the
CPU scheduling latency, which is defined as the amount of
time that tasks wait for free cycles in the OS’s CPU scheduler
while they are ready to run, e.g., not waiting for I/O.

Users submit their tasks to a software component called
the scheduler, which manages a set of physical machines,
called cells, and decides which tasks should run on which
machine. Scheduling tasks involves two steps: 1) finding
the set of candidate machines in the cell that have enough
free resource capacity and satisfy other requirements im-
posed by each task, and 2) using some bin-packing algo-
rithm [8, 13, 33, 63] to assign the tasks to machines. A simple
and conservative approach to estimating a machine’s free
resource capacity is to directly use its tasks’ resource lim-
its and only select candidate machines for a new task such
that its limit plus the sum of the running tasks’ limits on a
machine does not exceed the machine’s physical capacity.
Once a machine starts to run tasks with a total limit ex-
ceeding any resource’s capacity, we say that the machine is
overcommitted. Our work focuses on designing a system to
overcommit machines by better estimating its free resources
compared to the simple approach above. Thus, our work fits
into the first step of task scheduling, and is orthogonal and
complementary to the bin-packing problem. Our work is
also orthogonal to handling resource contention, such as by
task migration. The primary goal of our work is to safely
overcommit a machine’s resources while avoiding resource
contention as much as possible.

2.2 Overcommit Overview
Schedulers must know the amount of free resources available
on each machine to make scheduling decisions. The amount
of free resources should reflect the available resources at all
times in the future to avoid task performance degradation or
eviction. As noted above, a conservative method for estimat-
ing free resource capacity is to take the difference between
the physical capacity of the machine and the sum of limits
of the tasks running on the machine. This approach protects
against the worst-case scenario where all tasks use their
maximum allocated resources at the same time. In practice,
tasks rarely, if ever, use their maximum allocated resources.
Since the number of tasks simultaneously executing on a
machine is large, having all tasks use their peak resources
at the same time is exceedingly rare. The maximum of the
sum of tasks’ resource usage is also consistently less than
the sum of their allocated resources. This gap between actual
usage and physical capacity is an opportunity for overcom-
mitting resources without overloading the machine. We next
investigate the factors that contribute to this opportunity.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.5 0.6 0.7 0.8 0.9 1

P
ro

b
a

b
ili

ty
 (

N
o

rm
.

fu
tu

re
 p

e
a

k
 <

=
 x

)

x - Normalized future peak

sum(task-level peak) sum(machine-level peak)

Figure 1. CDF of cell-level future peak usage computed as
aggregate of machine-level future peak (black) and task-level
future peaks (red, dashed), normalized to cell’s total limit.

Usage to limit gap. The actual resources a task uses is often
significantly lower than its resource limit, which is the upper
bound of resources it can use. This usage-to-limit gap exists
largely because reliably estimating a task’s exact resource
requirement is hard for users. Prior work has shown that
the difference between the limit and usage can be signifi-
cant [45, 52]. Autopilot [52] attempts to address this problem
by setting the limits based on a task’s observed historic us-
age. However, Autopilot’s limits are conservative, e.g., the
98th percentile of resource usage over a certain time window
with some additional margin for error. In addition, these
limits must also cover the predicted peak usage over a long
time horizon, e.g., a day, rather than follow a daily pattern.
Limits also cannot be frequently updated, i.e., no more than
a few changes a day are desirable, since increasing the limit
may lead to a series of task evictions [52]. As a result, the
usage-to-limit gap exists even after using complimentary
approaches that specifically target reducing this gap. [52]
reports an average usage-to-limit gap, which they call the rel-
ative slack, of 23%. [35] runs several benchmarks monitoring
their CPU utilization with per-second resolution, and shows
that it varies widely between 0% and 90% utilization. These
benchmarks demonstrate that, despite their optimizations,
long periods of low utilization remain.
Pooling effect. Ideally, tasks should set their resource lim-
its close to their maximum future resource usage. Systems
like Autopilot [52] use vertical scaling to automatically set
the limit to match tasks’ future peak. Assuming a task’s fu-
ture peak usage can be accurately predicted, schedulers can
use these predictions to ensure that the sum of all tasks’ lim-
its does not exceed the physical capacity. However, because
these predictions are made at the individual task level, do-
ing so would overestimate the peak of aggregated resource
usage of all tasks, i.e., the maximum of the sum of all tasks’
usage, because tasks generally do not peak at the same time.
Statistical multiplexing of peaks means that the maximum
of the sum of tasks’ resource usage is always less than or
equal to the sum of maximum usage for each task.

max(
∑

all tasks

(task ′s resource usaдe))

≤
∑

all tasks

max(task ′s resource usaдe), ∀ t

558

EuroSys ’21, April 26–29, 2021, Online, United Kingdom Bashir, et al.

To illustrate this effect, in Figure 1, we use the public
Google cluster trace data [59] and plot the distribution of
the sum of individual tasks’ peak usage over time across all
machines, and the distribution of the sum of machine-level
peak usage. The distributions are plotted as cumulative dis-
tribution functions (CDFs) [12]. At the median, the sum of
task-level peak usage is almost 50% higher than the machine-
level peak usage. This indicates that even a perfect system,
which always set tasks’ resource limits equal to the tasks’
peak resource usage, has room to safely overcommit ma-
chines by packing them with additional tasks whose total
limit on each machine is higher than the machine’s capacity.
This statistical multiplexing of peaks provides an opportu-
nity for overcommitment that is not exploited by existing
works, such as Autopilot, that target setting limits for each
task close to its actual usage.
Our approach explores this pooling effect, i.e., the tem-

poral or probabilistic variability of utilization within a par-
ticular task. If a task never reaches a fraction, say 40%, of
its allocated limit, the limit can be lowered by tools such as
Autopilot. Our approach solves the related, but orthogonal,
problem of a task that sometimes, e.g., 5% of time, reaches
its limit, but usually operates at a much lower utilization.

3 Peak Oracle
We first establish the maximum free resource capacity that a
machine can advertise to a scheduler without violating any
tasks’ resource limits, which we call the peak oracle. While
we cannot implement this peak oracle in practice, since it
requires perfect knowledge of the future, we use it as our
baseline to evaluate practical peak predictors in Section 4.

3.1 Definition of the Oracle
Schedulers need to look at the available resources on a ma-
chine, not only at the present, but also in the future, when
scheduling a new task on the machine. Placing a new task
based only on the available resources at the time of sched-
uling can lead to resource shortages, since, in the future,
existing tasks might use more resources. As a result, the
machine’s free capacity may drop below the new task’s limit.
There will be a resource shortage on the machine if, at the
same time, the new task’s resource demand exceeds the avail-
able free capacity. This can happen even if every task is op-
erating well below its limit. Our peak oracle formalizes the
reverse of this argument by assuming a clairvoyant scheduler,
i.e., a scheduler that knows all tasks’ future usage.
More formally, a clairvoyant scheduling algorithm com-

putes the future usage U (J , t) (a time series) of any set of
tasks J by simply adding the per-task usageUi (t). To sim-
plify notation, we assume that if a task k completes at some
time t ′ it has 0 usage after that time, i.e.,Uk (t) = 0 for t ≥ t ′.

U (J , t) =
∑
i ∈J

Ui (t). (1)

At any time τ , the peak oracle PO computes the future
peak usage as follows.

PO (J ,τ) = max
t ≥τ

U (J , t). (2)

We denote as P(J ,τ) any peak predictor, i.e., a function that
at time τ computes the predicted peak for a set of tasks J .

A scheduling algorithm employs the peak oracle as follows.
To decide whether a new task J , submitted (or released) at
time r j , fits on a machine, the peak oracle computes the
future peak usage PO (Js ∪ {J }, r j) of the set of tasks already
scheduled on this machine (denoted by Js) and the new task
J . J is scheduled on a machine if and only if the future peak
PO (Js ∪ {J }, r j) does not exceed the physical capacity of the
machine, denoted asM . A scheduling algorithm is then safe
if the total usage of tasks Js scheduled on a machine never
exceeds the machine’s capacity,U (Js , t) ≤ M .
We can easily prove, by contradiction, that a scheduler

using the peak oracle is safe. Lets say at time t0, a machine’s
resource usage exceeds its capacity, i.e., U (Js , t0) > M . As-
sume the last task placed on the machine before time t0 is
released at time r j . By definition, the future peak usage at
time r j for tasks Js is greater than the machine’s capacity:
PO (J , r j) = maxt ≥r j U (J , t) ≥ U (J , t0) > M . The sched-
uler should not schedule the task released at time r j on the
machine according to the oracle’s output, contradicting the
assumption that the task runs on the machine.
In addition, a greedy scheduler using the peak oracle is

the most efficient scheduling policy among all safe policies.
A non-greedy scheduler could refrain from placing a task
on a machine even though the oracle predicts that there is
sufficient space for it. Specifically, there is no safe scheduling
policy that yields a utilization higher than the oracle by
scheduling more tasks. To see why, lets assume that at time
r j , task J is released and the oracle rejects the task be assigned
to a machine with capacityM , while another safe scheduling
policy allows its placement. The only reason the oracle would
reject task is when PO (Js ∪ {J }, r j) > M . Thus, if the task
is placed on the machine, at some time t > r j , U (Js , t) >
M , which makes the other policy unsafe, contradicting our
previous assumption the policy is safe.

3.2 Measuring overcommit quality with oracle
violations

Since a scheduling algorithm using the peak oracle is the
most efficient safe policy, an effective approach to designing
practical overcommit policies is mimicking the peak oracle
by predicting the future peak usage given a set of tasks. That
is, designing an algorithm that estimates the oracle value
PO (J , t) by an estimator P(J , t) = P̂O (J , t) using only
data available at t : historical usage data Ui (τ) for τ < t , or
a task limit Li , which is either defined by the user, or set
by an automation tool such as Autopilot [52]. We call any
algorithm that predicts the future peak usage for a set of
tasks a peak predictor. Our peak oracle represents the most
accurate and efficient peak predictor, since it results in the

559

Take it to the Limit EuroSys ’21, April 26–29, 2021, Online, United Kingdom

Oracle

Usage

Time

Pₒ(Js, tᵣ)

M Capacity

A new task scheduled at tᵣ whose limit
satisfies the condition:

P(Js, tᵣ) + limit <= M <= Pₒ(Js, tᵣ) + limit

Total resource
usage after

adding the new
task's resource

usage

Resource shortage even
if every VM's usage is

within their limit.

tᵣ

P(Js, tᵣ)

U(Js, tᵣ)

th

Figure 2. Oracle violation at tr may lead to scheduling a too-
large task at tr , and resource shortage at th .

least unused capacity. In contrast, themost conservative peak
predictor, which yields the most unused capacity and never
overcommits, uses the sum of the limit of all running tasks on
a machine, i.e., P(J , t) =

∑
i Li , as its prediction. Formally,

we say a predictor overcommits if its predictions are ever
lower than the sum of the limits, i.e., P(J , t) <

∑
i Li .

To evaluate a peak predictor, we compare it against the
actual future peak usage. If a prediction is higher than the
actual usage at time t , P(J , t) > PO (J , t), using it would be
safe for the scheduler, since it would not result in a machine’s
resource demand exceeding its capacity, but it would be less
efficient than the oracle as fewer tasks could potentially fit
onto the machine. In contrast, if a peak predictor underes-
timates the future peak usage, more tasks could be placed
onto a machine, which makes it unsafe.
We say there is a violation of the oracle when a peak pre-

dictor underestimates the future peak usage, i.e., at some
moment t , P(J , t) < PO (J , t). The more overcommit viola-
tions that happen, and the greater the difference between the
predicted and actual peak, the more likely some scheduling
decision leads to resource exhaustion on the machine.

3.3 Estimating tasks’ performance by oracle
violations

We next use the hypothetical example from Figure 2 to show
how an oracle violation can lead to a resource shortage. At
time tr , a new task J is submitted to the cluster, and the sched-
uler picks a machine, with capacityM , to see if it has enough
resource to run task J . At the time, all tasks running on the
machine, Js , have usageU (Js , t1). Looking into the future,
these tasks’ total usage then peaks to PO (Js , tr) at time th .
This means the machine has an oracle value of PO (Js , tr)
at time tr based on the peak oracle’s definition. Now lets
say there is an oracle violation at time tr , such that the pre-
dicted future peak usage is P(Js , tr) < PO (Js , tr). Let’s say
the new task J has a resource limit L J , which satisfy the
condition P(Js , tr) + L J ≤ M < PO (Js , tr) + L J . Because
the infrastructure only ensures some level of resource avail-
ability for tasks up to their limit, the predicted peak can
only increase up to L J after considering task J , which gives
us P(Js ∪ {J }, tr) ≤ P(Js , tr) + L J ≤ M . This allows the
scheduler to schedule task J onto the machine because the
scheduler thinks the machine has enough capacity to host all
tasks including J . However, the actual free capacity left for

Cell No. 1 2 3 4 5
Approx machines (×103) 40 11 10.5 11 3.5
Approx tasks (×106) 14.8 12.8 9.4 81.3 3.7

Table 1. Performance correlation experiment statistics. Data
covers a month-long period starting 2020-06-01.

task J in the future isM−PO (Js , tr) < L J . This indicates that
there is a time point when task J could maintain its usage
within its limit, while every other task also runs within their
resource limit, but still causes a resource shortage on the
machine.
Getting rid of oracle violations is sufficient to avoid re-

source shortages as described above because it makes it
impossible to satisfy the condition P(Js , tr) + L J ≤ M <
PO (Js , tr) + L J in the first place. On the other hand, as illus-
trated in Figure 2, a sequence of events must happen in a spe-
cific order to turn an oracle violation into an actual resource
shortage: 1) the violation must happen; 2) the scheduler must
schedule a task at time tr when the violation happens; 3) the
scheduled task’s limit L J must be higher than the remaining
capacity L J > M − PO (Js , tr), i.e., the machine’s capacity
minus the true future peak usage; and 4) finally, at some
future th > tr , multiple tasks, including the newly scheduled
one, must request resources at certain level at the same time.

Thus, a violation is not a sufficient condition for resource
exhaustion, but with more violations, the scheduler gets
more opportunities to schedule a task that fits these criteria,
which might lead to resource exhaustion. Resource exhaus-
tion can be exhibited in different ways depending on the
resource, or the machine’s policy of dealing with a resource
shortage. For example, a shortage of CPUs could lead to high
CPU scheduling latency, i.e., threads that are ready to run,
but instead must spend time waiting for free CPU cycles.
CPU scheduling (access) latency is particularly important,
since it is one of the metrics that many schedulers use to
establish CPU latency SLOs [3, 39].

To measure oracle violations, for each machine, we count
the number of times a violation happens and normalize it
to the total number of time instances. We call this ratio
the violation rate. The higher the violation rate, the higher
the risk to a machine. We next establish a link between the
violation rate and our chosen QoS metric from above: the
CPU scheduling (allocation) latency, i.e., the time a ready
process must wait for CPU. For latency-sensitive serving
tasks, this CPU scheduling latency should be low. The link
between the violation rate and an established QoS metric is
crucial, as it enables us to test our algorithms in simulation,
where we can easily compute the violation rate, but where
it is difficult to accurately simulate the effect on QoS.
We support this claim using two arguments based on a

study of Borg, which employs a predictor that enables over-
commit by linearly scaling down the running tasks’ limit by
a constant factor, similar to [5, 18, 27–29, 44]. Note that the
peak predictor’s specific implementation is irrelevant here

560

EuroSys ’21, April 26–29, 2021, Online, United Kingdom Bashir, et al.

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

production cell 1
production cell 2
production cell 3
production cell 4
production cell 5

x - Per-machine violation ratePr
ob

ab
ilit

y
(p

er
-m

ac
hi

ne
 v

io
la

tio
n

ra
te

 x

)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

P
ro

b
a

b
ili

ty
 (

C
e

ll
u

ti
liz

a
ti
o

n
 <

=
 x

)

x - Cell utilization

production cell 1

production cell 2

production cell 3

production cell 4

production cell 5

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.11

9
9

%
ile

 C
P

U
 s

c
h

e
d

u
lin

g
 l
a

te
n

c
y

 (n
o

rm
a

liz
e

d
 t

o
 m

e
a

n
 l
a

te
n

c
y
 a

t
0

 v
io

la
ti
o

n
 r

a
te

)

Violation rate

mean ± std

mean

(a) Per-machine (b) CPU scheduling latency. (c) Per-cell utilization (d) 99%ile CPU scheduling
violation rates latency

Figure 3. Per machine oracle violation rate and performance.

as the relationship between violations and performance is
independent of the quality of prediction. Using data collected
from Borg, on a macro level, we show that clusters with a
higher average violation rate also have a higher average CPU
scheduling latency. Later, on a per-machine level, we show a
correlation between a machine’s violation rate and its CPU
scheduling latency. Our first argument enables us to assess
the relative performance of predictors: if a predictor P(J , t)
has a lower violation rate than another predictor P ′(J , t),
the former predictor P(J , t) should also result in better QoS
in production under a similar workload. The second argu-
ment strengthens this link by showing marginal gains in
QoS when improving the predictor.
We first measure oracle violation rates and QoS perfor-

mance in 5 clusters of machines, called cells following the
convention in our prior work [50, 59, 61]. These cells are not
part of the Google cluster trace [64]. Each cell is managed
by a separate scheduler that manages all machines within
that cell. A median cell has 11k machines and processes 13M
tasks in a month, but we also include smaller and larger
cells for completeness, as shown in Table 1. We show CDFs
over all machines in these cells, grouped by the cell. Fig-
ure 3(a) shows each cell’s per-machine violation rate, while
Figure 3(b) shows the distributions of tasks’ CPU scheduling
latency in each cell, normalized to a common constant.
Although there is no canonical way of ordering distri-

butions, we can still see a general trend by comparing Fig-
ure 3(a) and Figure 3(b): cell 5 has the most machines with
violations, and it indeed has the highest CPU scheduling
latency at the tail when we zoom into Figure 3(b). Cells 2
and 3 have the lowest violation rate among the 5 cells, and
they are also the two best performing cells. Cells 1 and 4 are
in the middle, better than cell 5 but worse than cells 2 and 3,
measured by violation rate and CPU scheduling latency.

However, one abnormality contradicts our thesis: cell 4 is
clearly better than cell 1 in violation rate at every percentile,
but its CPU scheduling latency is worse than cell 1. To dig
deeper, we need to look at the cell-level CPU utilization
distribution as shown in Figure 3(c), where each data point
takes the total CPU usage of all running tasks in a cell at any
given time and normalizes it to the cell’s total CPU capacity.
According to Figure 3(c), cell 1’s utilization is lower than cell

4 at every percentile. The lower the utilization, the less likely
it is that an oracle violation will lead to resource exhaustion
as it requires specific events to happen in a certain order after
a violation, as illustrated in Figure 2. This explains the better
QoS of cell 1 compared to cell 4 despite its worse violation
rate. Additionally, by analyzing the order of utilization in
Figure 3(c) together with the QoS in Figure 3(b), we see
that the average utilization alone is a poor predictor of QoS:
cells 2 and 3 have the highest utilization, but also the lowest
scheduling latency; cell 4 has the second-lowest utilization,
but second-highest scheduling latency.
We next analyze the relationship between the violation

rate and the CPU scheduling latency for individual machines.
We take a random sample of 10,795 machines from the five
cells. For each machine, we measure the violation rate aver-
aged over the entire month, and the machine’s tail (99%ile)
CPU scheduling latency during the month, i.e., 99% of time,
the CPU scheduling latency was lower than this value. We
then normalize the scheduling latency by the average tail
latency over machines that had no violations.

Figure 3(d) shows the data as an error-bar plot. We group
the machines into buckets by violation rates, such that a
bucket groups machines with violation rates (x ,x + 0.005].
For each bucket we show the mean (represented by the black
dot) and the standard deviation (represented by the error
bars). We limit the x-axis range to the first bucket containing
less than 50 machines. Although the CPU scheduling latency
varies within each bucket due to confounding factors that are
orthogonal to overcommit (such as NUMA locality and the
network traffic) and the fact that violations do not necessarily
result in resource exhaustion, there is still a clearly-visible
trend: when a machine’s violation rate increases, the 99%ile
CPU scheduling latency also increases.
To quantify the correlation, we apply Spearman’s rank

correlation before and after grouping machines into buckets
based on their violation rate and taking the mean. The corre-
lation coefficients are 0.42 for the raw data and 0.95 for the
mean data, respectively (p-values are smaller than 1e-100). If
we fit a line to the mean latency of each bucket, the slope is
14.1. Given that the latency (the y-axis) is normalized to the
mean with no violations, this slope suggests that with every
percentage increase in violation rate, on average, the CPU

561

Take it to the Limit EuroSys ’21, April 26–29, 2021, Online, United Kingdom

0 200 400 600 800 1000
0.0

0.2

0.4

0.6

0.8

1.0

x - Task submission rate (tasks/5min)

Pr
ob

ab
ilit

y
(ta

sk
 s

ub
m

is
si

on
 ra

te

 x
)

cell a
cell b
cell c
cell d
cell e
cell f
cell g
cell h

Figure 4. CDF of number of tasks per 5 minute in Google trace
v3 [59] cell a over first week period.

scheduling latency increases by 14.1% compared to machines
with no violation.

The correlation shown in Figure 3 helps us build a bridge
between the performance of an overcommit policy in produc-
tion and the oracle violation, which can be easily simulated
offline as we show later. Such simulation-based discovery
enables us to compare multiple overcommit policies and dif-
ferent configurations using only offline simulation before
deploying anything into production. Considering a typical
experiment using overcommit in production may take weeks
or months assuming the experiment has not caused any dis-
ruption, evaluating overcommit policies using simulation
is not only a safer way of testing ideas, but also greatly im-
proves the velocity of development.

4 Practical Peak Predictors
While our peak oracle is optimal, it requires complete knowl-
edge of the future, and is thus impossible to implement in
practice. Of course, we can implement the peak oracle in sim-
ulation using historical data where we have such complete
knowledge. We can then use our implementation to evaluate
practical peak predictors as shown in Section 5.1.1. Our goal
in designing a practical peak predictor is to approximate the
oracle’s behavior using only data available at the moment of
prediction: per-task usageUi (t) and limits Li .

Google’s internal production environment puts additional
practical constraints on the overcommit policy that we em-
ploy. A typical cluster has roughly 10,000 physical machines
and is managed by a logically-centralized Borg scheduler.
Borg periodically polls data from agents running on each
machine, or Borglets [59], for their available resources. With
a complete view of the cluster, the scheduling algorithm at
Borg makes task placement decisions.
Running the peak predictor in the centralized scheduler

is prohibitively expensive considering that it manages tens
of thousands of machines, each running hundreds of tasks,
while also maintaining a tight SLO on scheduling latency.
Combined with a high arrival rate of new tasks as shown
in Figure 4, the centralized Borg scheduler does not have
the luxury of running a sophisticated prediction algorithm
when making scheduling decisions. Thus, we choose to im-
plement the policies in Borglets on each machine. We thus

run the predictor in parallel and independently on individ-
ual machines and periodically update the prediction to the
centralized scheduler. However, because each machine’s Bor-
glet shares its CPU and memory with production tasks, it
should use as few resources as possible. In addition, the peak
predictor should not depend on services running on other
machines to ensure it does not cause the entire cluster to
fail due to a single service’s failure. Thus, our predictors
must be lightweight, in both CPU and memory footprint,
and should be fast to compute, so as to should respond within
the polling frequency of the central scheduler. To maintain
a light CPU workload, the predictors should almost always
prefer a simple algorithm over a complicated one. In addition,
to reduce the memory footprint, the node agent should not
have to store too much information about the tasks. Thus,
for each task, we only maintain a moving window to store
the most recent samples; we denote the window size by
max_num_samples .

Newly launched tasks would normally need a warm-up
period before exhibiting a stable resource usage pattern that
a peak predictor can use. To accommodate this, all the predic-
tors we designed take another parameter,min_num_samples .
For tasks with less thanmin_num_samples samples, the pre-
dictor considers only the task’s limit as its usage when mak-
ing predictions. In other words, the predictions are only
made for the tasks with more thanmin_num_samples sam-
ples, which is then adjusted by adding the limit of tasks with
less thanmin_num_samples .

We next outline peak predictors from prior work as addi-
tional baselines, as well as propose new peak predictors.
Borg-default Predictor (borg-default). This predictor is
similar to the default overcommit policy used by Borg. It
overcommits CPU resources by a fixed ratio [2]. This pre-
dictor computes the sum of tasks’ limits and then takes
a certain fraction ϕ as the estimate of future peak usage:
PL(J , t) = ϕ

∑
i ∈J Li . ϕ = 1.0 corresponds to no overcom-

mit, as each task’s usage is capped by its limit, Ui (t) < Li .
This policy has been widely adopted by many other systems
in practice due to its simplicity [5, 18, 27–29, 44].
Resource Central-like Predictor (RC-like). This predic-
tor is motivated by the overcommit policy from Microsoft’s
Resource Central, which predicts the machine-level resource
usage peak as a sum of a percentile of each individual task’s
resource usage [14]. This predictor takes a percentile of each
individual task’s resource usage and returns the sum of the
percentiles, Ppk (J , t) =

∑
i ∈J perck (Ui), where k denotes

the percentile that is used, e.g., Pp95 uses the 95%ile .
N-sigma Predictor. The central limit theorem states that
the sum of independent, identically distributed (i.i.d.) ran-
dom variables tends to a Gaussian distribution. However,
these assumptions may not apply for random variables mod-
eling the tasks’ resource usage in a datacenter. For instance,
the resource usage for tasks within a single job may be

562

EuroSys ’21, April 26–29, 2021, Online, United Kingdom Bashir, et al.

4VSTVMIXEV]���'SRƻHIRXMEP

�ÔĬ�Ųø�ŒĔīŞĦÔřø�řđĔŒ̼

�

Ɣ %PP�:1W�LMWXSV]�MW�EZEMPEFPI��E�WRETWLSX�VIPIEWIH�XS�TYFPMG�MR�������7S��=IW�;I�'ER�
Ɣ ,S[�[SYPH�]SY�WMQYPEXI�XLI�SZIVGSQQMX�QSHIP#

Ɣ)ZIV]XLMRK�GER�FI�HSRI�MR�E�WMQYPEXMSR�SƾMRI�
ż)ZEPYEXMRK�ER]�SZIVGSQQMX�QSHIP�[MXLSYX�TYWLMRK�XS�TVSHYGXMSR�
ż -RXIKVEXI�XLI�TVIHMGXMSR�EPKSVMXLQ�MRXS�&SVK�EJXIV�FIMRK�XIWXIH�MR�XLI�WMQYPEXMSR�

Ɣ 7TSMPIV�%PIVX��7MQYPEXSV�[EW�HIZIPSTIH�F]�2ER�(IRK�FIJSVI�-�NSMRIH
ż %ZEMPEFPI�XS�+SSKPIƅW�MRXIVREP�YWIVW�ERH�QEOIW�YWI�SJ�VYQFS�HEXE
ż 6IMQTPIQIRX�XLI�WMQYPEXSV�YWMRK�STIR�WSYVGI�XSSPW�ERH�TYFPMG�HEXE��FPIWWMRK�MR�HMWKYMWI�

ř�ώ�ʼ)Ĭô�Ĳċ�AĲŎĔƀĲĬ�řÔǈ�Ĳċ�AĔŒřĲŎŸ

zŎøôĔîřĲŎ

TVIHMGXIH�TIEO SVEGPI

īÔŷ͚ċŞřŞŎø�ŞŒÔČø͛�ĲīŋÔŎø

Figure 5. Illustrative diagram for the overcommit simulator.

correlated, as a job is driven by a load balancer. In addi-
tion, tasks from different jobs may exhibit different distribu-
tions [33]. However, as demonstrated in [17, 33], Gaussian
approximation of the total load of a machine matches the
actual distribution well ([33] used this approximation for
bin-packing, i.e., no dynamic task arrivals and departures).
Thus, our N-sigma predictor PNσ (J , t) leverages this insight
by computing the mean total usage U (J , t) and its stan-
dard deviation std(U (J , t)) and then returns PNσ (J , t) =

U (J , t)+N × std(U (J , t)). Assuming the Gaussian approxi-
mation of load is correct, P2σ (J , t) corresponds to the 95%ile
of the distribution, and P3σ (J , t) corresponds to the 99%ile.
Max Peak Across Predictors. This algorithm takes the
output of the algorithms above as its input. Given a set of
algorithms that each individually estimate a machine’s future
peak usage, this predictor estimates the peak usage as the
maximum of the estimate across all the algorithms.

5 Evaluation in Simulation
We evaluate our overcommit policies in two different ways.
First, in simulation, we compare our policies to the peak
oracle by comparing the performance of each policy with the
peak oracle. We also use the simulator to tune each policy’s
parameters. Second, in Section 6, we implement and deploy
our policy on a representative fraction of machines managed
by Borg. This deployment enables us to compare QoSmetrics
between machines using our policy and the control group,
as well as to quantify our policy’s savings, i.e., how much
denser our policy packs tasks compared to the control group.
5.1 Evaluation Setup
Below, we describe the design of our simulator and its accu-
racy in mimicking the production environment, as well as
present our key evaluation metrics.
5.1.1 Overcommit simulator. Our overcommit simula-
tor provides a framework for experimenting with different
overcommit policies by simulating peak predictors running
independently on each simulated machine. The simulator is
designed to closely match the machine-level component of
the Borg scheduler. We decided not to simulate the sched-
uling algorithms, as these algorithms are complex and also
dependent on feedback loops between jobs and the scheduler.
Our simulator is available under an open-source license

to enable the development and evaluation of new prediction
algorithms. Our simulator facilitates integrating new pre-
dictors and standardizes their interface to ease their later
conversion to a production environment. Our overcommit
simulator has two key goals: 1) compare the peak oracle
with a predictor; and 2) facilitate testing over a variety of
scheduling scenarios.

0.50 0.25 0.00 0.25 0.50 0.75 1.00 1.25 1.50
0.0

0.2

0.4

0.6

0.8

1.0

x - Approx peak - actual peakPr
ob

ab
ilit

y
(a

pp
ro

x
pe

ak
 - a

ct
ua

l p
ea

k

x)

sum(100%ile)
sum(50%ile)
sum(60%ile)
sum(70%ile)
sum(80%ile)
sum(90%ile)
sum(95%ile)

Figure 6. CDF of difference between machine-level peak as
estimated by sum of nth percentile usage (approx peak) and
the actual machine-level peak.

1) Oracle vs. Predictions. Figure 5 shows the one-line dia-
gram of the simulator. Machines are simulated independently.
For each machine, the input of the simulator is the set of
time-series {Ui [t]} specifying the complete resource usage
of each task i scheduled on the machine during the simulated
time period, such that Ui [t] = 0 before the task arrives on
the machine and after it completes. For each instance in time
τ , the simulator sends the simulated predictor algorithm the
historic usage Ui [t], t < τ and gets the predicted peak. The
simulator also computes the peak oracle using the future us-
ageUi [t], t ≥ τ . The predicted peak and oracle are compared
to evaluate the accuracy of the prediction algorithm.
2) Simulation Scenarios. The simulator implements a con-
figurable data processing pipeline to enable simulating a
wide variety of realistic scenarios, i.e., task usage time series
Ui [t] allocated on each simulated machine. As its default, the
simulator takes tasks’ resource usage andmachine placement
from the Google cluster trace v3 [59, 65]. We also provide the
user with the following set of optional functions: filter VMs
based on time, priority, scheduling class, and alloc configura-
tions; choose the metric a user wants to use for predicting the
peak resource usage; enable generating more data than the
public trace by shifting measurements in time; and choose
the type of scheduler they want to use for their simulations.
Users can also store and load intermediate data after each
step to reduce the simulation’s computation costs.
5.1.2 Simulation settings. We use the latest (v3) version
of the Google cluster trace [59]. Most of the results and
analysis are performed using the first week data from cell
a. Section 5.5 shows results on other weeks and from other
cells. We keep only the top level tasks (alloc collection id is 0).
Tasks are not filtered by priority. As our infrastructure costs
are driven largely by serving jobs, in our simulations we
only consider latency sensitive tasks from the trace, which
corresponds to scheduling classes 2 and 3. The trace provides
the CPU usage distribution over the 5 minute interval and
not the machine-level peak usage. However, internally, Borg
stores machine-level peak usage, which we use as ground-
truth to estimate the machine-level peak using task level
usage information. As shown in Figure 6, if we estimate the
machine-level peak as the sum of task level peaks from the
CPU usage distribution, we significantly overestimate the

563

Take it to the Limit EuroSys ’21, April 26–29, 2021, Online, United Kingdom

0 24 48 72 96 120 144 168
x - Task runtime (hours)

0.5

0.6

0.7

0.8

0.9

1.0

Pr
ob

ab
ilit

y
(ta

sk
 ru

nt
im

e
 x

)

cell a
cell b
cell c
cell d
cell e
cell f
cell g
cell h

0.00 0.05 0.10 0.15 0.20 0.25 0.30
x - Normalized oracle difference

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ilit

y
(n

or
m

al
ize

d
or

ac
le

 d
iff

er
en

ce

 x
)

oracle_48h
oracle_24h
oracle_12h
oracle_6h
oracle_3h

0.0 0.2 0.4 0.6 0.8 1.0
x - Normalized usage

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ilit

y
(n

or
m

al
ize

d
us

ag
e

 x
)

cell_a
cell_b
cell_c
cell_d
cell_e
cell_f
cell_g
cell_h

(a) Task runtime (b) Oracles with different horizons (c) Usage-to-limit ratio
Figure 7. CDFs for (a) task runtime, (b) difference between oracles of different horizons normalized to 72h oracle, and (c) 5-minute
task usage to its current limit. The CDF is computed over all 5-minute intervals for all tasks of cell a during the first week.

0.0 0.2 0.4 0.6 0.8 1.0
x - Per machine violation rate

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ilit

y
(p

er
 m

ac
hi

ne
 v

io
la

tio
n

ra
te

 x

)

n = 2
n = 3
n = 5
n = 10

2-sigma 3-sigma 5-sigma 10-sigma
0.00

0.05

0.10

0.15

0.20

0.25

0.30

1
- (

pr
ed

ict
ed

 p
ea

k
/ t

ot
al

 li
m

it)

0.0 0.2 0.4 0.6 0.8 1.0
x - Per machine violation rate

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ilit

y
(p

er
 m

ac
hi

ne
 v

io
la

tio
n

ra
te

 x

)

warm-up = 1h
warm-up = 2h
warm-up = 3h

0.0 0.2 0.4 0.6 0.8 1.0
x - Per machine violation rate

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ilit

y
(p

er
 m

ac
hi

ne
 v

io
la

tio
n

ra
te

 x

)

history = 2h
history = 5h
history = 10h

(a) Effect of n (b) Effect of n on savings (c) Effect of warm-up (d) Effect of history
(2h warm-up, 10h history) (2h warm-up, 10h history) (n=5, 10h history) (n=5, 2h warm-up)

Figure 8. CDFs of per machine violation rate for N-sigma predictor under different parameters: a) n, c) warm-up period, and d)
history. The effect of n on average cell-level savings shown in (b).

machine-level peak since all tasks do not peak at the same
time. We conservatively choose the 90%ile usage since it
is greater than the actual peak for more than 95% of the
time. Additionally, we cap each task’s usage to its limit, as if
there is resource contention; our scheduler also applies such
capping. Finally, we do not modify the placement decisions
of the Borg scheduler from the trace.

5.1.3 Evaluation metrics. We use three metrics to evalu-
ate overcommit policies in simulation: savings, violation rate,
and violation severity. The savings metric is used to evaluate
the benefit of an overcommit policy, while the other two
measure risk. Unless otherwise stated, metrics are calculated
for each machine averaged over the length of the simulated
period.Wemostly focus on cumulative distribution functions
(CDFs) of these metrics over all machines.
Savings Ratio: For each 5-minute interval t , we compute
the total limit of the tasks currently executing on a ma-
chine, L(t) =

∑
i ∈J Li (t). We then compare the predictor’s

output with the limit by calculating the relative difference,
(L(t)−P(J , t))/L(t). Because the difference between the total
limit, L(t), and the predicted future peak, P(J , t), yields the
amount of additional usable capacity for running tasks that
is unavailable without overcommitting, we can translate the
savings ratio directly to the additional capacity created by
an overcommit policy, which represents the primary benefit
of overcommitting resources.
Violation Rate: The total number of oracle violations (Sec-
tion 3.2): |{t : P(J , t) < PO(J , t)}|. We normalize this total

number of oracle violations by the length of the trace, i.e.,
the number of distinct time instances t .
Violation Severity: If, for an interval t , the peak prediction
P(J , t) is lower than the peak oracle PO((J , t), the relative
difference between the prediction and the oracle, normalized
by the oracle value (and 0 if there is no oracle violation):
max(0, PO(J , t) − P(J , t))/PO(J , t).

5.2 Configuring peak oracle and borg-default
predictors

We first perform an exploratory analysis of the Google trace
data to determine 1) how far in the future the peak oracle
should look into (the oracle horizon) and 2) at what fraction
of the total limit the borg-default predictor should be set.
Figure 7(a) shows the CDF of task runtime. As shown,

there is a significant variation between task runtime across
cells. For example, cell c has more than 98% of the tasks that
are less than 24hrs, while cell д has only 75% of the tasks
are less than 24hrs. The runtime of tasks is important in
determining the right forecast horizon for the peak oracle;
this forecast horizon specifies how far an oracle can see into
the future. The peak oracle at t provides the peak future us-
age over the horizon for all the tasks present at t . Since all
the tasks in the first week’s trace are less than 168 hours,
an oracle with a horizon of 168 hours will capture the true
peak for all the tasks. However, there is a trade-off between
accuracy and computational cost, since running an oracle
with a long horizon is computationally expensive. Figure 7(b)
shows how shorter-horizon oracles (3h-48h) compare to a

564

EuroSys ’21, April 26–29, 2021, Online, United Kingdom Bashir, et al.

0.0 0.2 0.4 0.6 0.8 1.0
x - Per machine violation rate

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ilit

y
(p

er
 m

ac
hi

ne
 v

io
la

tio
n

ra
te

 x

)

percentile = 80
percentile = 90
percentile = 95
percentile = 99

80p 90p 95p 99p
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

1
- (

pr
ed

ict
ed

 p
ea

k
/ t

ot
al

 li
m

it)

0.0 0.2 0.4 0.6 0.8 1.0
x - Per machine violation rate

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ilit

y
(p

er
 m

ac
hi

ne
 v

io
la

tio
n

ra
te

 x

)

warm-up = 1h
warm-up = 2h
warm-up = 3h

0.0 0.2 0.4 0.6 0.8 1.0
x - Per machine violation rate

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ilit

y
(p

er
 m

ac
hi

ne
 v

io
la

tio
n

ra
te

 x

)

history = 2h
history = 5h
history = 10h

(a) Effect of percentile (b) Effect of %ile on savings (c) Effect of warm-up (d) Effect of history
(2h warm-up, 10h history) (2h warm-up, 10h history) (95%ile, 10h history) (95%ile, 2h warm-up)

Figure 9. CDFs of per machine violation rate for RC-like predictor under different parameters: a) percentile, c) warm-up period,
and d) history. The effect of percentile on average cell-level savings shown in (b).

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

x - Per-machine violation rate

Pr
ob

ab
ilit

y(
pe

r-m
ac

hi
ne

 v
io

la
tio

n
ra

te

 x
)

RC-like
N-Sigma
max(N-Sigma, RC-like)
borg-default

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

RC-like
N-Sigma
max(N-Sigma, RC-like)
borg-default

x - Violation severity

Pr
ob

ab
ilit

y
(v

io
la

tio
n

se
ve

rit
y

x)

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

RC-like
N-Sigma
max(N-Sigma, RC-like)
borg-default

x - Per-machine saving ratio
Pr

ob
ab

ilit
y

(s
av

in
g

ra
tio

 x

)

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

RC-like
N-Sigma
max(N-Sigma, RC-like)
borg-default

Pr
ob

ab
ilit

y
(s

av
in

g
ra

tio

 x
)

x - Per-cell saving ratio

(a) Per-machine violation rate (b) Violation severity (c) Per-machine savings (d) Per-cell savings
Figure 10. CDFs of per-machine violation rate (a), violation severity (b), per-machine savings (c), and cell-level savings (d) for
different predictors over one week period for cell a. Per-machine savings show the distribution of average difference between
machine-level limit and machine-level peak, normalized to machine-level limit. Cell-level savings show the distribution over all
5-minute periods of the difference between cell-level limit and cell-level peak, normalized to cell-level limit.
longer-horizon oracle of 72 hours. As the oracle horizon in-
creases, the difference between the predicted peak decreases.
For a 24-hour oracle, we are less than 5% lower than the
72-hour oracle peak for more than 95% of tasks. This occurs
because the majority of tasks in the first week’s trace are
shorter than 24 hours. Further, even some of the longer jobs
show daily periodic behavior, which means that the maxi-
mum peak of their lifetime will occur in a 24-hour period.
Due to these reasons, we argue that a 24-hour oracle is suffi-
cient, and choose it as the default horizon for the oracle in
all our subsequent experiments.
Figure 7(c) shows the distribution of resource usage to

limit ratio for each task at each time for all cells. As shown,
all cells show highly consistent behavior with the 95%ile
usage-to-limit ratio for all the cells being less than 0.9. We
set the static fraction for the borg-default predictor, ϕ, to be
0.9, as 10% of resources are not utilized 95% of the times.

5.3 Configuring peak predictors
Figure 8 shows how the configuration parameters for the N-
sigma predictors affect the per-machine violation rates and
savings. For theN-sigma predictor, the per-machine violation
rate decreases as we increase n while keeping the warm-
up time and the amount of history constant (Figure 8(a)).
This is expected since at high values of n the predicted peak
approaches the limit, which leads to lower violation rates.
However, there is a trade-off between the violation rate and
the savings. Figure 8(b) shows that asn increases, the savings

reduce. Thus,n is chosen such that it generates the maximum
savings given the violation rate does not violate SLOs.
Figure 8(c) and 8(d) show the effect of warm-up period

and history on per-machine violation rate, respectively. The
warm-up period does not affect the violation rate signifi-
cantly. This occurs because even 1h is a long period for the
task usage to reach a steady state. In contrast, the length of
history for each task has a more pronounced impact on the
violation rate, as longer history better captures the long-term
behavior, which is more indicative of future peak usage.

We perform a similar comparison for the RC-like predictor
(shown in Figure 9). As we increase the percentile usage for
each task, the violation rate decreases (Figure 9(a)) but the
savings also decrease (Figure 9(b)). This is expected since
at high values of p the predicted peak approaches the limit,
which leads to lower violation rates that, in turn, reduce
savings. The effect of the warm-up period and history on the
per-task predictor is very similar to the N-sigma predictor,
as expected. The warm-up period has only a marginal effect
on the violation rate (Figure 9(c)), while history has a more
significant impact on the violation rate (Figure 9(d)).

Based on this analysis, we pick n = 5 for the N-sigma pre-
dictor and 99%ile for the RC-like predictor, as these values
yield acceptable violation rates with good savings. Increas-
ing the history decreases the violation rate, but the memory
footprint of the prediction algorithm also increases. There-
fore, we keep only 10 hours of history for each task. The
warm-up period does not have a significant impact; we set

565

Take it to the Limit EuroSys ’21, April 26–29, 2021, Online, United Kingdom

0.0 0.2 0.4 0.6 0.8 1.0
x - Per machine violation rate

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ilit

y
(p

er
 m

ac
hi

ne
 v

io
la

tio
n

ra
te

 x

)

cell a
cell b
cell c
cell d
cell e
cell f
cell g
cell h

0.0 0.2 0.4 0.6 0.8 1.0
x - Violation severity

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ilit

y
(v

io
la

tio
n

se
ve

rit
y

 x
)

cell a
cell b
cell c
cell d
cell e
cell f
cell g
cell h

cell a cell b cell c cell d cell e cell f cell g cell h
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

1
- (

pr
ed

ict
ed

 p
ea

k
/ t

ot
al

 li
m

it)

(a) Per-machine violation rate (b) Violation severity (c) Savings
Figure 11. Performance of max predictors across three metrics: per-machine violation rate (a), violation severity (b), and savings
(c) over one week period across all cells. Max predictor take max over N-sigma predictor (n = 5, 2h warm-up, 10h history) and
RC-like predictor (99%ile, 2h warm-up, 10h history)

0.0 0.2 0.4 0.6 0.8 1.0
x - Per machine violation rate

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ilit

y
(p

er
 m

ac
hi

ne
 v

io
la

tio
n

ra
te

 x

)

week 1
week 2
week 3
week 4

0.0 0.2 0.4 0.6 0.8 1.0
x - Violation severity

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ilit

y
(v

io
la

tio
n

se
ve

rit
y

 x
)

week 1
week 2
week 3
week 4

week 1 week 2 week 3 week 4
0.00

0.05

0.10

0.15

0.20

0.25

1
- (

pr
ed

ict
ed

 p
ea

k
/ t

ot
al

 li
m

it)

(a) Per-machine violation rate (b) Violation severity (c) Savings
Figure 12. Performance of max predictors across three metrics: per-machine violation rate (a), violation severity (b), and savings
(c) for cell a over all weeks. Max predictor take max over N-sigma predictor (n = 5, 2h warm-up, 10h history) and RC-like predictor
(99%ile, 2h warm-up, 10h history)
the warm-up period as 2 hours. Unless stated otherwise, we
use these configuration parameters for the two predictors in
all subsequent experiments.
5.4 Peak predictor performance
Figure 10 compares the performance of different predictors
using per-machine violation rate, violation severity, and sav-
ings (per-machine and cell-level). The borg-default predictor
and RC-like predictor have the worst per-machine violation
rates (Figure 10(a)). The borg-default predictor ignores the
characteristics of the workload on a given machine. While it
works for some of the machines, e.g., 0 violation rate for 20%
of the machines, this static approach performs poorly for a
large set of machines, e.g., 30% violation rate for 20% of the
machines. While the workloads are different, our production
environment that uses a version of the borg-default predic-
tor yields similar performance (Figure 3(a)). The task-level
resource usage generally shows considerable variation and,
therefore, the RC-like predictor does not yield high perfor-
mance. On the other hand, the N-sigma predictor, which uses
the machine-level aggregate resource usage performs much
better. Our max predictor, built on top of per-task and N-
sigma predictor, yields the best performance, since no single
predictor is be best suited for all the machines at all times.
Figure 10(b) shows the violation severity distribution for

different predictors. Since the static predictor sets its over-
commit limit 10% below the resource limit, the maximum de-
gree of violation it can observe is 10%. However, not all tasks
use resources up to their resource limit and therefore the
static predictor shows the best performance, as the 99.99%ile

violation severity is less than 0.05. The N-sigma and RC-like
predictors also show similar performance. This demonstrates
that while our predictors decrease violation rates, the mag-
nitude of violations still remains comparable.
Figure 10(c) and 10(d) show the savings ratio at the ma-

chine level and cell level, respectively. Since the static predic-
tor overcommits by a constant factor for all machines, it has
a fixed savings of 10% at both the machine level and the cell
level. The RC-like predictors generates the highest savings
since it often violates the oracle by predicting a lower peak.
In contrast, the N-sigma predictor conservatively predicts
the peak and thus generates lower savings. Our max pre-
dictor yields slightly better performance than the N-sigma
predictor. At the machine level, we see considerable vari-
ations in savings as the load on different machines varies
significantly. The aggregate cell-level load is more stable,
which results in a narrow range for savings distribution.
5.5 Behavior in time and across cells
Figure 11 shows the max predictor evaluated on all the cells.
All cells, except b, show comparable performance with cell a
(Figure 11(a)). The analysis of the utilization data shows that
cell b has, at the median, the lowest per-machine utilization
standard deviation. This low variation leads the N-sigma to
predict lower peaks. Consequently, the RC-like algorithm
becomes the guarding factor and always determines the peak.
Looking at the violation rates for all predictors, Figure 10(a),
we find that the cell b’s violation rate is similar to RC-like
predictor. Violation severity is similar in all cells, Figure 11(b)
The savings for other cells is also almost always greater

566

EuroSys ’21, April 26–29, 2021, Online, United Kingdom Bashir, et al.

than for cell a (Figure 11(c)). These results confirm that our
predictors support a variety of workload profiles. Figure 12
shows our max predictor evaluated on all four weeks of cell a,
including theweek 1 results from Figure 10. The performance
is consistent with the performance in the first week.

6 Evaluation in Borg
Starting from around 2016, Borg has been using a limit-based
peak predictor (borg-default) for scheduling latency sensi-
tive tasks. The predictor has been tuned over the years for
Google’s workload and has not caused anymajor incidents or
user-visible performance degradation in recent years. Taking
this fine-tuned borg-default peak predictor as our baseline,
we evaluate the max predictor both in terms of its bene-
fit, as measured by its savings, and risk, as measured by
its CPU scheduling latency. In addition, we also show the
per-machine violation rate and violation severity of both
predictors to further validate the methodology of using met-
rics derived from simulation to infer the risks of deployment.
However, note that the primary goal of overcommitting re-
sources is to increase usable capacity for scheduling tasks
without significantly sacrificing performance. For this rea-
son, we tuned our max predictor in simulation to match the
risk profile of our borg-default peak predictor used by Borg
in terms of its violation rate and severity.

6.1 Production setup
We perform a one-month-long A/B experiment on a random
sample of 24, 000machines representative of Google’s infras-
tructure. We sample these machines from at least a dozen
clusters, where a typical cluster has roughly 11,000 machines.
We place half the machines in our sample, or ≈12,000, in the
experimental groupwhere we deploy ourmax peak predictor,
while we place the other half in the control group running
borg-default policy that has been tuned in production for
years. A similar limit-based static predictor has also been
widely adopted by other platforms [5, 18, 27–29, 44]. We
configure max predictor as the maximum over n-sigma pre-
dictor (n = 3, 2h warm-up, 10h history) and RC-like predictor
(80%ile, 2h warm-up, 10h history). For our production evalu-
ation, we consider only latency-sensitive tasks that mostly
serve end-user generated, revenue-generating requests.

6.2 Predictor performance
Figure 13 compares the performance of our max predic-
tor with the default predictor used by Borg using the per-
machine violation rate, violation severity, and savings. The
experimental group has a slightly better per-machine viola-
tion rate performance than the control group (Figure 13(a)).
This result is by design, since the borg-default predictor run-
ning on the control group has been configured to have a
risk profile, i.e., violation rate, that is acceptable in produc-
tion. Thus, the goal is not to improve the risk profile, but
instead to increase savings, while maintaining a similar risk

profile. Figure 13(b) shows the violation severity distribution
for both set of machines. As shown, both predictors have a
similar risk profile such that the 98th percentile performance
for both groups is comparable.
Comparison with simulation results. Comparing the vi-
olation rate distribution in Figure 11(a) and Figure 13(a), the
risk profile of the max predictor running in the experimen-
tal group is similar to the results observed in simulation.
This demonstrates the stability of the predictor, as it natu-
rally adapts to the underlying workload. On the other hand,
our borg-default predictor behaves significantly better (Fig-
ure 13(a), dotted curve) in control group than the simplified
version in simulation (Figure 10(a), green curve). This dif-
ference is due to the tuning of borg-default in production
over many years that has added many levels of ad hoc safety
checks to reduce the likelihood of a violation. We did not
attempt to replicate these safety checks in Section 5 , since
they are not well-defined or well-documented. Even given
these safety checks, the borg-default predictor still often has
significant violations, as shown in Figure 3 for cell 1 and cell
5. Since the machines in the control and experimental group
are chosen from multiple cells, their aggregate performance
is better than the worst case performance of any cell.
Savings and workload increase. Figure 13(c) shows the
distributions of overall savings for both groups. Savings,
calculated as in Section 5.1.3, are the difference between the
total limit of all running tasks in the group and the sum of
the predicted future peak of every machine, normalized by
the total limit of all running tasks, and aggregated over time
instances and machines. The difference directly tells us how
much additional usable capacity is created by the overcommit
policy compared with no overcommit, i.e., predicted future
peak of a machine is the total limit of all running tasks on
the machine. We then normalize the difference to the total
limit of running tasks because it is the metric we used to
guide our future capacity expansion for datacenters, similar
to [11]. Both groups generate more than 10% of the additional
capacity, while the max predictor consistently generates
more savings that is higher than 16%. Again, the savings
directly translate into usable capacity, which reduces the
purchase of capacity in the future order, and hence lowers
CapEx. The additional usable capacity in the experimental
group invites more workload than the control group: the
increase is ≈2% if we measure it by the total limit of running
tasks at a given moment normalized by the total physical
capacity (Figure 13(d)), and ≈6% if we measure it by actual
usage normalized by the total physical capacity (Figure 13(e)).
The additional workload then translates to either higher
revenue if datacenters host 3rd party jobs, or, as in our case
of an internal workload, increased efficiency.
Improvement in performance. Figure 14(a) shows the
CDF of the CPU scheduling latency of each task measured
from both the experiment and control group. The experimen-
tal group yields lower CPU scheduling latency, i.e., better

567

Take it to the Limit EuroSys ’21, April 26–29, 2021, Online, United Kingdom

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1P
ro

b
a
b
ili

ty
 (

P
e
r

m
a
c
h
in

e
 v

io
la

ti
o
n
 r

a
te

 <
=

 x
)

x - Per machine violation rate

control

exp

 0.99

 0.995

 1

 0.5 0.6 0.7 0.8 0.9 1

 0.4

 0.5

 0.6

 0.7

 0.8

 0 0.05

(a) Violation rate

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5
P

ro
b
a
b
ili

ty
 (

V
io

la
ti
o
n
 s

e
v
e
ri
ty

 <
=

 x
)

x - Violation severity

control

exp

 0.96

 0.97

 0.98

 0.99

 1

 0 0.05 0.1 0.15 0.2

(b) Violation severity

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.12 0.15 0.18 0.21 0.24

P
ro

b
a
b
ili

ty
 (

R
e
la

ti
v
e
 s

a
v
in

g
s
 <

=
 x

)

x - Relative savings

control

exp

(c) Relative savings

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.85 0.86 0.87 0.88 0.89 0.9 0.91 0.92

P
ro

b
a
b
ili

ty
 (

N
o
rm

.
a
llo

c
a
ti
o
n
s
 <

=
 x

)

x - Norm. allocations (allocation/capacity)

control

exp

(d) Total allocations

0.44 0.46 0.48 0.50 0.52 0.54 0.56
x - Normalized workload

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ilit

y
(n

or
m

al
ize

d
wo

rk
lo

ad

 x
)

control
exp

(e) Total workload
Figure 13. Production experiment results. Performance of borg-default and max predictor across three metrics: per-machine
violation rate (a), violation severity (b), relative savings (c), total allocations (d), and total workload (e) for production machines
over 32 days.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
ro

b
a
b
ili

ty
 (

N
o
rm

.
C

P
U

 s
c
h
e
d
u
lin

g
 l
a
te

n
c
y
 <

=
 x

)

x - Normalized CPU scheduling latency

control

exp
 0.26

 0.28

 0.3

 0.32

 0 0.03 0.06

 0.988

 0.99

 0.992

 0.994

 0.8 0.9 1

 0.92

 0.94

 0.96

 0.3 0.35 0.4

(a) Per-task CPU
scheduling latency

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
ro

b
a
b
ili

ty
 (

n
o
rm

.
ta

il
C

P
U

 s
c
h
e
d
u
lin

g
 l
a
te

n
c
y
 <

=
 x

)

x - Norm. tail CPU scheduling latency

control

exp

(b) 90%ile per-machine CPU
scheduling latency

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.4 0.41 0.42 0.43 0.44 0.45 0.46 0.47 0.48 0.49 0.5

P
ro

b
a
b
ili

ty
 (

U
ti
liz

a
ti
o
n
 <

=
 x

)

x - Utilization (usage/capacity)

control

exp

(c) 50%ile machine
utilization

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.41 0.42 0.43 0.44 0.45 0.46 0.47 0.48 0.49 0.5

P
ro

b
a
b
ili

ty
 (

U
ti
liz

a
ti
o
n
 <

=
 x

)

x - Utilization (usage/capacity)

control

exp

(d) Average machine
utilization

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.72 0.74 0.76 0.78 0.8 0.82 0.84

P
ro

b
a
b
ili

ty
 (

U
ti
liz

a
ti
o
n
 <

=
 x

)

x - Utilization (usage/capacity)

control

exp

(e) 99%ile machine
utilization

Figure 14. Performance improvement in production. Normalized CPU scheduling latency CDF (a), 90%ile per-machine CPU
scheduling latency (b), 50%ile machine utilization (c), average machine utilization (d), and 99%ile machine utilization (e) for
production machines over 32 days.

QoS, at all percentiles. For example, at the 90th %-ile, the
latency is reduced by 5%. This should not come as a sur-
prise after seeing better violation rates in Figure 13(a) and
knowing how it relates to the performance metric described
in Section 3.3. Looking further, the tail CPU scheduling la-
tency per machine, as defined by the 90th percentile over
the whole month for each machine (Figure 14(b)), tells us
a similar story: the experimental group consistently out-
performs the control group at almost every percentile. It is
counter-intuitive to see the experimental group yield both
higher workload (Figure 13(d)(e)) and better performance
(Figure 14(a)(b)), since conventional wisdom tells us that
systems tend to perform poorly as their workload intensity
increases. However, this inconsistency can be resolved if we
take a look at how the workload is distributed across ma-
chines in each group. At each instance in time, an average
machine in the experimental group has higher utilization
compared with an average machine in the control group,
if we look at the median and average machine utilization
(Figure 14(c)(d)), hence the increase of the overall workload
as seen in Figure 13(d)(e). However, at the tail, the hottest
machines in the experimental group are actually less utilized
compared with machines in control group (Figure 14(e)),
hence the higher QoS at the tail. In the end, the experimental
group gives us a more balanced workload across machines
providing better and more consistent performance.
We emphasize that our principal goal is not to improve

performance, but rather to increase the usable capacity for

scheduling tasks while maintaining an acceptable perfor-
mance. We are pleased to see the max predictor having lower
violation rates, and hence better task performance, while
yielding a higher savings. This result suggests that the max
predictor could be further tuned – to yield similar QoS to our
current, borg-default policy, but with even higher savings.

7 Related Work
The key new elements of our approach relative to prior work
are that 1) we do not change the cluster scheduling algorithm;
and 2) we oversubscribe serving tasks with other serving
tasks. Avoiding modifications to the scheduling algorithm
is important, as these tend to be extremely complex in pro-
duction systems; this complexity follows from various place-
ment constraints, e.g., affinities and anti-affinities, resilience
constraints [21, 66]. Additionally, this clear separation of
concerns follows the ‘relying on insights’ architecture of
merging machine learning into resource managers [6]. Thus,
our work can be directly incorporated into production sched-
ulers like Borg [59, 61], Omega [53], or Kubernetes [9, 19].
Workload balance: As shown in Section 6.2, our approach
makes machines naturally adapt their workload resulting
in a more balanced workload distribution, which has been
considered as an important objective for datacenters [41, 45].
Memory overcommit: In addition to applying the method-
ology introduced in this paper, which focuses on statistical

568

EuroSys ’21, April 26–29, 2021, Online, United Kingdom Bashir, et al.

multiplexing of CPUs, memory can be further overcommit-
ted using technologies like page compression [42, 62], local
or remote swap devices [26, 43, 46, 57].
Scheduling: Prior work also focuses on improving efficiency
through better scheduling [7, 22, 24, 25, 31]. In principle, our
approach is orthogonal to cluster schedulers: it can be used
on top of any of these approaches to either pre-filter the set of
available machines, or to manage node-level task queues, as
in Apollo [7]. Our work is closely related to bin-packing: the
peak predictor is essentially a test of whether an item fits into
a bin. We refer to [13] for a recent overview of theoretical
results in bin packing under chance constraints. [33] pro-
poses an algorithm analogous to our N-sigma predictor, but
is only evaluated for a classic stochastic bin packing (off-line,
no arrivals/departures). Some production schedulers do not
overcommit (e.g. TWINE [58]). FIRM [49] takes a different
approach: it assumes that machine resources are unlimited;
and if an action leads to oversubscribing of a resource, then
it is replaced by a scale-out operation.
Overcommit for batch jobs: [35] requires changes in the
cluster scheduler and annotations of theworkload; this would
be difficult to enforce in a production system used by thou-
sands of engineers. Morpheus [37] targets periodic batch
jobs: based on previous executions of a job, the scheduler
derives an implicit deadline, i.e., an implicit SLO, and then
combines period reservations with dynamic re-adjustment to
fulfill this deadline. Our approach targets serving jobs with
explicit SLOs, i.e., CPU scheduling latency, and, importantly
does not require changing the scheduler. ROSE [56] proposes
a distributed overcommit mechanism for centralized batch
schedulers like YARN [60].
Overcommiting serving jobs with batch jobs: Our ap-
proach overcommits serving jobs, since they are the primary
driver in determining our fleet’s capacity. The remaining ca-
pacity is filled with best-effort jobs [11]. Prior work addresses
choosing data-intensive, batch workloads to complement
serving workloads [30, 38, 68]. Scavenger [34] dynamically
adjusts batch workload limits to avoid interference with
serving workloads, and Rythm [69] constructs finer-grained
models of serving jobs to optimize the impact on latency.
[1] proposes harvest VMs offering SLOs for the unallocated
capacity. This approach is complementary to overcommit
that increases utilization of the allocated capacity.
Per-task/VM usage predictions: Our peak predictor esti-
mates the total usage of a machine, rather than estimating
the usage of individual tasks or VMs. Our approach is com-
plementary to Autopilot [52], which predicts per-task limits,
and thus operates over a long-term forecast horizon, i.e., the
task’s duration (see Section 2.2, Figure 1). PRESS [23] and
CloudScale [54] predict VM CPU usage over a short horizon
(1 minute) to dynamically adjust resource limits and drive
VM migrations, while AGILE [47] predicts VM pool load
over a 2-minute horizon to horizontally scale the pool before
load spikes. Our predictors target, and are evaluated against,

significantly longer forecast horizons. [15] shows a CPU over-
commit algorithm that relies on predicting high percentiles
of utilization for individual VMs when marking a physical
machine as eligible for overcommit, which is reminiscent of
our percentile predictor. Yet, they further restrict the over-
commit ratio to a certain static fraction that is 15%-25% of the
limit. Their work also only focuses on non-production work-
loads, while ours explicitly targets serving, latency-sensitive
tasks. Resource prediction in general can be used in domains
outside overcommit. For example, [48] predicts CPU usage
for a particular class of VMs that host database servers to aid
in finding long periods of low CPU utilization when backups
can be performed. Additionally, [10, 32, 40, 51, 55] outline
different prediction algorithms for resource management in
datacenters. These prediction algorithms are generally not
lightweight and, thus, are not suitable for our setup.
Capacity planning: Datacenter owners must make long-
term decisions on how much additional physical capacity
they need to provide to their users. Such decisions are made
by analyzing both datacenters’ utilization in the past, and
their projections of expected future resource demand. [11]
predicts for a whole cluster and for longer-term periods, e.g.,
6 months, the total slack between utilization and demand,
which is related to our usage-to-limit gap. Their approach
is complementary to ours: once the utilization increases in
the short-term through overcommit, it will eventually be
reflected in long-term capacity planning so that datacenter
owners need to buy fewer machines to satisfy the same
amount of demand.

8 Conclusion
Our work designs overcommit policies using a peak oracle
baseline policy, which is a clairvoyant policy that computes
the available capacity on a machine by analyzing its future
resource usage. Using this peak oracle as a baseline, we then
propose a methodology that leverages offline simulation to
estimate the performance impact of any arbitrary overcom-
mit policy. The oracle violations we derive from simulation
correlate well with an actual QoS metric used in practice, i.e.,
CPU scheduling latency. We then propose practical overcom-
mit policies that are lightweight and applicable in real-world
production systems. By comparing the oracle violations and
savings of these policies, we find that our max predictor
policy is less risky and more efficient than existing static,
limit-based overcommit policies, which are currently widely
used in practice. Finally, we deploy our overcommit policy
into Borg scheduler, and show that its results are consistent
with our simulation.
Acknowledgements: We want to thank John Wilkes for
his review and feedback on the early draft, Dawid Piątek
for helpful discussions on data analysis, and Weici Hu who
helped us to form an early version of proofs around the
oracle. We also thank the anonymous reviewers, and our
shepherd, Kang Chen, for their helpful comments.

569

Take it to the Limit EuroSys ’21, April 26–29, 2021, Online, United Kingdom

References
[1] P. Ambati, I. Goiri, F. Frujeri, A. Gun, K. Wang, B. Dolan, B. Corell,

S. Pasupuleti, T. Moscibroda, S. Elnikety, M. Fontoura, and R. Bian-
chini. 2020. Providing SLOs for Resource-Harvesting VMs in Cloud
Platforms. In USENIX Symposium on Operating Systems Design and
Implementation (OSDI).

[2] G. Amvrosiadis, J.W. Park, G.R. Ganger, G.A. Gibson, E. Baseman,
and N. DeBardeleben. 2018. On the Diversity of Cluster Workloads
and its Impact on Research Results. In 2018 USENIX Annual Technical
Conference (ATC).

[3] E. Asyabi, SA. SanaeeKohroudi, M. Sharifi, and A. Bestavros. 2018.
TerrierTail: mitigating tail latency of cloud virtual machines. IEEE
Transactions on Parallel and Distributed Systems (2018).

[4] L.A. Barroso, J. Clidaras, and U. Hölzle. 2013. The Datacenter as a
Computer: An Introduction to the Design of Warehouse-Scale Machines.

[5] S.A. Baset, L. Wang, and C. Tang. 2012. Towards an Understanding of
Oversubscription in Cloud. In 2nd USENIX Workshop on Hot Topics in
Management of Internet, Cloud, and Enterprise Networks and Services
(Hot-ICE 12). USENIX Association.

[6] R. Bianchini, M. Fontoura, E. Cortez, A. Bonde, A. Muzio, AM. Con-
stantin, T. Moscibroda, G. Magalhaes, G. Bablani, and M. Russinovich.
2020. Toward ML-centric cloud platforms. Commun. ACM (2020).

[7] E. Boutin, J. Ekanayake, W. Lin, B. Shi, J. Zhou, Z. Qian, M. Wu, and L.
Zhou. 2014. Apollo: Scalable and Coordinated Scheduling for Cloud-
scale Computing. In USENIX Symposium on Operating Systems Design
and Implementation (OSDI).

[8] D. Breitgand and A. Epstein. 2012. Improving Consolidation of Virtual
Machines with Risk-aware Bandwidth Oversubscription in Compute
Clouds. In INFOCOM. IEEE.

[9] B. Burns, B. Grant, D. Oppenheimer, E. Brewer, and J. Wilkes. 2016.
Borg, Omega, and Kubernetes. Queue (2016).

[10] R.N. Calheiros, E. Masoumi, R. Ranjan, and R. Buyya. 2014. Workload
Prediction Using ARIMA Model and its Impact on Cloud Applications’
QoS. IEEE Transactions on Cloud Computing (2014).

[11] M. Carvalho, W. Cirne, F. Brasileiro, and J. Wilkes. 2014. Long-term
SLOs for Reclaimed Cloud Computing Resources. In ACM Symposium
on Cloud Computing (SoCC).

[12] CDF accessed 2020-10. Cumulative Distribution Function. https:
//en.wikipedia.org/wiki/Cumulative_distribution_function.

[13] M.C. Cohen, P.W. Keller, V. Mirrokni, and M. Zadimoghaddam. 2019.
Overcommitment in Cloud Services: Bin Packing with Chance Con-
straints. Management Science (2019).

[14] E. Cortez, A. Bonde, A. Muzio, M. Russinovich, M. Fontoura, and R.
Bianchini. 2017. Resource Central: Understanding and Predicting
Workloads for Improved Resource Management in Large Cloud Plat-
forms. In Proceedings of the International Symposium on Operating
Systems Principles (SOSP).

[15] E. Cortez, A. Bonde, A. Muzio, M. Russinovich, M. Fontoura, and R.
Bianchini. 2017. Resource Central: Understanding and Predicting
Workloads for Improved Resource Management in Large Cloud Plat-
forms. In ACM Symposium on Operating Systems Principles (SOSP).

[16] N. Deng, C. Stewart, D. Gmach, M. Arlitt, and J. Kelley. 2012. Adaptive
Green Hosting. In International Conference on Autonomic Computing
(ICAC ’12). ACM.

[17] N. Deng, Z. Xu, C. Stewart, and X. Wnag. 2015. Tell-tale Tails: De-
composing Response Times for Live Internet Services. In International
Green and Sustainable Computing Conference (IGSC).

[18] Apache Software Foundation. accessed 2020-10. Mesos: Over-
subscription. http://mesos.apache.org/documentation/latest/
oversubscription/.

[19] Cloud Native Computing Foundation. accessed 2020-10. Kubernetes.
http://k8s.io.

[20] The Linux Foundation. 2020. cgroups(7) Linux User’s Manual. https:
//man7.org/linux/man-pages/man7/cgroups.7.html.

[21] P. Garefalakis, K. Karanasos, P. Pietzuch, A. Suresh, and S. Rao. 2018.
Medea: Scheduling of Long RunningApplications in Shared Production
Clusters. In Proceedings of European Conference on Computer Systems
(EuroSys ’20).

[22] I. Gog, M. Schwarzkopf, A. Gleave, R. NM Watson, and S. Hand. 2016.
Firmament: Fast, Centralized Cluster Scheduling at Scale. In USENIX
Symposium on Operating Systems Design and Implementation (OSDI).

[23] Z. Gong, X. Gu, and J. Wilkes. 2010. Press: Predictive Elastic Resource
Scaling for Cloud Systems. In International Conference on Network and
Service Management. IEEE.

[24] R. Grandl, M. Chowdhury, A. Akella, and G. Ananthanarayanan. 2016.
Altruistic Scheduling in Multi-resource Clusters. In USENIX Sympo-
sium on Operating Systems Design and Implementation (OSDI).

[25] R. Grandl, S. Kandula, S. Rao, A. Akella, and J. Kulkarni. 2016.
GRAPHENE: Packing and Dependency-Aware Scheduling for Data-
Parallel Clusters. In USENIX Symposium on Operating Systems Design
and Implementation (OSDI).

[26] J. Gu, Y. Lee, Y. Zhang, M. Chowdhury, and K.G. Shin. 2017. Efficient
Memory Disaggregation with INFINISWAP. In USENIX Conference on
Networked Systems Design and Implementation (USENIX NSDI’17).

[27] Red Hat. accessed 2020-10. Open Shift: Overcommit.
https://docs.openshift.com/container-platform/3.11/admin_guide/
overcommit.html.

[28] VMWare Inc. accessed 2020-10. DRS Additional Option: CPU Over-
Commitment. https://vspherecentral.vmware.com/t/vsphere-
resources-and-availability/drs-additional-option-cpu-over-
commitment/.

[29] VMWare Inc. accessed 2020-10. VMware vSphere: Mem-
ory Overcommitment. https://docs.vmware.com/en/VMware-
vSphere/7.0/com.vmware.vsphere.resmgmt.doc/GUID-895D25BA-
3929-495A-825B-D2A468741682.html.

[30] C. Iorgulescu, R. Azimi, Y. Kwon, S. Elnikety, M. Syamala, V. Narasayya,
H. Herodotou, P. Tomita, A. Chen, J. Zhang, et al. 2018. Perfiso: Perfor-
mance Isolation for Commercial Latency-sensitive Services. In USENIX
Annual Technical Conference ATC).

[31] M. Isard, V. Prabhakaran, J. Currey, U. Wieder, K. Talwar, and A. Gold-
berg. 2009. Quincy: Fair Scheduling for Distributed Computing Clus-
ters. In ACM Symposium on Operating Systems Principles (SOSP’09).

[32] S. Islam, J. Keung, K. Lee, and A. Liu. 2012. Empirical PredictionModels
for Adaptive Resource Provisioning in the Cloud. Future Generation
Computer Systems (2012).

[33] P. Janus and K. Rzadca. 2017. Slo-aware Colocation of Data Cen-
ter Tasks Based on Instantaneous Processor Requirements. In ACM
Symposium on Cloud Computing (SoCC’17).

[34] S.A. Javadi, A. Suresh, M. Wajahat, and A. Gandhi. 2019. Scavenger: A
Black-box Batch Workload Resource Manager for Improving Utiliza-
tion in Cloud Environments. In ACM Symposium on Cloud Computing
(SoCC’19).

[35] T. Jin, Z. Cai, B. Li, C. Zheng, G. Jiang, and J. Cheng. 2020. Improving
Resource Utilization by Timely Fine-Grained Scheduling. In Proceed-
ings of European Conference on Computer Systems (EuroSys ’20). ACM.

[36] C. Jones, J. Wilkes, N. Murphy, C. Smith, and B. Beyer. 2016. Service
Level Objectives. https://landing.google.com/sre/book.html

[37] S.A. Jyothi, C. Curino, I. Menache, S.M. Narayanamurthy, A. Tumanov,
J. Yaniv, R. Mavlyutov, I. Goiri, S. Krishnan, J. Kulkarni, et al. 2016.
Morpheus: Towards Automated SLOs for Enterprise Clusters. In Sym-
posium on Operating Systems Design and Implementation (OSDI).

[38] K. Kambatla, V. Yarlagadda, I. Goiri, and A. Grama. 2020. Optimistic
Scheduling with Service Guarantees. J. Parallel and Distrib. Comput.
(2020).

[39] A. Kangarlou, S. Gamage, R.R. Kompella, and D. Xu. 2010. vSnoop:
Improving TCP Throughput in Virtualized Environments via Acknowl-
edgement Offload. In ACM/IEEE International Conference for High Per-
formance Computing, Networking, Storage and Analysis (SC’10).

570

https://en.wikipedia.org/wiki/Cumulative_distribution_function
https://en.wikipedia.org/wiki/Cumulative_distribution_function
http://mesos.apache.org/documentation/latest/oversubscription/
http://mesos.apache.org/documentation/latest/oversubscription/
http://k8s.io
https://man7.org/linux/man-pages/man7/cgroups.7.html
https://man7.org/linux/man-pages/man7/cgroups.7.html
https://docs.openshift.com/container-platform/3.11/admin_guide/overcommit.html
https://docs.openshift.com/container-platform/3.11/admin_guide/overcommit.html
https://vspherecentral.vmware.com/t/vsphere-resources-and-availability/drs-additional-option-cpu-over-commitment/
https://vspherecentral.vmware.com/t/vsphere-resources-and-availability/drs-additional-option-cpu-over-commitment/
https://vspherecentral.vmware.com/t/vsphere-resources-and-availability/drs-additional-option-cpu-over-commitment/
https://docs.vmware.com/en/VMware-vSphere/7.0/com.vmware.vsphere.resmgmt.doc/GUID-895D25BA-3929-495A-825B-D2A468741682.html
https://docs.vmware.com/en/VMware-vSphere/7.0/com.vmware.vsphere.resmgmt.doc/GUID-895D25BA-3929-495A-825B-D2A468741682.html
https://docs.vmware.com/en/VMware-vSphere/7.0/com.vmware.vsphere.resmgmt.doc/GUID-895D25BA-3929-495A-825B-D2A468741682.html
https://landing.google.com/sre/book.html

EuroSys ’21, April 26–29, 2021, Online, United Kingdom Bashir, et al.

[40] A. Khan, X. Yan, S. Tao, and N. Anerousis. 2012. Workload Characteri-
zation and Prediction in the Cloud: A Multiple Time Series Approach.
In IEEE Network Operations and Management Symposium. IEEE.

[41] C. Kilcioglu, J.M. Rao, A. Kannan, and R.P. McAfee. 2017. Usage
Patterns and the Economics of the Public Cloud. In Proceedings of
International Conference on World Wide Web (WWW’17).

[42] A. Lagar-Cavilla, J. Ahn, S. Souhlal, N. Agarwal, R. Burny, S. Butt, J.
Chang, A. Chaugule, N. Deng, J. Shahid, G. Thelen, K.A. Yurtsever, Y.
Zhao, and P. Ranganathan. 2019. Software-Defined Far Memory in
Warehouse-Scale Computers. In Proceedings of International Conference
on Architectural Support for Programming Languages and Operating
Systems (ASPLOS ’19). ACM.

[43] S. Liang, R. Noronha, and D.K. Panda. 2005. Swapping to Remote
Memory over InfiniBand: An Approach using a High Performance
Network Block Device. In IEEE International Conference on Cluster
Computing (ICCC’05).

[44] Google LLC. accessed 2020-10. Google Cloud Compute Engine: Over-
committing CPUs on Sole-tenant VMs. https://cloud.google.com/
compute/docs/nodes/overcommitting-cpus-sole-tenant-vms.

[45] C. Lu, K. Ye, G. Xu, CZ. Xu, and T. Bai. 2017. Imbalance in the Cloud:
An Analysis on Alibaba Cluster Trace. In IEEE International Conference
on Big Data (Big Data). IEEE.

[46] T. Newhall, S. Finney, K. Ganchev, and M. Spiegel. 2003. Nswap: A
Network Swapping Module for Linux Clusters. In Euro-Par Parallel
Processing. Springer.

[47] H. Nguyen, Z. Shen, X. Gu, S. Subbiah, and J. Wilkes. 2013. AGILE:
Elastic Distributed Resource Scaling for Infrastructure-as-a-Service.
In International Conference on Autonomic Computing (ICAC’13).

[48] O. Poppe, T. Amuneke, D. Banda, A. De, A. Green, M. Knoertzer, E.
Nosakhare, K. Rajendran, D. Shankargouda, M. Wang, et al. 2020. Seag-
ull: An Infrastructure for Load Prediction and Optimized Resource
Allocation. arXiv preprint.

[49] H. Qiu, S.S. Banerjee, S. Jha, Z.T. Kalbarczyk, and R.K. Iyer. 2020. FIRM:
An Intelligent Fine-grained Resource Management Framework for
SLO-Oriented Microservices. In USENIX Symposium on Operating Sys-
tems Design and Implementation (OSDI).

[50] C. Reiss, A. Tumanov, G.R. Ganger, R.H. Katz, and M.A. Kozuch. 2012.
Heterogeneity and Dynamicity of Clouds at Scale: Google Trace Anal-
ysis. In ACM Symposium on Cloud Computing (SoCC ’12).

[51] N. Roy, A. Dubey, and A. Gokhale. 2011. Efficient Autoscaling in the
Cloud Using Predictive Models for Workload Forecasting. In Interna-
tional Conference on Cloud Computing. IEEE.

[52] K. Rzadca, P. Findeisen, J. Świderski, P. Zych, P. Broniek, J. Kusmierek,
P.K. Nowak, B. Strack, P. Witusowski, S. Hand, and J. Wilkes. 2020.
Autopilot: Workload Autoscaling at Google Scale. In Proceedings of
European Conference on Computer Systems (EuroSys’20).

[53] M. Schwarzkopf, A. Konwinski, M. Abd-El-Malek, and J. Wilkes. 2013.
Omega: Flexible, Scalable Schedulers for Large Compute Clusters. In
Proceedings of European Conference on Computer Systems (EuroSys’13).

[54] Z. Shen, S. Subbiah, X. Gu, and J. Wilkes. 2011. CloudScale: Elastic
Resource Scaling for Multi-tenant Cloud Systems. In Proceedings of

European Conference on Computer Systems (EuroSys).
[55] X. Sun, N. Ansari, and R. Wang. 2016. Optimizing Resource Utilization

of a Data Center. IEEE Communications Surveys & Tutorials (2016).
[56] X. Sun, C. Hu, R. Yang, P. Garraghan, T.Wo, J. Xu, J. Zhu, and C. Li. 2018.

ROSE: Cluster Resource Scheduling via Speculative Over-Subscription.
In IEEE International Conference on Distributed Computing Systems
(ICDCS). IEEE.

[57] Andrew S. Tanenbaum. 1992. Modern Operating Systems. Prentice-Hall,
Inc., USA.

[58] C. Tang, K. Yu, K. Veeraraghavan, J. Kaldor, S. Michelson, T. Kooburat,
A. Anbudurai, M. Clark, K. Gogia, L. Cheng, et al. 2020. Twine: A
Unified Cluster Management System for Shared Infrastructure. In
USENIX Symposium on Operating Systems Design and Implementation
(OSDI).

[59] M. Tirmazi, A. Barker, N. Deng, M.E. Haque, Z.G. Qin, S. Hand, M.
Harchol-Balter, and J. Wilkes. 2020. Borg: The Next Generation. In
Proceedings of European Conference on Computer Systems (EuroSys ’20).
ACM.

[60] V.K. Vavilapalli, A.C. Murthy, C. Douglas, S. Agarwal, M. Konar, R.
Evans, T. Graves, J. Lowe, H. Shah, S. Seth, et al. 2013. Apache Hadoop
YARN: Yet Another Resource Negotiator. In ACM Symposium on Cloud
Computing (SoCC). ACM.

[61] A. Verma, L. Pedrosa, M. Korupolu, D. Oppenheimer, E. Tune, and J.
Wilkes. 2015. Large-scale Cluster Management at Google with Borg.
In Proceedings of European Conference on Computer Systems (EuroSys).

[62] C.A. Waldspurger. 2002. Memory Resource Management in VMware
ESX Server. In Proceedings of the Symposium on Operating Systems
Design and Implementation (OSDI). USENIX.

[63] M.Wang, X.Meng, and L. Zhang. 2011. Consolidating VirtualMachines
with Dynamic Bandwidth Demand in Data Centers. In International
Conference on Computer Communications (INFOCOM). IEEE.

[64] J. Wilkes. 2019. Google cluster-usage traces v3. Technical report at
https://github.com/google/cluster-data. Google, Mountain View, CA,
USA.

[65] J. Wilkes. 2020. Google Cluster Usage Traces v3. Technical report at
https://github.com/google/cluster-data. Google.

[66] E. Zhai, R. Chen, D.I. Wolinsky, and B. Ford. 2014. Heading Off Corre-
lated Failures Through Independence-as-a-Service. In Symposium on
Operating Systems Design and Implementation (OSDI). USENIX.

[67] X. Zhang, E. Tune, R. Hagmann, R. Jnagal, V. Gokhale, and J. Wilkes.
2013. CPI2: CPU Performance Isolation for Shared Compute Clus-
ters. In Proceedings of European Conference on Computer Systems (Eu-
roSys’13). ACM.

[68] Y. Zhang, G. Prekas, G.M. Fumarola, M. Fontoura, I. Goiri, and R.
Bianchini. 2016. History-based Harvesting of Spare Cycles and Storage
in Large-scale Datacenters. In Symposium on Operating Systems Design
and Implementation (OSDI). ACM.

[69] L. Zhao, Y. Yang, K. Zhang, X. Zhou, T. Qiu, K. Li, and Y. Bao. 2020.
Rhythm: Component-Distinguishable Workload Deployment in Data-
centers. In Proceedings of European Conference on Computer Systems
(EuroSys). ACM.

571

https://cloud.google.com/compute/docs/nodes/overcommitting-cpus-sole-tenant-vms
https://cloud.google.com/compute/docs/nodes/overcommitting-cpus-sole-tenant-vms
https://github.com/google/cluster-data
https://github.com/google/cluster-data

Take it to the Limit EuroSys ’21, April 26–29, 2021, Online, United Kingdom

A Artifact Appendix
A.1 Abstract
Our work designs and evaluates practical overcommit poli-
cies using, as a baseline, an optimal clairvoyant overcommit
algorithm called peak-oracle, which is impossible to imple-
ment in practice. By simulating these practical policies and
peak-oracle and comparing their results, we evaluate which
policy yields the best performance. This simulation-based
methodology enables us to quickly evaluate overcommit poli-
cies without risking production workloads. While we deploy
and evaluate the best-performing policy in production (Sec-
tion 6), our artifact focuses on the evaluation of policies in
simulation (Section 5) using our overcommit simulator.

Our simulator design focuses on extensiblity and flexibility.
Users can easily write a new prediction algorithm. Also, the
simulation configuration can be fully described as a protobuf
message, allowing users to decide how to preprocess the data
before running the algorithms. Because the configuration
can be fully described using protobuf message, they can be
reproduced precisely with the exact configuration. Also, the
simulator pipeline allows users to run multiple algorithms
in parallel. To enable future work on designing overcommit
policies, we publicly release our simulator’s source code
under a free and open source license.
A.2 Artifact Check-list

• Dataset: Google workload trace v3 [59?].
• Overcommit policies: The artifact implements all
peak predictors presented in the paper: peak-oracle,
borg-default, RC-like, N-sigma, and max(predictors).

• Metrics: The evaluation metrics include violation rate,
violation severity, per-machine savings, and per-cell
savings. Metric definitions can be found in the paper
and artifact document on GitHub.

• Experiments: Our artifact runs experiments to eval-
uate the performance of: overcommit and autopilot
oracles (Figure 1), peak-oracle at different horizons
(Figure 7(b)), predictors with different parameters
(Figure 8, 9), predictors in comparisonwith each other
(Figure 10), and best-performing predictor for all cells
and over multiple weeks (Figure 11, 12).

• Hardware requirements: A practical environment
for our experiments is a compute cluster or a cloud
platform that provides 50+ compute nodes and sup-
ports distributed processing back-ends such as Google
Cloud Datalow, Apache Spark, or Apache Flink.

• Expected experiment run time: Our simulations
take roughly 10,000 vCPU hours and the actual run
time would vary depending on the level of parallelism,
e.g. the expected run time is a half-hour with 10k cores.

• Expected experiment cost:Approximately $1500 on
Google Cloud Platform (GCP).

• Public link: https://github.com/googleinterns/
cluster-resource-forecast/

• License: Apache 2.0.

A.3 Description
Our simulator is written in Python using Apache Beam
(https://beam.apache.org/). The simulator uses the Google
workload trace [59?], and mimics Google’s production envi-
ronment in which Borg [59, 61] operates. A Python script,
named simulator-setup-walkthrough, develops a Beam
pipeline to convert the Google workload trace to the desired
format outlined in table_schema.json. Another Python
script, named fortune-teller-setup-walkthrough,
builds a Beam pipeline to configure simulation sce-
narios and run various predictors (see Section A.5
for further details). The heart of the simulator is in
simulator/fortune_teller.py, which implements the
logic to run peak-oracle and other practical predictors.
The configurations for the simulator are defined using
protobuf’s text format. The format for the configuration
files is described in the simulator/config.proto.

A.3.1 How to Access. Our artifact is available at: https:
//github.com/googleinterns/cluster-resource-forecast/.

A.3.2 Software Dependencies. Our simulator defines
data processing pipelines using Apache Beam. Beam
pipelines can be run on selected distributed processing back-
ends that include Apache Flink, Apache Spark, and Google
Cloud Dataflow. Our simulator should run on any cloud
platform or compute cluster, with slight modifications, that
supports the aforementioned processing back-ends. How-
ever, we have only tested the simulator with Dataflow on
GCP.When running onGCP, the simulator uses the Compute
Engine, BigQuery (BQ), Google Cloud Storage, and Dataflow
APIs. We plan to test the simulator on other cloud platforms
and the university-owned compute clusters in the future.

A.4 Installation
Instructions for setting up the environment are available at
https://github.com/googleinterns/cluster-resource-forecast/
docs/installation/. The instructions for setting up the GCP
project and enabling the required APIs are available under
/docs/installation/gcp-project-config. The instruc-
tions for creating a Google Compute Engine virtual machine
(VM) instance with required permissions are available under
/docs/installation/gcp-vm-config. Finally, the instruc-
tions for setting up a Python virtual environment with re-
quired dependencies for the simulator are available under
/docs/installation/simulator-config.

A.5 Experiment Workflow
There are three major steps for evaluating the performance
of a predictor following the data pre-processing, simulation,
and data post-processing framework: Join the table, then
run the simulator on the joined table, and data analysis. The
first two steps can be merged into a single beam pipeline,
technically. But because the joining tables take lots of time

572

https://github.com/googleinterns/cluster-resource-forecast/
https://github.com/googleinterns/cluster-resource-forecast/
https://beam.apache.org/
https://github.com/googleinterns/cluster-resource-forecast/
https://github.com/googleinterns/cluster-resource-forecast/
https://github.com/googleinterns/cluster-resource-forecast/docs/installation/
https://github.com/googleinterns/cluster-resource-forecast/docs/installation/

EuroSys ’21, April 26–29, 2021, Online, United Kingdom Bashir, et al.

and resources, and its results can be reused, we choose to
put it into a separate pipeline so that users can run it once
and not worry about it later.
Data pre-processing: The Google workload trace provides
event and usage information for instances in two separate ta-
bles: InstanceEvents table and InstanceUsage table. Our
simulator expects this information in a single table. The in-
structions for joining Google trace tables are available under
docs/experiments/joining-tables. The output is saved
to a BQ table and is used as an input for the next step.
Simulation: Our simulator enables user to config-
ure various simulation scenarios and run multiple
predictors in parallel. The instructions for config-
uring the simulation scenarios are available under
docs/experiments/simulation-scenarios. The instruc-
tions for configuring and running various peak predictors are
available under docs/experiments/running-predictors.
Each predictor saves its output to a BQ table, which contain
the per-machine usage, sum of limits for all tasks running
on each machine, and predicted peak for each machine,
along with machine-specific information.
Data post-processing: The output BQ tables from simula-
tions are processed in a Colab notebook to compute evalu-
ation metrics and visualize the results. The instructions to
using the Colab notebook and notebook’s link are available
under /docs/visualization/.

The aforementioned steps describe the generic framework
for evaluating the performance of a given predictor. To repro-
duce the results in the paper, we provide bash scripts, under
scripts/, that allow users to reproduce all the simulation-
based results from the paper. The instructions for reproduc-
ing simulation results from the paper are available under
/docs/reproduce-results/eurosys21/

A.6 Evaluation and Expected Results
The above instructions reproduce the results for Figure 1,
Figure 7(b), Figure 8, Figure 9, Figure 10, Figure 11, and
Figure12. There should not be any deviation from the figures
in the paper if all the experiments are configured and run
properly as described in the documentation.
A.7 Experiment Customization
One of the key goals for our simulator is to enable future
work on designing overcommit policies. We enable users
to customize the parameters for the existing overcommit
policies as well as contribute entirely new predictors to the
simulator. The instruction for customizing the existing pre-
dictors are available under docs/customize-predictors.
Our simulator facilitates integrating new predictors and stan-
dardizes their interface to ease their later conversion to a
production environment. We implement supporting classes
in simulator/predictor.py that define the interfaces to
implement new peak predictors. Users can add any data-
driven, machine learning-based predictors as long as they
use the specified interfaces. The instructions for contributing
new predictors are available under docs/contribute.

A.8 Artifact Limitations
As outlined in Section A.1, we evaluate our overcommitment
policies using our open-source overcommit simulator and
inside our production environment at Google (managed by
Borg scheduler). Section 6 evaluates the best-performing
policy in our production environment. Due to numerous
logistical, technical, and legal reasons, we cannot provide
access to the internal production environment to reproduce
production evaluation results. Therefore, this artifact focuses
on reproducing simulation results presented in Section 5
using our open-source overcommit simulator.
Another limitation of the artifact is that the evaluations

are very time consuming for two key reasons. First, the data
preprocessing step performs sorting of 100s of GBs of data,
which is computationally expensive and cannot be paral-
lelized. However, the simulation step itself can be very fast
as it allows the user to runmultiple predictors in parallel. Sec-
ond, GCP supports Cloud Dataflow on only four of the GCP
regions, i.e. us-east1, us-east4, us-west1, us-central1.
This limits the number of Beam pipelines running in parallel.

We would also like to specify that during the artifact eval-
uation only parts of the simulation results presented in the
paper were reproduced. The evaluations were limited, both
in time span of data input and number of configurations, due
to resource and time constraints. However, we provide the
complete instructions and scripts to reproduce all the simu-
lation results presented in the paper. Independent reviewers
are welcomed to evaluate our artifact.

A.9 Maintenance and Extensions
The current implementation of the simulator only focuses on
machine-level peak predictions and ignores the impact of pre-
dicted peak on the scheduling decisions made by the sched-
uler. This simplification does not have any serious draw-
backs as the results obtained in simulation closely match
the production environment results (Section 6.2). However,
incorporating the scheduling component into the simulator
will not only increase the accuracy of current simulations,
but also enable evaluating scheduling policies with or with-
out overcommit policies. We plan to enhance the capability
of the simulator and invite the open-source community to
contribute to this development.

Finally, the simulator was implemented by the first author,
Noman Bashir, while working as an intern at Google. The
development was facilitated by the continuous guidance
and support from Nan Deng. Both of the authors intend to
actively maintain the simulator to facilitate the evaluation of
existing predictors and the contribution of new predictors.

A.10 AE Methodology
Submission, reviewing, and badging methodology:

https://sysartifacts.github.io/eurosys2021/

573

https://sysartifacts.github.io/eurosys2021/

	Abstract
	1 Introduction
	2 Motivation and Background
	2.1 Datacenter Scheduling
	2.2 Overcommit Overview

	3 Peak Oracle
	3.1 Definition of the Oracle
	3.2 Measuring overcommit quality with oracle violations
	3.3 Estimating tasks' performance by oracle violations

	4 Practical Peak Predictors
	5 Evaluation in Simulation
	5.1 Evaluation Setup
	5.2 Configuring peak oracle and borg-default predictors
	5.3 Configuring peak predictors
	5.4 Peak predictor performance
	5.5 Behavior in time and across cells

	6 Evaluation in Borg
	6.1 Production setup
	6.2 Predictor performance

	7 Related Work
	8 Conclusion
	References
	A Artifact Appendix
	A.1 Abstract
	A.2 Artifact Check-list
	A.3 Description
	A.4 Installation
	A.5 Experiment Workflow
	A.6 Evaluation and Expected Results
	A.7 Experiment Customization
	A.8 Artifact Limitations
	A.9 Maintenance and Extensions
	A.10 AE Methodology

