
Avoidance Critical Probabilistic Roadmaps for Motion Planning in
Dynamic Environments

Felipe Felix Arias1, Brian Ichter2, Aleksandra Faust2 and Nancy M. Amato1

Abstract— Motion planning among dynamic obstacles is
an essential capability towards navigation in the real-world.
Sampling-based motion planning algorithms find solutions by
approximating the robot’s configuration space through a graph
representation, predicting or computing obstacles’ trajectories,
and finding feasible paths via a pathfinding algorithm. In this
work, we seek to improve the performance of these subproblems
by identifying regions critical to dynamic environment navi-
gation and leveraging them to construct sparse probabilistic
roadmaps. Motion planning and pathfinding algorithms should
allow robots to prevent encounters with obstacles, irrespective
of their trajectories, by being conscious of spatial context
cues such as the location of chokepoints (e.g., doorways).
Thus, we propose a self-supervised methodology for learning
to identify regions frequently used for obstacle avoidance from
local environment features. As an application of this concept, we
leverage a neural network to generate hierarchical probabilistic
roadmaps termed Avoidance Critical Probabilistic Roadmaps
(ACPRM). These roadmaps contain motion structures that
enable efficient obstacle avoidance, reduce the search and
planning space, and increase a roadmap’s reusability and
coverage. ACPRMs are demonstrated to achieve up to five
orders of magnitude improvement over grid-sampling in the
multi-agent setting and up to ten orders of magnitude over a
competitive baseline in the multi-query setting.

I. INTRODUCTION

In robotics, dynamic environment navigation refers to the
set of processes by which a robot computes the trajectory it
will take to arrive at its goal location without colliding with
moving obstacles (e.g., people or other robots). Motion plan-
ning is one of the components of dynamic environment nav-
igation. It computes a feasible and collision-free path given
a state representation and a set of obstacles [1]. Naturally,
Multi-Agent Motion Planning (MAMP) finds feasible paths
for two or more robots and avoids inter-robot collisions.
Due to the complexity of MAMP, most existing work on
multi-agent systems solves the subproblem of Multi-Agent
Pathfinding (MAPF), which requires a representation of the
robot and its environment to solve a graph search problem in
discrete space [2]. Sampling-based motion planning (SBMP)
approaches, such as Probabilistic Roadmaps (PRMs) [3],
reduce motion planning to pathfinding by constructing an
implicit graph representation of a robot’s configuration space
through samples and local connections verified by a collision
checking algorithm [1].

1Felipe Felix Arias and Nancy M. Amato are with Parasol Lab, Depart-
ment of Computer Science, University of Illinois at Urbana-Champaign,
Urbana, IL USA {felipea2, namato}@illinois.edu

2Brian Ichter and Aleksandra Faust are with Google Research, Mountain
View, CA, USA {ichter, faust}@google.com

a) Criticality Data b) Learned Criticality

Fig. 1: Environment annotated with a) avoidance criticality
from 236 random dynamic environment problems and b) a
model trained to identify critical regions. White cells are
avoidance critical regions, gray cells are free space, and black
cells are static obstacles.

Most sampling-based MAMP solvers use standard sam-
pling techniques that do not account for workspace topology
or obstacle avoidance, with grid-sampling [4] being the
most prevalent. This oversight leads to dense roadmaps
that are not suitable for multi-agent motion planning in
narrow passages. As the number of agents and size of the
environment increase, the computational costs of collision
checking and pathfinding become prohibitive. Specifically,
we note that searching through a roadmap with many ver-
tices and edges while tracking inter-agent conflicts is the
bottle-neck in sampling-based MAMP. Thus, we propose
to improve the existing planning pipeline by constructing
sparse roadmaps with sufficient structure to support multiple
robots. By building upon ideas presented in [5], we train a
model to identify regions important to MAMP. These regions
include configurations critical to solution trajectories in static
environments (e.g., doorways) and configurations that help
construct larger motion structures for obstacle avoidance.

We show that the configurations that robots often use to
wait in place, a behavior which indicates that the agent is
actively avoiding collisions [6], capture a sizeable subset of
the regions critical to MAMP. By extending betweenness
centrality [7], a graph-theoretic measure of how frequently a
vertex is visited in shortest paths through a graph, to dynamic
environments, agents can generate training data for a model
that determines whether or not a configuration is in a region
critical to obstacle avoidance from a local occupancy grid.
Finally, we leverage our model to sample in relevant regions
and construct a learned skeleton of workspace that provides
sufficient structure for obstacle avoidance.



A. Statement of Contributions

1) We formalize the concept of determining whether a
configuration is useful for dynamic environment navi-
gation from spatial context cues. Cognitive agents nav-
igating in human environments should assess the like-
lihood of encountering a human or a robot. Therefore,
we broadly propose that robots should be able to iden-
tify configurations that minimize collision likelihood
irrespective of the dynamic obstacles’ trajectories.

2) We propose a self-supervised methodology for identi-
fying regions critical to obstacle avoidance. Our ap-
proach extends graph-theoretic concepts to generate
training data for a binary classification neural network.
Our data generation scheme tracks how long the agent
had to wait in place. This metric captures a sizeable
subset of the regions critical to obstacle avoidance and
is used as a supervision signal to train the network to
identify them from local topology.

3) We propose a hierarchical probabilistic roadmap strat-
egy that pre-samples in avoidance critical regions. The
roadmaps generated by this strategy contain emer-
gent motion structures that enable efficient obstacle
avoidance, reduce the search and planning space, and
increase a roadmap’s reusability and coverage of the
environment.

4) Lastly, we demonstrate and discuss the benefits of iden-
tifying and utilizing avoidance critical configurations
and show that ACPRMs outperform baselines in multi-
agent and multi-query problems.

II. RELATED WORK

A. Multi-Agent Motion Planning

Solutions to multi-agent navigation have framed the prob-
lem in a variety of ways. [8], [9], and [10], propose
to compute single-agent paths and then iteratively resolve
conflicts until all paths are valid. [11] solves the problem
in a decentralized fashion by implicitly assuming that all
agents have the same collision-avoidance behavior. Given the
predicted trajectories of the dynamic obstacles, pathfinding
algorithms like [12] find collision-free paths by adding the
time dimension to their search space. However, most of these
approaches work in discrete state spaces that may: become
prohibitively large for robots with many degrees of freedom,
lack support for heterogeneous robot systems, or fail to
provide a framework for collision checking and navigation
in three dimensions. Since SBMP is known to overcome
some of these limitations, adaptations like [13] extend Multi-
Agent Path Finding (MAPF) algorithms to MAMP methods
that use probabilistic roadmaps. [14] and [15] generate one
roadmap per agent and track constraints beyond the scope of
this work in graph data structures but fail to address sampling
efficiency in large environments with narrow passages. While
[16] and [17] generate a single roadmap for all agents, their
contributions focus on stitching together roadmaps through
sensing and planning in stochastic maps under uncertainty,
respectively. Comparatively, we construct a single multi-

Fig. 2: Randomly chosen avoidance critical occupancy grids.
From darkest to lightest the cells represent: static obstacles,
free space, the agents’ region of origin within the occupancy
grid, the avoidance critical region (center of the grid), and
the agent’s goal region within the occupancy grid.

query roadmap for all agents that aims to reduce the search
and planning space and increase the roadmap’s reusability
and coverage. [18] has a similar objective but proposes a
post-processing procedure that optimizes the positions of the
vertices and edges to create a directed graph well-suited
for MAMP. While this is a promising approach, it does
not improve sampling complexity as it requires an existing
roadmap as input and keeps all of its vertices and edges.
Instead, we propose to bias sampling to construct roadmaps
with the desired qualities.

B. Sampling in Regions Critical to Motion Planning

In this work, we refer to spatial contextual awareness
(SCA) [19] as the information inferred from the relationships
between the robot, the structure of its surroundings, and en-
vironment features (e.g., location and appearance of relevant
regions). While SCA has countless implications for dynamic
environment navigation, we concentrate on recognizing re-
gions useful for obstacle avoidance from local environment
features. To our knowledge, ACPRM is the first sampling-
based motion planning method that explicitly samples in
regions important to MAMP. Several approaches that seek to
bias sampling use heuristics to sample near static obstacles
[20], near narrow passages [21], or near both [22]. Others
like [23] and [24] seek to use workspace decompositions
to identify regions of interest and guide sampling. Recent
advances also show that it is possible to learn distributions
to sample from, as shown in [25], [26], and [27]. [25] and
[27] use pre-computed trajectories to bias sampling towards
regions that may lead to an optimal solution. However, all of
these solutions only consider the static-environment single-
query setting, which can leverage the start and goal con-
figurations for sampling and benefit from constructing dense
roadmaps. Instead, we focus on methods that construct sparse
multi-query roadmaps that contain configurations that enable
efficient obstacle avoidance, can be pre-computed without
previous knowledge of the start and goal configurations, and
scale well to large environments with narrow passages.

C. Learned Critical Probabilistic Roadmaps

Since we are not aware of any heuristics that can identify
regions critical to obstacle avoidance, we use a framework
similar to the one proposed in [5]. [5] solves many one-
to-all problems in various roadmaps and tracks how often



Algorithm 1 ACPRM
Input: MAMP Problem (si, gi i ∈ {0, ..,N},hθ ,ka,kp,PF)

1: Discretize environment and generate occupancy grid
inputs for hθ

2: Identify avoidance critical regions using hθ

3: Sample in avoidance critical regions
4: Connect critical samples to ka nearest-neighbors
5: Sample uniformly in Cspace
6: Connect non-critical samples to kp nearest-neighbors
7: Continue sampling and connecting until pathfinding al-

gorithm, PF , can compute feasible paths for each agent

each vertex is visited. The approximated betweenness cen-
trality values then become training labels for a regression
neural network that predicts a criticality score. This model
is then used to construct Critical PRMs, which identify a
subset of the critical configurations through pre-sampling and
attempt to connect all subsequent samples to them. There
are two fundamental differences between Critical PRMs
and our approach. First, we explicitly extend the notion of
critical configurations to dynamic environment navigation.
Second, rather than pre-sampling uniformly to find a subset
of the critical configurations, we build learned skeletons
that contain configurations in all critical regions. Notably,
[5] demonstrates that neural networks can identify relevant
regions from high-dimensional real-world environment local
representations. Therefore, we focus on additional capabili-
ties and consider grid-discretizations of the environments.

III. PROBLEM STATEMENT

This work aims to solve the multi-agent motion planning
problem efficiently by leveraging the ability to identify
regions important for obstacle avoidance. We concentrate
on three-dimensional planar navigation for omnidirectional
robots with rigid bodies and a configuration space Cspace =
R2× S. Namely, the agents each have an x,y translational
component, and a θ rotational component. The multi-agent
motion planning problem with N such agents is defined as
follows. Let Cobst be the subset of the configuration space
occupied by static obstacles, C f ree = Cspace\Cobst the free
space, and si ∈ C f ree and gi ∈ C f ree the initial and goal
configurations of the i-th agent, respectively. We call a path
pi collision-free if the robot never leaves C f ree or collides
with another agent when executing pi. A path pi is feasible
if it is collision-free and it successfully takes the i-th agent
from si to gi. We utilize sampling-based motion planning
techniques that reduce motion planning to pathfinding by
constructing an implicit representation of the configuration
space through a set of samples and local connections that
are verified by a collision-checking algorithm [1]. Given a
roadmap that connects si to gi ∀i, we compute feasible paths
pi ∀i by using a MAPF algorithm.

a) PRM b) ACPRM

Fig. 3: PRM (a) and ACPRM (b) used to compute motion
plans for 4 agents in a narrow passage environment.

IV. DEVELOPING SPATIAL CONTEXTUAL AWARENESS

A. Identifying Avoidance Critical Regions

One of our goals is to define a methodology for identifying
configurations critical to dynamic environment navigation. In
this work, we extend the concept of betweenness centrality to
dynamic environments by computing many one-to-one prob-
lems. For simplicity, we consider the case where the agent
has prior knowledge of the moving obstacles’ trajectories.
However, this assumption is not imperative; an agent may
actively predict the dynamic obstacles’ trajectories during
training or test time. In practice, we found that utilizing
betweenness centrality (i.e., tracking the number of time
steps an agent occupied a specific configuration) resulted in
the obfuscation of regions critical to dynamic environment
navigation by those critical to static-environment navigation.
Therefore, our metric only increases when an agent is waiting
in place and the dynamic obstacles are within a user-defined
distance. This subtle contextual cue (the waiting in place
event) is unique to dynamic environment navigation and
implies that the agent is actively avoiding a collision. This
metric, the amount of time an agent chose to wait at a
configuration, is what we refer to as avoidance criticality.
However, the nature of dynamic environment navigation
leads to this being an ill-defined characterization of our
method. There are two additional criteria:
• Avoidance criticality may be computed in environments

with any number of obstacles, each with an arbitrary tra-
jectory, size, speed, or behavior. In our data-generation
procedure, we introduce three dynamic obstacles of the
same size as the agent per navigation task, each of which
takes the shortest path to get to its goal and moves with
constant speed. One of the obstacles travels from the
goal to the start of the agent’s motion task, requiring
the agent to avoid at least one collision. The other two
obstacles are each assigned a random start and goal.

• Using pathfinding algorithms that provide no guarantees
on the quality of the shortest path they find, such as
A* [28], can result in unpredictable obstacle avoidance
behavior. An agent waiting for a narrow passage to
clear may wait at any configuration or compute a
suboptimal trajectory to "waste time". For this reason,
we use safe interval path planning (SIPP) [12], which



a) Runtime vs. Num Agents b) Num Samples vs Num Agents c) Total Path Length vs Num Agents

d) Runtime vs. Num Agents e) Num Samples vs Num Agents f) Total Path Length vs Num Agents

Fig. 4: Plots comparing grid-sampling and ACPRM in the three-way junction environment (a-c) and grid-sampling, ACPRM,
and MAPRM in the building environment (d-f).

guarantees that the agent arrives at each configuration
in the solution trajectory at the earliest time possible.

Fig. 1a shows an example of a randomly generated environ-
ment annotated with avoidance criticality.

B. Learning to Recognize Avoidance Critical Regions

We use avoidance criticality to get supervision signal
for a neural network model. While betweenness central-
ity typically increases as it gets closer to local maxima,
avoidance criticality does not display the same property. As
seen in Fig. 1a, it instead consists of clusters of critical
regions, with some being more critical than others due to
workspace topology. As a result, we frame our problem as a
classification task that bins avoidance criticality scores into
a user-defined number of avoidance criticality levels. Here,
we concentrate on the binary classification setting. In other
words, although avoidance criticality refers to the number of
timesteps agents spent waiting in a region, we choose to use
our model to predict whether or not a region is likely to be
used to wait in place for any amount of time.

1) Dataset Creation: We use self-supervision to train a
neural network hθ to determine whether a region is avoidance
critical or not. Section IV-A outlines the procedure for
annotating an arbitrary environment. However, to generalize
to a wide range of workspace topologies, the training data
for hθ is collected from various environments. We generate
a dataset Y of criticality label y and occupancy grid g(x)
pairs. Where y ∈ [0,1] indicates whether or not a sample is
avoidance critical, x ∈ C f ree is a configuration, and g(x) is
the occupancy grid representation of the workspace around x.
Fig. 2 shows randomly selected avoidance critical samples
from the training data. In the interest of planar navigation
in human environments, we use a random environment

generator that constructs structured environments that consist
of grid-aligned rooms and hallways of diverse shapes and
sizes [29]. Figs. 1a-1b depict one such environment.

2) Learning: Using Y , we train hθ . Which outputs ŷ ∈
[0,1], an indicator of whether or not the model believes a
given occupancy grid contains an avoidance critical region
in its center. During training, we minimize cross-entropy loss
to learn θ and use Stochastic Gradient Descent (SGD) with
momentum to optimize. Namely, we minimize:

L (θ) =−y log(hθ (g(x)))− (1− y) log(1−hθ (g(x))) (1)

Fig. 1b shows an example of a randomly generated environ-
ment annotated by hθ through a sliding window procedure.

3) Implementation: hθ is a fully connected neural network
with 7 hidden layers, each with a ReLU activation function
and a subsequent dropout layer set to 0.1. We use SGD with
a learning rate of 0.01 and a momentum of 0.9 to optimize.
The training data is collected from 450 randomly generated
environments. For each region, we store its avoidance criti-
cality score and an 11×11 occupancy grid with the critical
region in its center. Our dataset contains 70K critical and
70K non-critical examples.

V. AVOIDANCE CRITICAL PROBABILISTIC ROADMAPS

This section presents a hierarchical SBMP method we
call Avoidance Critical Probabilistic Roadmap (ACPRM).
Algorithm 1 outlines the entire procedure. First, we compute
a discretized representation of the environment to generate
the occupancy grid inputs for hθ (Line 1). Then, ACPRMs
build a learned avoidance critical skeleton by sampling in
all regions hθ deems critical through a sliding window pro-
cedure. Specifically, ACPRMs sample in avoidance critical
regions (Line 2-3) and then connect all samples to their ka



a) ACPRM for 1 agent b) ACPRM for 4 agents c) ACPRM for 8 Agents

d) Learned Avoidance Critical Skeleton e) ACPRM f) MAPRM

Fig. 5: Relevant roadmaps from the three-way junction and building environments.

nearest neighbors (Line 4). An example of a learned skeleton
is illustrated in Fig. 5d. Such skeletons provide motion struc-
tures and samples critical to the narrow passage problem.
Although any sampling strategy may be used after generating
the skeleton, we use a PRM scheme [3] that uniformly
samples configurations (Line 5) and connects each sample
to its kp nearest neighbors (Line 6), which may or may not
be part of the learned skeleton. After constructing the learned
skeleton, ACPRMs iteratively connect each agent’s start and
goal configurations to the roadmap, sampling uniformly if
necessary. Figs. 5a-5c depict the evolution of an ACPRM as
the number of agents increases. Once the roadmap connects
all of the start and goal configurations, ACPRM uses an
arbitrary multi-agent pathfinding algorithm to find feasible
paths for each agent (Line 7). Fig. 3 shows a qualitative
comparison of two multi-agent roadmaps, where the only
difference in the sampling procedure is the construction of
the learned skeleton before uniform sampling.

VI. RESULTS

A. Pathfinding in ACPRMs

While ACPRMs will find a solution as the number of
samples and connections (kp) approach infinity, Algorithm
1 assumes access to a pathfinding algorithm that can track
inter-agent collisions in the roadmap at an arbitrary resolu-
tion. In our implementation, we use a custom-made decen-
tralized pathfinding algorithm based on SIPP [12] that allows
robots to travel through edges but only wait at vertices. While
our implementation is not guaranteed to find the globally
optimal solution to the multi-agent motion planning problem,
it finds the shortest feasible path for each agent given the
obstacles already in the environment. We chose to implement
a custom pathfinding algorithm because existing pathfinding
algorithms for obstacle avoidance only scale well in discrete
environments (i.e., planar graphs). Multi-agent pathfinding

in roadmaps is not trivial as roadmaps have properties
such as redundant edges (e.g., three or more vertices that
lie on a line all connected to one another) and vertices
that collide with one another. Since these properties vastly
increase the search and planning space, developing multi-
agent pathfinding algorithms that perform well on roadmaps
is an open research area.

B. Motion Planning with ACPRMs

In this section, we seek solutions to the difficult problem
of constructing a multi-query roadmap that scales well in
large environments with narrow passages. Therefore, many
standard baselines that sample uniformly [3] or bias sampling
towards obstacles [20] could not find solutions without
exceeding our computation time limit. Thus, we compare
the performance of ACPRM with that of a grid-sampling
baseline. Additionally, since ACPRMs should be useful for
an arbitrary number of agents, we also compare its perfor-
mance on multi-query single-agent motion planning against
that of grid-sampling and Medial-Axis PRM [30], a method
that retracts samples towards the medial-axis of C f ree to find
narrow passages and improve coverage of the environment.

C. Three-Way Junction Multi-Agent Problem

For our first multi-agent motion planning problem, we plan
in the three-way junction environment shown in Figs. 5a-
5c. This type of environment is known to be difficult for
baselines and accentuates some of the features of ACPRMs.
As depicted in Fig. 4a, ACPRM outperforms grid-sampling
and has runtime improvement that increases as the number
of agents increases. After eight agents, the uniform grid-
sampling baseline exceeded our computation time limit of
ten minutes. On the final eight-agent problem, ACPRM
found a solution over six times faster. Moreover, Figures
4b and 4c show that ACPRM finds only marginally longer
paths with over eight times fewer samples. Both methods



a) ACPRM b) Grid-Sampling

Fig. 6: Roadmaps in Gibson Environment

perform similarly when the number of agents is small, which
illustrates that the improvements stem from the considerably
smaller search space. Figs. 5a-5c depict the evolution of the
ACPRM as the number of agents increases. In Fig. 5a, the
learned skeleton is visible. It includes configurations critical
for motion planning in narrow passages (e.g., entrances and a
sample at the junction itself) and emergent motion structures
that allow agents to take turns going through the narrow
passages efficiently (triangle-shaped subgraphs at entrances
and samples around the center of the junction).

D. Multi-Query Building Problem
To demonstrate ACPRM’s scalability and ability to gen-

eralize to environments unlike those in the training data, we
deploy ACPRM on an environment based on an existing
building (See Figs. 5d-5e). We conduct two types of ex-
periments. The first set seeks to study the use of ACPRM
as a multi-agent roadmap. In contrast, the second evaluates
ACPRM’s coverage of the environment and its merit as a
multi-query roadmap for single-agent motion planning. All
experiments solve the same 15 randomly generated motion
planning problems.

1) ACPRM for Multi-Agent Motion Planning: Fig. 4d
plots the performance of an ACPRM used for MAMP
(Multi-Agent ACPRM) and that of an ACPRM used to
solve multiple queries (Multi-Query ACPRM) in the building
environment. Both create the same roadmap and, therefore,
have the same sampling complexity (Fig. 4e). However,
after introducing ten agents to the environment, Multi-Query
ACPRM begins to outperform Multi-Agent ACPRM by up
to three orders of magnitude. These findings are expected,
as planning for multiple agents requires adding the time
dimension to the search space. Nonetheless, they shed some
key insights. First, they illustrate the cost of pathfinding and
the importance of keeping the search space small. Since
the roadmaps are identical, the additional computation time
stems from multi-agent pathfinding. Second, the increase in
the total path length (Fig. 4f) succinctly shows that collision
avoidance in this environment requires agents to wait or find
paths longer than those found in the multi-query setting.

2) ACPRM for Single-Agent Motion Planning: We also
compare ACPRM, grid-sampling, and MAPRM in the single-
agent multi-query setting. Fig. 4d shows that ACPRM outper-
forms both baselines. ACPRM finds solutions up to ten times
faster than MAPRM and up to two times faster than grid-
sampling. These findings and the inability of other baselines

to find solutions, substantiate the merits of using neural net-
works to bias sampling and construct sparse roadmaps. It is
computationally inexpensive to annotate large environments.
On the other hand, methods like MAPRM use sampling
procedures that do not scale well in large and complex
environments. Furthermore, as seen in Figs. 4e-4f, ACPRM
uses up to three times fewer samples than MAPRM and grid-
sampling but still finds shorter and roughly equivalent paths,
respectively. Figs. 5d-5e, depict the learned skeleton and the
roadmaps generated by both methods.

E. Real-World Environment

Lastly, we deploy an ACPRM (Fig. 6a) and the grid-
sampling baseline (Fig. 6b) in an environment from the
Gibson Database of 3D Spaces [31], a dataset generated by
scanning indoor environments. Additionally, we use a model
for the omnidirectional Clearpath Ridgeback mobile base.
The environment is sufficiently small for grid-sampling to
find a solution for eight agents moving in the environment
simultaneously in six seconds. ACPRM finds a solution in
three seconds and produces marginally shorter paths. In these
experiments, both grid-sampling and ACPRM are determin-
istic, as they cover workspace such that there is no need for
uniform sampling, agents need only connect their start and
goal configurations to the roadmap. The random generation
of starts and goals may make the problem infeasible or trivial,
so we present the results of the first randomly generated
problem that required obstacle avoidance. This experiment
shows that if the training data is collected in appropriate
environments and the discretization is adequate, ACPRMs
are useful for motion planning in the real-world.

VII. CONCLUSIONS

We presented a method for identifying and leveraging
regions critical to obstacle avoidance. Using an agent waiting
in place for obstacles to pass as a contextual cue that signifies
a configuration’s importance to obstacle avoidance, we train
a neural network to identify regions important to dynamic
environment navigation from local environment features.
We also introduced ACPRMs, which use the trained neural
network to construct sparse probabilistic roadmaps with
sufficient structure to support multi-agent motion planning in
environments with narrow passages. Lastly, we demonstrated
that ACPRMs enable efficient obstacle avoidance, reduce the
search space, and increase a roadmap’s coverage.



REFERENCES

[1] S. M. LaValle, Planning Algorithms. Cambridge, U.K.: Cambridge
University Press, 2006, available at http://planning.cs.uiuc.edu/.

[2] Q. Sajid, R. Luna, and K. E. Bekris, “Multi-agent pathfinding with
simultaneous execution of single-agent primitives,” in Fifth Symposium
on Combinatorial Search (SoCS), 2012, pp. 19–21.

[3] L. E. Kavraki, P. Švestka, J. C. Latombe, and M. H. Overmars, “Prob-
abilistic roadmaps for path planning in high-dimensional configuration
spaces,” IEEE Trans. Robot. Automat., vol. 12, no. 4, pp. 566–580,
August 1996.

[4] K. Kondo, “Motion planning with six degrees of freedom by multi-
strategic bidirectional heuristic free space enumeration,” IEEE Trans.
Robot. Automat., vol. 7, no. 3, pp. 267–277, 1991.

[5] B. Ichter, E. Schmerling, T.-W. E. Lee, and A. Faust, “Learned critical
probabilistic roadmaps for robotic motion planning,” in 2020 IEEE
International Conference on Robotics and Automation (ICRA). IEEE,
2020, pp. 9535–9541.

[6] C. Fulgenzi, A. Spalanzani, and C. Laugier, “Dynamic obstacle
avoidance in uncertain environment combining pvos and occupancy
grid,” in Proceedings 2007 IEEE International Conference on Robotics
and Automation. IEEE, 2007, pp. 1610–1616.

[7] L. C. Freeman, “A set of measures of centrality based on betweenness,”
Sociometry, pp. 35–41, 1977.

[8] G. Sharon, R. Stern, A. Felner, and N. R. Sturtevant, “Conflict-based
search for optimal multi-agent pathfinding,” Artificial Intelligence, vol.
219, pp. 40–66, 2015.

[9] M. Bennewitz, W. Burgard, and S. Thrun, “Optimizing schedules for
prioritized path planning of multi-robot systems,” in Proc. IEEE Int.
Conf. Robot. Autom. (ICRA), 2001, pp. 271–276.

[10] J. Abbenseth, F. G. Lopez, C. Henkel, and S. Dörr, “Cloud-based
cooperative navigation for mobile service robots in dynamic industrial
environments,” in Proceedings of the Symposium on Applied Comput-
ing, 2017, pp. 283–288.

[11] J. van den Berg, M. Lin, and D. Manocha, “Reciprocal velocity
obstacles for real-time multi-agent navigation,” in Proc. IEEE Int.
Conf. Robot. Autom. (ICRA). IEEE, 2008, pp. 1928–1935.

[12] M. Phillips and M. Likhachev, “Sipp: Safe interval path planning for
dynamic environments,” in 2011 IEEE International Conference on
Robotics and Automation. IEEE, 2011, pp. 5628–5635.

[13] I. Solis, R. Sandström, J. Motes, and N. M. Amato, “Roadmap-
optimal multi-robot motion planning using conflict-based search,”
arXiv preprint arXiv:1909.13352, 2019.

[14] B. Brüggemann and D. Schulz, “Coordinated navigation of multi-robot
systems with binary constraints,” in 2010 IEEE/RSJ International
Conference on Intelligent Robots and Systems. IEEE, 2010, pp. 3854–
3859.

[15] M. Gharbi, J. Cortés, and T. Siméon, “Roadmap composition for
multi-arm systems path planning,” in 2009 IEEE/RSJ International
Conference on Intelligent Robots and Systems. IEEE, 2009, pp. 2471–
2476.

[16] Z. Yao and K. Gupta, “Distributed roadmaps for robot navigation in

sensor networks,” IEEE Transactions on Robotics, vol. 27, no. 5, pp.
997–1004, 2011.

[17] S. Kumar and S. Chakravorty, “Multi-agent generalized probabilistic
roadmaps: Magprm,” in 2012 IEEE/RSJ International Conference on
Intelligent Robots and Systems. IEEE, 2012, pp. 3747–3753.

[18] C. Henkel and M. Toussaint, “Optimized directed roadmap graph for
multi-agent path finding using stochastic gradient descent,” in Pro-
ceedings of the 35th Annual ACM Symposium on Applied Computing,
2020, pp. 776–783.

[19] C. Freksa, A. Klippel, and S. Winter, “A cognitive perspective on
spatial context,” in Dagstuhl Seminar Proceedings. Schloss Dagstuhl-
Leibniz-Zentrum fr Informatik, 2007.

[20] N. M. Amato, O. B. Bayazit, L. K. Dale, C. Jones, and D. Vallejo,
“OBPRM: an obstacle-based PRM for 3d workspaces,” in Proceedings
of the third Workshop on the Algorithmic Foundations of Robotics.
Natick, MA, USA: A. K. Peters, Ltd., 1998, pp. 155–168, (WAFR
‘98).

[21] D. Hsu, L. E. Kavraki, J.-C. Latombe, R. Motwani, and S. Sorkin,
“On finding narrow passages with probabilistic roadmap planners,” in
Proc. Int. Workshop on Algorithmic Foundations of Robotics (WAFR),
1998, pp. 141–153.

[22] D. Hsu, G. Sánchez-Ante, and Z. Sun, “Hybrid PRM sampling with
a cost-sensitive adaptive strategy,” in Proc. IEEE Int. Conf. Robot.
Autom. (ICRA). Barcelona, Spain: IEEE, 2005, pp. 3874–3880.

[23] H. Kurniawati and D. Hsu, “Workspace importance sampling for
probabilistic roadmap planning,” in Proc. IEEE Int. Conf. Intel. Rob.
Syst. (IROS), vol. 2, sept.-2 oct. 2004, pp. 1618–1623.

[24] J. Berg and M. Overmars, “Using workspace information as a guide
to non-uniform sampling in probabilistic roadmap planners,” in Proc.
IEEE Int. Conf. Robot. Autom. (ICRA), 2004, pp. 453–460.

[25] B. Ichter, J. Harrison, and M. Pavone, “Learning sampling distributions
for robot motion planning,” in 2018 IEEE International Conference
on Robotics and Automation (ICRA). IEEE, 2018, pp. 7087–7094.

[26] M. Zucker, J. Kuffner, and J. A. Bagnell, “Adaptive workspace biasing
for sampling-based planners,” in 2008 IEEE International Conference
on Robotics and Automation. IEEE, 2008, pp. 3757–3762.

[27] C. Zhang, J. Huh, and D. D. Lee, “Learning implicit sampling
distributions for motion planning,” in 2018 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS). IEEE, 2018,
pp. 3654–3661.

[28] P. E. Hart, N. J. Nilsson, and B. Raphael, “A formal basis for the
heuristic determination of minimum cost paths,” IEEE transactions on
Systems Science and Cybernetics, vol. 4, no. 2, pp. 100–107, 1968.

[29] Drow, “Random dungeon generator,” Donjon, http://donjon.bin.sh/.
[30] S. A. Wilmarth, N. M. Amato, and P. F. Stiller, “MAPRM: A

probabilistic roadmap planner with sampling on the medial axis of the
free space,” in Proc. IEEE Int. Conf. Robot. Autom. (ICRA), vol. 2,
1999, pp. 1024–1031.

[31] F. Xia, A. R. Zamir, Z. He, A. Sax, J. Malik, and S. Savarese, “Gibson
env: Real-world perception for embodied agents,” in Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition,
2018, pp. 9068–9079.


