
Concurrent Marking of Shape-Changing Objects
Ulan Degenbaev

Google
Germany

ulan@google.com

Michael Lippautz
Google
Germany

mlippautz@google.com

Hannes Payer
Google
Germany

hpayer@google.com

Abstract
Efficient garbage collection is a key goal in engineering high-
performance runtime systems. To reduce pause times, many
collector designs traverse the object graph concurrently with
the application, an optimization known as concurrent mark-
ing. Traditional concurrent marking imposes strict invariants
on the object shapes: 1) static type layout of objects, 2) static
object memory locations, 3) static object sizes. High perfor-
mance virtual machines for dynamic languages, for example,
the V8 JavaScript virtual machine used in the Google Chrome
web browser, generally violate these constraints in pursuit of
high throughput for a single thread. Taking V8 as an example,
we show that some object shape changes are safe and can be
handled by traditional concurrent marking algorithms. For
unsafe shape changes, we introduce novel wait-free object
snapshotting and lock-based concurrent marking algorithms
and prove that they preserve key invariants.We implemented
both algorithms in V8 and achieved performance improve-
ments on various JavaScript benchmark suites and real-world
web workloads. Concurrent marking of shape-changing ob-
jects using the wait-free object snapshotting algorithm is
enabled by default in Chrome since version 64.

CCS Concepts • Software and its engineering →
Garbage collection; Memory management; Runtime envi-
ronments.

Keywords Garbage Collection, MemoryManagement, Run-
time Environments, Language Implementation

ACM Reference Format:
Ulan Degenbaev, Michael Lippautz, and Hannes Payer. 2019. Con-
current Marking of Shape-Changing Objects. In Proceedings of the
2019 ACM SIGPLAN International Symposium on Memory Manage-
ment (ISMM ’19), June 23, 2019, Phoenix, AZ, USA. ACM, New York,
NY, USA, 14 pages. https://doi.org/10.1145/3315573.3329978

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).
ISMM ’19, June 23, 2019, Phoenix, AZ, USA
© 2019 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-6722-6/19/06.
https://doi.org/10.1145/3315573.3329978

1 Introduction
Many modern high-performance runtime systems employ
garbage collection to reclaim unused application memory
safely. A garbage collection cycle typically consists of three
phases: 1)marking, where live objects are identified, 2) sweep-
ing, where dead objects are released, and 3) compaction,
where live objects are relocated to reduce memory fragmen-
tation. Different collector designs may run these phases in
sequence or combine them in various ways. This paper fo-
cuses solely on the marking phase.

During marking, the garbage collector (marker for brevity)
finds all objects reachable from a defined set of root refer-
ences, conceptually traversing an object graph, where the
nodes of the graph are objects and the edges are fields of
objects. Pausing the application for the entire marking phase
guarantees that the object graph is static. A static object
graph simplifies traversal but may result in an unacceptably
long pause. A standard technique to reduce marking pause is
concurrent marking which allows the application (mutator
for brevity) to run concurrently to multiple markers.

Concurrent marking is a well-established technique used
in many popular runtime systems like Android Art [3],
Go [24], and OpenJDK [15]. Traditional concurrent marking
algorithms use three colors: white, grey, and black. White
objects are not yet discovered and are potentially dead. Grey
objects are discovered, but not yet visited. Black objects
are visited and all their reference fields have been followed.
A concurrent marking algorithm must ensure that when
marking finishes all reachable objects are marked black and
through that are kept alive. An invariant that ensures this
correctness condition is the strong tri-color invariant [27]
which requires that black objects do not reference white ob-
jects. During concurrent marking, the mutator may attempt
to break the invariant by writing a white object reference
into a field of a black object. This problem is solved with
read or write barriers [27].
Traditional concurrent marking algorithms are designed

with the assumption that the object graph is mutated only
by field write operations. For high-performance dynamic
language runtime systems, such a limitation is too restric-
tive and prohibits certain optimizations that rely on in-place
changes of field types, object sizes, and object locations. We
refer to such changes as shape changes. For example, consider
a double unboxing optimization that replaces a reference to
a number object with a raw floating-point number. The opti-
mization results in a field type change if it is performed on

89

https://doi.org/10.1145/3315573.3329978
https://doi.org/10.1145/3315573.3329978


ISMM ’19, June 23, 2019, Phoenix, AZ, USA Degenbaev, Lippautz, and Payer

an existing object. While such shape changes enable perfor-
mance optimizations in a single-threaded environment, they
require careful synchronization with concurrent garbage
collection. For example, the marker may misinterpret a raw
field as a reference field if it uses an old field type invalidated
by concurrent mutator shape changes.
One example of a high-performance environment with

shape changes is V8 – an industrial-strength open-source
virtual machine for JavaScript [21]. V8 did not employ con-
current marking since its initial design more than 10 years
ago. Instead, V8 has heavily exploited JavaScript’s single-
threaded execution model to pioneer a number of novel
shape-changing runtime techniques. Such techniques benefit
sequential performance but complicate concurrent marking.

In this paper we study the problem of concurrent marking
in the presence of shape changes for environments with a
single mutator thread. Taking V8 as an example, we show
how shape changes appear in a virtual machine with sequen-
tial garbage collection as reasonable performance optimiza-
tions. We classify the shape changes as safe and unsafe. We
show that safe shape changes can be performed without syn-
chronization with the concurrent marker. For unsafe shape
changes, we present and compare two concurrent marking
algorithms. The first is a novel wait-free snapshotting algo-
rithm. The second is a lock-based protocol that guarantees
atomicity of unsafe shape changes. In addition to the tri-color
invariant, we state and prove the reference safety invariant
for the algorithms assuming C++-like memory model with
acquire/release/relaxed atomic operations.

We evaluate the performance of our algorithms based on
standard JavaScript benchmark suites and real-world work-
loads and show significant performance improvements and
memory reductions in comparison to the V8 baseline col-
lector configuration of sequential, incremental marking. We
also show that the wait-free snapshotting algorithm results
in less total marking CPU time in comparison to the lock-
based versions since the markers and the main thread can
make progress without waiting on each other.
The contributions of this paper are: 1) We present the

problem of concurrent marking in the presence of shape
changes. 2) We solve the problem with a generic wait-free
snapshotting algorithm that relies only on synchronization
on markbits and can be applied to other virtual machines.
3) We provide a concrete implementation based on the V8
JavaScript virtual machine and evaluate its performance.

2 V8 Overview
To make our presentation concrete we use the V8 JavaScript
virtual machine as a running example of object shape
changes and as an application of our general snapshotting
algorithm. This section provides the background needed by
introducing the relevant parts of V8 such as its object layout
and garbage collector.

JSObject

0: hidden class

1: properties

2: elements

3: field 1

.

.

.
. . .

n+2: field n

n+3: slack 1

.

.

.
. . .

HiddenClass

0: hidden class

1: type

2: capacity

3: size

4: layout

Array

0: hidden class

1: length

2: element 1

.

.

.
. . .

m+1: element m

Meta HiddenClass

0: hidden class

. . .

HiddenClass

0: hidden class

. . .

Filler

0: hidden class

Number

0: hidden class

1: double

Figure 1. Simplified layout of arrays, JavaScript objects, hid-
den classes, and fillers.

2.1 Object Representation and Optimizations
Objects on V8’s heap are allocated on word-aligned memory
addresses and consist of multiple words. We refer to the
words in an object as the object fields. The first field of an
object points to a hidden class [2, 9] that describes the type,
size, and memory layout of the given object. Hidden classes
are allocated on the heap and look like ordinary managed
objects. In particular, the first field of a hidden class points
to the meta hidden class, which is its own hidden class. This
object structure is depicted in Figure 1.

A hidden class describes whether an object field contains
an object reference or a raw value of a different type like an
integer, a floating point number, characters, etc. Since object
references are word-aligned, the least significant bit of an
object’s address is guaranteed to be 0. V8 repurposes the bit
as a tag bit to unbox the small integers (SMI) into reference
fields of an object. If the tag bit is 1, then the value contains
a pointer to an object. Otherwise, the value contains an SMI.
In the rest of the paper we refer to values with the tag bit as
tagged values. Thus, a tagged value is either a reference or
an SMI. It is the hidden class that specifies whether a field
stores a tagged value or a raw value. Note that without the
context, a tagged value is indistinguishable from a raw value.
V8 has more than a hundred different object types. It is

sufficient to focus on two fundamental types, Array and
JSObject, each of which are subject to different kinds of
shape changes. The HiddenClass, Number and Filler types
are used in the paper but do not undergo shape changes.

2.1.1 Hidden Classes
We simplify our model of hidden classes to only the infor-
mation necessary for garbage collection, ignoring JavaScript
prototypes, constructors, etc. Our simplified hidden class

90



Concurrent Marking of Shape-Changing Objects ISMM ’19, June 23, 2019, Phoenix, AZ, USA

consists of five fields as shown in Figure 1. The first field is a
reference to the meta hidden class. The second field is a raw
integer that encodes the instance type, i.e. the type of the
objects that refer to this hidden class. The next two fields
are raw integers that specify the capacity and the size of the
instance objects. We define the capacity of an object as the
total number of fields in the object and the size as the num-
ber of used fields. The unused fields at the end of the object
are called slack fields. Only JSObjects have slack fields, so
for all other types, the capacity equals the size. Note that
Arrays have a separate field for storing their length, so their
hidden classes have capacity and size 0. The fifth field of a
hidden class stores a reference to a bitmap which describes
the object layout. A bit in the bitmap corresponds to a field
in an instance object and indicates whether the correspond-
ing field stores a tagged or raw value. The bitmap is only
needed for JSOject instances since Array, HiddenClass,
and Filler instances have static field types.

2.1.2 JavaScript Objects
JSObjects support dynamic addition and removal of user
visible properties, a key feature of the JavaScript program-
ming language. A property can be stored either in one of the
fields of the object or in a separate backing store. As shown in
Figure 1, a JavaScript object may have slack that is consumed
when new properties are added. If slack is exhausted, then
additional properties overflow to the backing store Array.
Addition and removal of properties is accompanied with a
change to a new HiddenClass. Adding or removing proper-
ties from an object is a size change. Properties are usually
stored as tagged values. On 64-bit architectures, V8 uses a
type change optimization, called double-unboxing, that al-
lows numeric in-object properties to be stored as raw 64-bit
floating-point numbers instead of boxed numbers. When this
optimization is performed on an object, some of its fields
that reference heap number objects transition from tagged
to their raw double representation. The object header is over-
written to point to an appropriate new HiddenClass that
reflects this transition in its layout bitmap.

2.1.3 Arrays
V8 has both tagged and raw Arrays, storing either all tagged
elements or raw elements. The number of elements is stored
in the second field as an SMI value.

Arrays are not directly exposed to the JavaScript appli-
cation. They are used as backing store for JSObjects that
implement JavaScript arrays (JSArray). A JSArray has a
rich set of methods such as push, pop, shift, unshift that allow
them to fill the roles of other basic data-structures like stacks
and queues. For example, the push/unshift combination pro-
vides a queue, where the push method appends an element
and the unshift method removes the first element.

Since JSArrays are ubiquitous in JavaScript applications,
it is desirable to have the fastest possible implementation for

the array indexing operation and the stack/queue operations
mentioned above. The push/pop operations can be imple-
mented in amortized O(1) time using exponential backing
store sizing. The unshift operation, however, is a little trickier
because it deletes the 0th element of an array and logically
moves all elements down by 1. V8 preserves fast array index-
ing by implementing this operation by shape changes in the
form of in-place updates on the object header and length of
the backing store array. V8 implements array left-trimming
that allows unshift operations to move the start of the Array
object in memory to its new location to ensure that the first
element starts at index zero, which represents a location
change. V8 also supports array right-trimming that shrinks
an Array by decreasing its length, which is a size change.

2.1.4 Numbers and Fillers
A Number is a boxed floating point object. It has a static layout
and consists of two fields: the hidden class reference and the
floating-point number. Filler objects are even simpler, they
only consist of a reference to their hidden class. Fillers are
written into the space of shrunken objects to preserve the
ability to iterate over the heap in order from low memory
address to high memory address, which is used by certain
non-critical VM tools.

2.2 Garbage Collection
V8 uses a generational garbage collection strategy with the
heap separated into the young and the old generation. The
young generation uses a semi-space strategy with bump-
pointer allocation inlined in compiled code [10]. When the
young generation’s occupancy reaches a threshold, a parallel
variant of Cheney’s algorithm [7] collects the young gener-
ation. Objects which have been moved once in the young
generation are promoted to the old generation.

The old generation also uses bump-pointer allocation on
the fast path for tenured allocations [9]. Free old genera-
tion memory is organized in segregated free-lists, which are
used to refill the current bump-pointer span. A full collec-
tion collects both the old and the young generation using a
mark-sweep-compact strategy. V8 marks live objects incre-
mentally in small steps to avoid long marking pauses. When
marking finishes the main pause is executed consisting of
several phases which concludes a garbage collection cycle:
1) Finalizing marking: This rescans the roots and continues
marking until all reachable objects are marked black. 2) Start-
ing sweeping: Sweeping is performed concurrently to the
main thread. 3) Parallel evacuation of the young generation
and old generation compaction for reducing memory frag-
mentation. After that the JavaScript execution is continued.

Orthogonal to the plain garbage collection optimizations
V8 employs idle time garbage collection scheduling [13]
and cross-component garbage collection to collect object
graph cycles spanning the V8 and the C++ embedder heap
boundary [14].

91



ISMM ’19, June 23, 2019, Phoenix, AZ, USA Degenbaev, Lippautz, and Payer

1 MemoryOrder = { acquire, release, relaxed }
2 ⟨memory_order⟩? load ⟨variable⟩ ← ⟨address⟩
3 ⟨memory_order⟩? store ⟨value⟩ → ⟨address⟩
4 ⟨memory_order⟩? CAS (⟨expected⟩ → ⟨desired⟩)→ ⟨

address⟩
5 push ⟨address⟩ → ⟨worklist⟩
6 pop ⟨variable⟩ ← ⟨worklist⟩

Figure 2. Notation for memory and worklist operations.

2.2.1 Concurrent Marking
In this section we give a brief overview about the general
concurrent marking infrastructure we added to V8. Our work
takes advantage of the existing incremental marking infras-
tructure, i.e. object visitation mechanisms, marking bitmap,
garbage collection scheduling heuristics, etc. Serial incre-
mental marking on the mutator thread is used as the fallback
to ensure marking progress in scenarios where no extra
threads are available for markers. Incremental marking uses
a Dijkstra-style write barrier [16] which we also use in con-
current marking to maintain the tri-color marking invariant.

Marking starts on the main thread at a safepoint, i.e. where
the stack is in an iterable state, based on garbage collection
scheduling heuristics [13]. At that point all the existing ob-
jects on the heap are white. The main thread scans the roots,
marks discovered objects grey, and pushes them onto the
marking worklist. Then it kicks-off multiple marking threads
and resumes execution of JavaScript.

Each marker runs a loop that drains the marking worklist
by popping an object from the worklist, marking it black,
and visiting its reference fields. If a reference points to a
white object, then the marker tries to color the object grey
using an atomic CAS operation. If coloring grey is successful,
then the object is pushed onto the marking worklist. Note
that for clarity we are eliding details related to compaction
which are not relevant for this paper (e.g. markers also collect
field addresses that contain references to objects that will be
subject to relocation in the compaction phase).
Markers may steal work from each other when they run

out of work on their private worklists. The main thread pe-
riodically also helps with marking and checks if the main
pause should be scheduled, i.e. when it is likely that all ob-
jects are marked.

In the following sections we describe how markers handle
object shape changes.

3 Notation and Memory Model
We define the marker and mutator operations in pseudocode
and want the pseudocode notation to be precise so that we
can reason about safety and correctness of concurrent mark-
ing. In particular the notation should be precise about mem-
ory accesses, their ordering, and visibility. Since V8 is written

7 Types:
8 Word = BW , where W = ⟨bits per word⟩
9 AbsValueType = {Ref, Smi, Raw}
10 Value = Word × AbsValueType
11 ObjectType = {JS, HC, RA, TA, NU, FI}
12 FieldType = {Tagged, Raw}
13 Color = {white, grey, black}
14 Functions, globals:
15 A(_ × type) = type
16 HasRefTag(word × _) = word & 1
17 RefTag(ptr) = (ptr | 1) × Ref
18 RefUntag(word × Ref) = word & ~1
19 HasSmiTag(value) = not HasRefTag(value)
20 SmiTag(smi) = (smi << 1) × Smi
21 SmiUntag(word × Smi) = word >> 1
22 Null = ⟨reference to the root null object⟩
23 FillerClass = ⟨reference of the root hidden class of fillers⟩

Figure 3. Definitions of types, constants, and functions.

in C++, we will use the C++memory model [5, 6]. We assume
that the reader is familiar with the basic atomic operations
and the acquire, release, and relaxed memory orders defined
by the language standard.
Figure 2 shows the syntax of the operations that we will

use in pseudocode. The memory operations map directly
to the corresponding C++ std::atomic operations with one
caveat: if the memory order is omitted, relaxed memory
order is assumed. The compare-and-swap (CAS) operation
corresponds to the compare_exchange_strong C++ operation.

The main challenge of our concurrent marking algorithms
is to avoid misinterpreting reference fields. Since tagged
and raw values are indistinguishable on the physical level
without the context of the object shape, we need functionality
that allows us to tell them apart on the abstract level, so that
we can unambiguously state and prove the invariants of the
algorithms. To do that we augment values with abstract field
types as shown in Figure 3. The abstract typeA(v) of a value
v indicates whether the value is a reference, an SMI, or a
raw value. We assume that the abstract type is preserved by
memory operations that load and store the value. SinceA is
merely a tool for proofs and invariants, neither the mutator
nor marker can use it.
The Tag/Untag functions in Figure 3 implement the SMI

tagging scheme described in Section 2.1. We use concise
syntax for computing the addresses of object fields. Let obj
be a reference to an object, which means that A(obj) = Ref .
Then obj[i] denotes the address of the i-th field of the object.
More precisely, obj[i] = RefUntag(obj)+ i , assuming that the
address arithmetic is carried out on the word granularity.
Without diving into implementation details we assume

two data-structures as given: the marking worklist and the
markbits. The marking worklist is a thread-safe collection

92



Concurrent Marking of Shape-Changing Objects ISMM ’19, June 23, 2019, Phoenix, AZ, USA

24 marker DrainWorklist():
25 while (obj← popWorklist):
26 ⟨synchronize with the initializing stores of obj⟩
27 VisitObject(obj)
28

29 marker VisitObject(obj):
30 acquire load class← obj[0]
31 load type← class[1]
32 switch (type):
33 case JS: VisitJSObject(obj, class)
34 case HC: VisitHiddenClass(obj, class)
35 case RA: VisitRawArray(obj, class)
36 case TA: VisitTaggedArray(obj, class)
37 case NU: VisitNumber(obj, class)
38 case FI: impossible

Figure 4. Marking loop and visitor dispatch.

of object references that can be added and removed with
the push and pop operations. Each object has two mark-bits
associated with it that encode three color values: white, grey,
and black. For accessing mark-bits, we assume that there is
a function Markbits(obj) that given a reference to an object
returns the address of its mark-bits. This allows us to use
the same syntax for accessing object fields and markbits.
Depending on the actual implementation, the mark-bit ac-
cessors might be replaced with more complex operations, e.g.
with operations that mask out other marking bits if multiple
bits are packed into a single byte.
For defining the mutator and marker operations we will

use the common statements and operators such as if-then-
else, for-in, let that should be self-explanatory. Note that the
first word before the operation name indicates whether the
operation is performed by the mutator or the marker.

4 Basic Marker and Mutator Operations
This section sets up the scene by describing the basic op-
erations of the marker and mutator performed during the
marking phase of garbage collection. The operations do not
include shape changes, which will be covered in Section 5.
We show how the marker processes the marking worklist
and follows discovered references. On the mutator side, we
spell out our assumptions about object allocation and give
a precise definition of the write barrier. Along the way, we
state invariants about worklist items, object and hidden class
fields, and reference safety.

4.1 Draining Marking Worklist
The marker runs the worklist draining loop depicted in Fig-
ure 4. In each iteration, the marker gets an object from the
worklist, loads its hidden class, looks up the object type from
the hidden class, and dispatches to the specialized visit func-
tion based on the object type. Let’s refer to that object as

the currently visited object (CVO). The following invariant
ensures that the reference to the CVO obtained from the
worklist is valid.

Invariant 4.1 (Worklist Items). Each worklist item is a ref-
erence to an object. Formally, ∀v ∈ Worklist.A(v) = Ref .

The invariant is maintained by the mutator when it pushes
references onto the worklist during the initial root scanning
and during the invocation of the write barrier. The marker
pushes onto the worklist when it follows a discovered refer-
ence. As we will see later on, Invariant 4.4 guarantees that
only references are pushed onto the worklist.
The marker may load any field of the CVO. We need to

ensure that the marker never sees uninitialized fields.

Invariant 4.2 (Initialized Fields). Loading any field of the
CVO returns a value which was written by the mutator at or
after the initialization of the CVO.

Line 26 in Figure 4 is the place where the marker syn-
chronizes with the mutator to establish Invariant 4.2 while
relying on Invariant 4.1. Efficient synchronization with the
initializing stores of an allocated object is an interesting prob-
lem on its own and is out of scope of this paper as it would
pull in all the details about object allocation and initializa-
tion. Thus we assume that there is some synchronization
and take Invariant 4.2 as granted.
The hidden class reference load in Line 30 is now justi-

fied by Invariants 4.1, 4.2. However, loading the type field
from the hidden class can go wrong if the hidden class was
recently allocated and installed on the object by a shape
change operation. In that case, the loaded type might be an
uninitialized value. We need an invariant that ensures that
all fields of the hidden class of the CVO are initialized.

Invariant 4.3 (Initialized HiddenClass Fields). Loading any
field of the hidden class of CVO returns a value which was
written by the mutator at or after the initialization of the
hidden class.

As we will see in Section 5, all object shape changing
operations write to the hidden class field of an object using a
release-store operation. Since Line 30 loads the hidden class
using an acquire-load operation, the invariant follows from
the memory model.
We assume that the specialized visitation functions like

VisitJSObject depicted in Figure 4 know how to find all tagged
fields of the object based on its hidden class and size if it is
guaranteed that the object is not undergoing a concurrent
shape change. Later on in Sections 6 and 7 we will modify
the VisitObject function to lift the shape change restriction.
Young generation garbage collection pauses concurrent

marking threads and updates all references in the marking
worklist after object relocation.

93



ISMM ’19, June 23, 2019, Phoenix, AZ, USA Degenbaev, Lippautz, and Payer

40 marker FollowReference(value):
41 if HasRefTag(value):
42 load color←Markbits(value)
43 if color = white and CAS (white→ gray)→Markbits(

value)
44 push value→Worklist

Figure 5. Shade an object to grey and push onto the worklist.

45 mutatorWriteField(obj, i, value, type):
46 store value→ obj[i]
47 WriteBarrier(value, type)
48

49 mutatorWriteBarrier(value, type):
50 if type = Tagged and HasRefTag(value):
51 load color←Markbits(value)
52 if color = white and CAS (white→ grey)→Markbits(

value):
53 push value→Worklist

Figure 6. Write field with Dijkstra-style write barrier.

4.2 Following References
With the help of the specialized visit function, the marker
iterates the tagged fields of the object. For each tagged field,
the marker loads its value and checks whether the value is a
reference or an SMI, as shown in Figure 5. If the value is a
reference to a white object, then the marker tries to shade the
object grey with an atomic CAS operation. If that succeeds,
then the reference is pushed onto the marking worklist.
Note that the HasRefTag check in Line 41 assumes that

the value is a tagged value. If the mutator changes the field
type concurrently and confuses the marker to load a raw
value instead, then the HasRefTag check may succeed and
the marker may try to access mark-bits using an invalid
reference. This brings us to the central invariant in the paper.

Invariant 4.4 (Reference Safety). The value passed to the Fol-
lowReference is a tagged value, that isA(value) ∈ {Ref , Smi}.

In Sections 6 and 7 we will show that this invariant holds
for two algorithms in the presence of object shape changes.

4.3 Write Barrier
Having described the basic marker operations and invariants,
we switch to the mutator. The most common object graph
mutating operation is a write to an object field. Figure 6
defines the operation. We assume that this operation is only
executed for the fields of an object that do not control the
object shape and that it preserves the given field type.
We use a Dijkstra-style write barrier to maintain the tri-

color marking invariant [27]. Note that to avoid synchro-
nization with the marker the write barrier does not check

Shape Change s ′ u ′ e ′

Field Type Change - - -
Append Field - u + 1 -
Remove Field - u − 1 -
Right Trim - min(u, e − 1) e − 1
Left Trim s + 1 - -

Figure 7. Effect of a shape change on the object start, the
slack area start, and the object end.

Shape Change f ′

Field Type Change f [k 7→ v] for some (k , v):
s + h(t) ≤ k < u,
v ∈ FieldType

Append Field f [u 7→ v] for some v :
v ∈ FieldType

Remove Field f [(u − 1) 7→ ϵ]

Right Trim f [(e − 1) 7→ ϵ]

Left Trim f [s 7→ ϵ, i 7→ f (i − 1)],
∀i : s < i ≤ s + h(t)

Figure 8. Effect of a shape change on field types.

the color of the source object. Thus, a write of a white object
reference into a field of a white object marks the referenced
object grey. This may result in floating garbage, but is crucial
for performance as it avoids a memory fence after each write.

5 Object Shape Changes
Generalizing V8’s object representation, we model an object
shape as a tuple (t , f , s,u, e), where t is the type of the object,
f is a mapping from addresses to FieldType ∪ {ϵ}, s is the
start address of the object, u is the start address of the slack
area in the object, e is the end address of the object. All
addresses are word-aligned. For brevity, let’s assume that
address arithmetic is carried out on the word granularity.
Thus, for example, s + 1 is the address of the second field.
Then the capacity of the object is equal to e−s and the object
size is u − s .
An object shape must satisfy certain constraints to be

valid. For example, the size cannot not exceed the capacity.
Also, the size cannot be smaller than the minimum object
size, which we denote as h(t) for the given object type t .
Formally, the two constraints translate to s + h(t) ≤ u ≤ e .
The field type function indicates whether a used field of the
object is tagged or raw. It is set to ϵ for all slack fields and all
fields outside the object. Thus, ∀s ≤ i < u : f (i) ∈ FieldType
and ∀i < s ∨ i ≥ u : f (i) = ϵ .

94



Concurrent Marking of Shape-Changing Objects ISMM ’19, June 23, 2019, Phoenix, AZ, USA

Having defined the object shape, we can now enumerate
primitive shape changes by considering changes in the in-
dividual components of the object shape that result in valid
object shapes: (t , f , s,u, e) { (t ′, f ′, s ′,u ′, e ′). The shape
changes that our algorithms can handle are listed in Fig-
ures 7 and 8 along with their effects on (s,u, e) and f . For the
latter, we use the function update syntax f [k 7→ v], which
means that the new function is the same as f except for the
argument k that maps to v . The listed shape changes can be
combined and repeated arbitrarily to produce more complex
shape changes.

Note that the list is missing three other possible primitive
shape changes: object type change (t ′ , t ) and two object ex-
pansion changes (s ′ < s and e < e ′). We are not aware of any
practical applications of an object type change. Object ex-
pansion is performed in a limited way by the Spidermonkey
JavaScript VM[29]. When expanding an object the mutator
needs to be careful to not expand into the next or the previ-
ous object; it may require in-place updates of free-list entries,
and invalidate marking worklist entries, which comes with
performance and memory overhead.
The mutator performs a shape change operation on an

object by writing to its fields. We classify the writes into four
kinds: 1) writes to the shape-controlling fields of the object
(the hidden class reference field or the length field), 2) writes
to the fields that changed their type. 3) clearing writes to the
removed fields that became slack fields. 4) clearing writes to
the trimmed fields that are no longer part of the object.

In order to support the marker, the mutator places a write
barrier after each write of a reference. Additionally, the Hid-
den Class Invariant 4.3 requires that the write to the hid-
den class field is performed with a release-store operation.
The value written by the clearing writes (kind 3, 4) must be
tagged. Specifically, a removed field is cleared with the Null,
which is a reference to a special pre-allocated root object,
and a trimmed field is cleared with the FillerClass, which
is a reference to the root hidden class of fillers. Note that
trimming a field effectively allocates a filler object. This is
important for the left trim operation, which moves the ob-
ject start. If it would not leave a filler object at the old start,
then the existing reference to the left-trimmed object would
become invalid, breaking the Worklist Invariant 4.1. Since
the mark-bits are associated with the object start, the left
trim operation also copies them to the new object start.
Figure 9 shows a few examples of possible shape change

operations that are derived by repeating simple shape
changes and are specialized for JavaScript objects and arrays.
Many other shape change operations can be obtained by com-
bining the simple shape changes. Our marking algorithms
support them in generic way.

5.1 Safe and Unsafe Shape Changes
Some shape changes work with concurrent marking without
any special synchronization.We call such shape changes safe.

54 mutator FieldTypeChange(obj, new_class, affected_fields):
55 release store new_class→ obj[0]
56 WriteBarrier(new_class, Tagged)
57 for (index, value, type) in affected_fields:
58 store value→ obj[index]
59 WriteBarrier(value, type)
60

61 mutator LeftTrimArray(obj, old_length, new_length):
62 load color←Markbits(obj)
63 k = old_length − new_length
64 store color→Markbits(obj + k)
65 load class← obj[0]
66 release store class→ obj[k]
67 WriteBarrier(class, Tagged)
68 store new_length→ obj[k + 1]
69 for i in [0, k):
70 store FillerClass→ obj[i]

Figure 9. Examples of shape change operations.

To understand what makes a shape change safe, consider a
sequence of shapes and shape changes of one object since
the start of marking:

shape0
chanдe1
−−−−−−→ shape1

chanдe2
−−−−−−→ . . .

chanдen
−−−−−−−→ shapen

A sequence of shape changes is safe if it does not matter
in which order the marker sees the stores emitted by the
shape changes and by the ordinary WriteField operations
between the shape changes. For example, a sequence of right-
trim operations is safe because even if the marker observes
the cleared field value before the size change and follows
the cleared value as a reference, it will arrive at a valid ob-
ject (FillerClass). This is generalized and formalized in the
following sufficient condition for safe shape changes.

Definition 5.1 (Safe shape changes). Let (ti , fi , si ,ui , ei ) de-
note the i-th shape in a sequence of shape changes 0 ≤ i ≤ n.
We call the sequence safe if:

1. each change updates a single shape-controlling field
(either the hidden class reference or the length field).

2. all changes update the same shape-controlling field.
3. ∀0 ≤ i, j ≤ n : si = sj
4. ∀a ∈ BW ,a modW = 0 : {Tagged, Raw} 1 types(a),

where types(a) =
⋃n

i=0 fi (a)

The first three conditions are about atomicity of shape-
controlling field updates and ensure that the marker is guar-
anteed to see coherent shapes without synchronization. Note
that the third condition states that the object start does not
move. The fourth condition requires that an object field does
not appear as a tagged field in one shape and as a raw field
in another shape. Note that ϵ is allowed in types(a), so a field
can be a tagged field in one shape and can become a slack or
trimmed field in another shape.

95



ISMM ’19, June 23, 2019, Phoenix, AZ, USA Degenbaev, Lippautz, and Payer

Theorem 5.2 (Reference safety with safe shape changes). If
an object undergoes only safe shape changes, then the Reference
Safety Invariant 4.4 holds for the marker visiting the object.

Proof. Let fi denote the field type function of the i-th shape
in the sequence of shape changes (0 ≤ i ≤ n). Since all shape
changes update the same shape-controlling field, the marker
sees the stores to this field in the issued order. Thus we can
assume that the marker loaded the field value at the j-th
shape and iterates object fields according to fj . (Note that
this assumes that if the loaded value is a reference, then the
referenced structure, e.g. hidden class, is immutable).

Consider some field of the object at address a. Letv be the
value loaded by the marker from this field. Let k be the index
of the shape in the sequence that the object had when v was
written (Invariant 4.2 guarantees that the value comes from
one of the mutator writes). Note that the mutator ensures
that A(v) is consistent with fk (a).
Now we have several cases based on fj (a) and fk (a).
1. fj (a) = Raw∨fj (a) = ϵ : impossible because themarker

iterates only tagged fields according to fj .
2. fj (a) = fk (a) = Tagged: the value v is also tagged

because the mutator keeps field types and value types
consistent.

3. fj (a) = Tagged ∧ fk (a) = Raw: impossible due to the
fourth condition in Definition 5.1.

4. fj (a) = Tagged ∧ fk (a) = ϵ : the value v is the value
of a slack field (Null) or a trimmed field (FillerClass).
Both of them are tagged.

Thus if the marker follows a field value, then it is tagged. □

Now we identify a subset of simple shape changes that
is guaranteed to produce safe shape change sequences. We
can rule out the field type change and the left-trim shape
changes as unsafe right away.
The remaining shape changes, the append field (AF),

the remove field (RF), and the right-trim (RT), are safe for
JavaScript objects in isolation. For example, any sequence of
AF operations is safe. However, combining different shape
changes is not necessarily safe. For example, an append of a
tagged field, followed by a remove of the field and an append
of a raw field results in a field that appears as both tagged
and raw in the shape sequence. Thus the combination of
AF/RF is unsafe. The remaining two combinations, AF/RT
and RF/RT, are safe in isolation.

We conclude the section by proving the tri-color invariant.

Theorem 5.3 (Tri-color invariant with safe shape changes).
If an object undergoes only safe shape changes, the tri-color
invariant holds for the object.

Proof. Each shape change operation emits a write barrier for
each written references. Thus, if a field transitions from ϵ to
Tagged, the write barrier maintains the tri-color invariant
for it. If a field transitions from Tagged to ϵ , then the tri-color

71 mutator UnsafeShapeChange_S(obj, ...):
72 load color←Markbits(obj)
73 if color , black:
74 CAS (white→ grey)→Markbits(obj)
75 if acquire CAS (grey→ black)→Markbits(obj):
76 VisitObject(obj, class)
77 UnsafeShapeChange(obj, ...)

Figure 10. The mutator side of the snapshotting algorithm.

invariant holds for it trivially since the reference is removed
from object. If a field stays Tagged for all shape changes,
then the marker follows it no matter which shape it uses to
iterate the tagged fields. □

6 Snapshotting Algorithm
The main idea of our snapshotting algorithm is to synchro-
nize the mutator and the concurrent marker using the mark-
bits of the object that is undergoing a shape change. Before
performing a shape change operation, the mutator ensures
that the object is black, which means that if the object is
white or grey, then the mutator tries to mark it black with
an atomic acquire-CAS operation and on success visits it as
shown in Figure 10.

On the other side, the concurrent marker visits the object
as shown in Figure 11. (The VisitObject_S is the snapshot
version of the VisitObject and replaces it in the worklist
draining loop of the marker.) First the marker tries to take a
snapshot of all tagged fields of the object. For this it inspects
the hidden class of the object and loads the length field if
the object is an array. If the hidden class is a FillerClass
reference or the length is not a tagged integer, then the
object was left-trimmed and can be safely skipped because
the mutator ensures that the object is visited before left-
trimming it. Otherwise, the marker knows the size of the
object and loads all the tagged fields of the object into a local
snapshot buffer.

After that, the marker validates the snapshot by marking
the object black with an atomic release-CAS operation. If the
operation fails, the object can be safely skipped because it is
visited by the mutator or another marking thread. Otherwise,
the marker follows the references in the snapshot.

Theorem 6.1. The snapshotting algorithmmaintains the Ref-
erence Safety Invariant 4.4.

Proof. The FollowReference in Line 82 is invoked only if the
release-CAS in Line 80 succeeds. The release-CAS synchro-
nizes with the acquire-CAS in Line 75 on the mutator side
and ensures that the snapshot loads happen before any store
of an unsafe shape change operation. This means that the
snapshot is taken on the object that had only safe shape
changes. Theorem 5.2 ensures that the values in the snap-
shot are tagged. □

96



Concurrent Marking of Shape-Changing Objects ISMM ’19, June 23, 2019, Phoenix, AZ, USA

78 marker VisitObject_S(obj):
79 let (snapshot, success) = TakeSnapshot(obj)
80 if success and release CAS (grey→ black)→Markbits(

obj):
81 for value in snapshot:
82 FollowReference(value)
83

84 marker TakeSnapshot(obj):
85 acquire load class← obj[0]
86 if class = FillerClass:
87 return ([], false)
88 load type← class[1]
89 let (size, success) = FetchSize(obj, class, type)
90 if not success:
91 return ([], false)
92 let tagged_fields = TaggedFields(obj, class, type, size)
93 let snapshot = []
94 for i in tagged_fields:
95 load value← obj[i]
96 snapshot.append(value)
97 return (snapshot, true)
98

99 marker FetchSize(obj, class, type):
100 if type = TA or type = RA:
101 load size_tagged← obj[1]
102 if not IsSmiTag(size_tagged):
103 return ([], false)
104 return SmiUntag(size_tagged)
105 else:
106 load size← class[3]
107 return size
108

109 marker TaggedFields(obj, class, type, size):
110 ⟨Returns a list of tagged field indices of the object.⟩

Figure 11. The marker side of the snapshotting algorithm.

The tri-color invariant follows similarly from Theorem 5.3
since the mutator visits the object if it marked it black before
an unsafe shape change.

The algorithm is wait-free [22] because a marking thread
can make progress independent from the mutator (and other
marking threads) and vice-versa. We assume here that the
CAS operations on markbits are wait-free, which is the case
in V8, i.e. a CAS can only fail a bounded number of times
due to forward marking progress. The simplicity and wait-
freedom of the algorithm comes at the cost of requiring the
mutator to visit a non-black object before performing an
unsafe shape change operation on it. Note that once the
object is visited subsequent unsafe operations do not have
that overhead. Thus the total overhead of the algorithm de-
pends on the number of different objects undergoing unsafe
operations, not the total number of unsafe operations.

111 marker VisitTaggedArray_S(obj, class):
112 load length← obj[1]
113 if release CAS (gray→ black)→Markbits(obj):
114 FollowReference(class)
115 for i in [0, SmiUntag(length)):
116 load value← obj[2 + i]
117 FollowReference(value)

Figure 12. Optimized snapshotting of arrays.

6.1 Optimized Array Snapshot
Since arrays can be arbitrarily large, it is undesirable from
the performance and the memory usage point of view to
snapshot all array elements. If we disallow transitions be-
tween tagged and raw arrays, which is the case in V8, then
we can get O(1) snapshot for arrays. Recall that tagged ar-
rays have only tagged elements, and raw arrays have only
untagged elements. This means that visiting a raw array is
as simple as following its hidden class reference, which does
not require snapshotting.
Since tagged arrays cannot transition to raw arrays, we

only need to snapshot the length of the array as shown in
Figure 12. (Assume that the function is called by the Visi-
tObject_S if the type field of the hidden class indicates an
array.) This works because array trimming keeps all the fields
tagged as it overwrites the fields with either a tagged Filler-
Class references, or a tagged array hidden class reference,
or a tagged array length. So the value loaded in Line 116 is
guaranteed to be tagged.

7 Lock-based Algorithm
As a baseline for performance comparison we implement
the simplest possible lock-based algorithm that prevents an
unsafe shape change of an object while the marker is visiting
it. The idea is to require the marker and the mutator to lock
the object before performing an operation on it. We abstract
the implementation and the granularity of the lock with the
lockimp(obj) function that returns a lock based on the object
address. Section 9 evaluates performance of the algorithm
with fine-grained per-word locks and coarse-grained per-
page locks. A V8 page is a chunk of memory of 512K.

Locking on the mutator side is simple as Figure 13 shows.
The marker, however, has to account for the left-trim opera-
tion moving the object start while it is waiting for the lock.
Thus, after locking the marker checks whether the object is a
filler. If so, then the object was left-trimmed in the meantime.
In that case, the marker marks the filler black, releases the
current lock, and re-tries locking at the next word as shown
in Figure 14. Otherwise, the marker can safely visit the object
and is guaranteed that an unsafe change will not happen
concurrently. Proofs of the reference safety and tri-color
invariants are left out due to space limitations.

97



ISMM ’19, June 23, 2019, Phoenix, AZ, USA Degenbaev, Lippautz, and Payer

118 mutator UnsafeShapeChange_L(obj, ...):
119 lock(lockimpl(obj))
120 UnsafeShapeChange(obj, ...)
121 unlock(lockimpl(obj))

Figure 13. The mutator side of the lock-based algorithm.

In the lock-based algorithm the mutator thread cannot
make progress if a marker thread locks an object which is
needed by the mutator. In Chrome responsiveness of the
mutator thread is critical e.g. to handle high priority input
events or compute animations. Hence, we do not consider
the lock-based algorithm a viable choice for Chrome.
Let us now proof correctness of the reference safety and

tri-color invariants.

Theorem 7.1. The lock-based algorithm maintains the Ref-
erence Safety Invariant 4.4.

Proof. When the marker obtains the lock on obj, it is guar-
anteed by the lock that the mutator is not concurrently per-
forming an unsafe operation that changes obj[0].
The mutator ensures that no object refers to a filler, so

fillers in the worklist can appear only after left-trimming.
So if obj[0] = FillerClass then the mutator must have left-
trimmed the object before. In that case, the marker releases
the current lock, advances by the size of the filler and locks
the new address. Since the mutator can left-trim an object
finite number of times, the marker at some point obtains a
lock and sees a non-filler object.
The lock guarantees that the mutator is not performing

any unsafe shape change on that object concurrently (includ-
ing left-trimming). Since releasing the lock on the mutator
side synchronizes with acquiring it on the marker side, the
marker observes all stores until the last unsafe shape change
performed on the object.
There could have been safe shape changes since the last

unsafe shape change. Nowwe consider the sequence of these
safe shape changes and repeat the steps in the proof of The-
orem 5.2 to get the Reference Safety invariant. □

The tri-color invariant follows similarly by repeating the
steps of the proof of Theorem 5.3.

8 Related Work
Concurrent marking is implemented in many production
and research virtual machines. The OpenJDK G1 garbage
collector [15] is based on the snapshot-at-the beginning al-
gorithm [35] with black allocation for newly allocated ob-
jects which ensures the tri-color marking invariant. The Go
garbage collector [24] is inspired by Sapphire [26]. It uses a
hybridwrite barrier [25] that combines a Yuasa-style [35] and
Dijkstra-style [16] write barrier which guarantees together
with black allocation marking progress. Android Art [3] uses

122 marker VisitObject_L(obj):
123 do:
124 lock(lockimpl(obj))
125 load class← obj[0]
126 if class = FillerClass:
127 store black→Markbits(obj)
128 let obj = PtrTag(obj[1])
129 else:
130 VisitObject(obj)
131 unlock(lockimpl(obj))
132 while class = FillerClass

Figure 14. The marker side of the lock-based algorithm.

a Baker-style read barrier [4] which ensures that all objects
whose references are read are kept alive. The C4 garbage col-
lector [34] is using a similar read barrier for marking. Unsafe
shape changes are avoided in these systems.

Object shape changes are not common in statically typed
languages. In dynamically typed languages, where shape
changes are to some degree part of the programming lan-
guage, like in JavaScript, it may be necessary to allow them
as part of the virtual machine design. There is not much
literature about other JavaScript virtual machine implemen-
tations. The JSC JavaScript virtual machine implements con-
current marking and field type changes are discussed in a
blog post [32]. The authors use an obstruction-free snapshot
protocol proposed earlier [1] that may be subject to infi-
nite retries and lock-based solutions for other complicated
shape changes. A general overview of generic snapshotting
mechanisms can be found in [33]. ChakraCore [36] imple-
ments concurrent marking but details about shape changes
and the actual implementation are not documented. Spider-
monkey [17] does not employ concurrent garbage collection
but uses various shape changes like left-trimming [30] to
optimize sequential performance.

A lock-based approach to guard shape changes (also called
layout changes) was proposed in [11]. This work was later
improved in [12] that introduced a lightweight layout lock,
which allows to concurrently read an object without taking a
lock in the fast path and falls back to locking in the slow path.
It can be viewed as a hybrid of our snapshotting algorithm
and the lock-based algorithm.

9 Evaluation
We compare five different marking configurations: 1) Incre-
mental marking (I ) is the baseline since it was the default
configuration in Chrome until version 63. 2) Plain concurrent
marking without snapshotting with unsafe shape changing
optimizations being disabled (N ). We use this configuration
to evaluate the overhead of handling unsafe shape changes.
Moreover, we will see the performance impact of the disabled
optimizations. 3) The wait-free snapshot-based concurrent

98



Concurrent Marking of Shape-Changing Objects ISMM ’19, June 23, 2019, Phoenix, AZ, USA

marking algorithm (S) which is the default since Chrome
64. 4) Lock-based concurrent marking using per-word locks
(LW ). 5) Lock-based concurrent-marking using per-page
locks (LP). Our main focus is on configuration S and we
use the other configurations to explore interesting garbage
collection tradeoffs.

9.1 Benchmarking Setup
We use a development version of Chrome 72 (revision:
43dcdf8ccdde) with patches for the marking variants for N,
LW, and LP. The incremental marking configuration I can
be configured with standard V8 start-up flags. We fix V8’s
young generation to 4MiB, the heap growing factor to 30%,
and we disable garbage collections in idle time [13] to reduce
sources of non-deterministic garbage collection scheduling.
All benchmarks are run on a Linux workstation with two
Intel Xeon E5-2690 V3 12-core 2.60 GHz CPUs and 64GB of
main memory.
We evaluate each marking configuration on JavaScript

and real-world macro-benchmarks using Chrome’s trac-
ing infrastructure and the Catapult performance testing
framework [18]. Catapult runs scripted website interactions
in Chrome and records all server responses, enabling pre-
dictable replay.

For macro-benchmarks we use the official real-world web-
site benchmark sets of Chrome that mimics common inter-
actions like scrolling, social network browsing, news web-
site browsing, and media website browsing. The used work-
loads with URLs and their workload definition can be found
in the Chrome’s repository [19]. We run the following ten
workloads: tumblr, cnn, flipboard, reddit, google-{1,2}, nytimes,
twitter-{1,2}, and discourse.
For JavaScript benchmarks we use locally patched ver-

sions of Octane 2.0 [20] and Speedometer 2.0 [31] to provide
tracing information which allows us to reason about garbage
collection pause times and memory consumption.

9.2 Metrics
We are interested in benchmarking garbage collection ef-
fectiveness, efficiency, latency, and managed heap memory
usage. For effectiveness and efficiency we measure cumula-
tive marking time on the main thread and all threads, respec-
tively. For latency we provide a minimummutator utilization
(MMU) metric [8]. MMU is the fraction of time of a given
time window size where the main thread was paused the
longest. We measured and compute window sizes from 1ms
to 1000ms. We present window sizes of 16.67ms and 50ms
as they represent the duration of one frame in a 60 frame-
per-second animation and the suggested response time in
Chrome’s RAIL model [28], respectively. A MMU equal to 1
is the best possible result and an MMU equal to 0 is the worst
possible result. Memory is measured by collecting periodic
samples of the dirty memory size of the renderer process.

We run each benchmark for each marking configuration
ten times, retrieving ten samples per metric. I is the base-
line and we compare the other configurations with it using
Wilcoxon rank sum test [23]. We report results with the 95%
confidence intervals.
A result is not statistically significant (colored in grey) if

the confidence intervals include the data point 1.0 (0.0 for
non-normalized comparisons). Confidence intervals strictly
above or below 1.0 (0.0 for non-normalized comparisons)
represent statistically significant regressions (colored in dark
grey) or improvements (colored in white), respectively.

9.3 Results
Figure 15 compares normalized cumulative marking time on
the main thread with I. All concurrent configurations (N, S,
LW, LP) improve over the existing baseline on all measured
benchmarks, ranging from around 35% on reddit to 100%
improvement on tumblr. The differences between concur-
rent configurations are not significant.

Figure 16 compares normalized cumulative marking time
on all threads (main and background) with I. All concurrent
configurations spend more time on marking objects, which is
expected as that shows the synchronization overhead of the
concurrent algorithms. The main result is that S is more effi-
cient than LW which is more efficient than LP. The provided
wait-freedom of S seems to pay off. The configuration S is on
par with N showing that the overhead of the snapshot-based
marking algorithm is negligible.

Note that Figure 15 and 16 shows that optimizing for per-
formance on the main thread comes with a synchronization
cost that increases cumulative marking time on all threads.
For virtual machines with a single-threaded mutator like V8,
reducing garbage collection time on the main thread has the
highest priority as it directly affects user experience.
Figure 17 compares normalized renderer memory con-

sumption with I. The measurements include managed mem-
ory (JavaScript/DOM objects) as well as unmanaged memory
(bookkeeping memory, markbits, lockbits, etc). We want to
evaluate whether any algorithm is susceptible to producing
floating garbage. Specifically, one may expect that configu-
ration S produces more floating garbage as it marks objects
black during unsafe shape changes. The benchmark shows
that, depending on the workload, configuration S reduces
memory consumption in 7 out of 12 workloads and is neutral
for the remaining 5 workloads. This is due to faster marking
progress that reduces other sources of floating garbage such
as objects marked black conservatively in the write barrier.
For MMU we report non-normalized comparisons with

I to avoid showing potentially misleading improvements
for smaller absolute values of MMU. We therefore report in
Figure 20 the absolute values of MMU for I. As shown in in
Figure 18 and Figure 19, all concurrent configurations (S, LW,
LP) improve over I. For the 16.67ms time window the larger
improvement observed is about 50% for S on google-1. For

99



ISMM ’19, June 23, 2019, Phoenix, AZ, USA Degenbaev, Lippautz, and Payer

tumblr cnn flipboard nytimes reddit google−1 google−2 twitter−1 twitter−2 discourse octane speedometer

N S LW LP N S LW LP N S LW LP N S LW LP N S LW LP N S LW LP N S LW LP N S LW LP N S LW LP N S LW LP N S LW LP N S LW LP

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

C
o
m

p
a
ri

s
o
n
 t
o
 b

a
s
e
lin

e
 (

lo
w

e
r 

is
 b

e
tt
e
r)

Figure 15. Cumulative marking time per garbage collection cycle on the main thread compared to the I baseline.

tumblr cnn flipboard nytimes reddit google−1 google−2 twitter−1 twitter−2 discourse octane speedometer

N S LW LP N S LW LP N S LW LP N S LW LP N S LW LP N S LW LP N S LW LP N S LW LP N S LW LP N S LW LP N S LW LP N S LW LP

0.0

0.5

1.0

1.5

2.0

2.5

3.0

C
o
m

p
a
ri

s
o
n
 t
o
 b

a
s
e
lin

e
 (

lo
w

e
r 

is
 b

e
tt
e
r)

Figure 16. Cumulative marking time per garbage collection cycle on all threads compared to the I baseline.

tumblr cnn flipboard nytimes reddit google−1 google−2 twitter−1 twitter−2 discourse octane speedometer

N S LW LP N S LW LP N S LW LP N S LW LP N S LW LP N S LW LP N S LW LP N S LW LP N S LW LP N S LW LP N S LW LP N S LW LP

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

C
o
m

p
a
ri

s
o
n
 t
o
 b

a
s
e
lin

e
 (

lo
w

e
r 

is
 b

e
tt
e
r)

Figure 17. Average renderer memory consumption compared to the I baseline.

tumblr cnn flipboard nytimes reddit google−1 google−2 twitter−1 twitter−2 discourse octane speedometer

N S LW LP N S LW LP N S LW LP N S LW LP N S LW LP N S LW LP N S LW LP N S LW LP N S LW LP N S LW LP N S LW LP N S LW LP

−1.0
−0.8
−0.6
−0.4
−0.2

0.0
0.2
0.4
0.6
0.8
1.0

C
o
m

p
a
ri

s
o
n
 t
o
 b

a
s
e
lin

e
 (

h
ig

h
e
r 

is
 b

e
tt
e
r)

Figure 18. Difference in MMU between a configuration and the I baseline with 16.67ms time window.

tumblr cnn flipboard nytimes reddit google−1 google−2 twitter−1 twitter−2 discourse octane speedometer

N S LW LP N S LW LP N S LW LP N S LW LP N S LW LP N S LW LP N S LW LP N S LW LP N S LW LP N S LW LP N S LW LP N S LW LP

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

C
o
m

p
a
ri

s
o
n
 t
o
 b

a
s
e
lin

e
 (

h
ig

h
e
r 

is
 b

e
tt
e
r)

Figure 19. Difference in MMU between a configuration and the I baseline with 50ms time window.

100



Concurrent Marking of Shape-Changing Objects ISMM ’19, June 23, 2019, Phoenix, AZ, USA

0.0

0.1

0.2

0.3

0.4

0.5

0.6

tumblr
cnn

flip
board

nytim
es

reddit

google−1

google−2

tw
itte

r−1

tw
itte

r−2

discourse

octane

speedometer

M
u

ta
to

r 
u

ti
liz

a
ti
o

n
 (

h
ig

h
e

r 
is

 b
e

tt
e

r)

(a) 16.67ms time window

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

tumblr
cnn

flip
board

nytim
es

reddit

google−1

google−2

tw
itte

r−1

tw
itte

r−2

discourse

octane

speedometer

M
u

ta
to

r 
u

ti
liz

a
ti
o

n
 (

h
ig

h
e

r 
is

 b
e

tt
e

r)

(b) 50ms time window

Figure 20. MMU of the I baseline for a given time window.

octane speedometer

N S LW LP N S LW LP

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1

C
o
m

p
a
ri

s
o
n
 t
o
 b

a
s
e
lin

e
 (

h
ig

h
e
r 

is
 b

e
tt
e
r)

Figure 21. Total scores of Octane 2.0 and Speedometer 2.0
compared to the I baseline.

the 50ms time window all configurations provide similar im-
provements of up to 60% on e.g. twitter-2. Some pages did
not improve because MMU is dominated by the main pause
that also performs time-intensive tasks like compaction.

The JavaScript benchmark scores of Octane and Speedome-
ter, are depicted in Figure 21. The total scores (averaged) for
Octane are 27016 for I, 27316 for N, 28995 for S, 28857 for
LW, and 28788 for LP. The snapshot-based version S shows
the best performance with around 7% improvement on to-
tal score. Interestingly, I and N show similar performance.
Hence plain concurrent marking and optimizations with un-
safe object shape changes have similar impact on throughput
in V8. Similar are the results for Speedometer, with the total
scores (averaged): 126 for I, 124 for N, 129 for S, 133 for LW,
and 131 for LP. The main difference is that the lock-based
versions LW and LP provide the highest score followed by
S. The highest scores are achieved by configurations that
perform optimizations with unsafe shape changes and con-
current marking (S, LW, LP).

10 Conclusion
In this paper we discussed different object shape changing
operations and classified them as safe and unsafe for con-
current marking. We showed that safe shape changes can be
handled by traditional concurrent marking algorithms. To
handle unsafe shape changes, we introduced a lock-based al-
gorithm and a wait-free snapshotting algorithm, which is en-
abled by default in Chrome since version 64. We proved key
garbage collection invariants of our algorithms and demon-
strated the feasibility of our design by building it into the V8
JavaScript virtual machine where we showed performance
improvements across various JavaScript benchmark suites
and real-world macro-benchmarks.
This paper should make virtual machine implementers

aware of object shape changes. While avoiding shape
changes may result in reduced sequential performance, it
enables simpler runtime and garbage collection implemen-
tations. Virtual machine implementers striving for high
performance can use our wait-free snapshotting and lock-
based concurrent marking algorithms to handle object shape
changes efficiently with low synchronization overhead.

Acknowledgments
We would like to thank Ben L. Titzer for valuable feedback.

References
[1] Yehuda Afek, Hagit Attiya, Danny Dolev, Eli Gafni, Michael Merritt,

and Nir Shavit. 1993. Atomic Snapshots of Shared Memory. J. ACM
40, 4 (Sept. 1993), 873–890. https://doi.org/10.1145/153724.153741

[2] Wonsun Ahn, Jiho Choi, Thomas Shull, María J. Garzarán, and Josep
Torrellas. 2014. Improving JavaScript Performance by Deconstructing
the Type System. In Proceedings of the 35th ACM SIGPLAN Conference
on Programming Language Design and Implementation (PLDI ’14). ACM,
New York, NY, USA, 496–507. https://doi.org/10.1145/2594291.2594332

[3] Android. 2018. Android 8.0 ART Improvements. Retrieved No-
vember 3, 2018 from https://source.android.com/devices/tech/dalvik/
improvements

[4] Henry G. Baker, Jr. 1978. List Processing in Real Time on a Serial
Computer. Commun. ACM 21, 4 (April 1978), 280–294. https://doi.
org/10.1145/359460.359470

[5] Mark Batty, Scott Owens, Susmit Sarkar, Peter Sewell, and Tjark We-
ber. 2011. Mathematizing C++ Concurrency. In Proceedings of the
38th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages (POPL ’11). ACM, New York, NY, USA, 55–66.
https://doi.org/10.1145/1926385.1926394

[6] Hans-J. Boehm and Sarita V. Adve. 2008. Foundations of the C++
Concurrency Memory Model. In Proceedings of the 29th ACM SIG-
PLAN Conference on Programming Language Design and Implementa-
tion (PLDI ’08). ACM, New York, NY, USA, 68–78. https://doi.org/10.
1145/1375581.1375591

[7] C. J. Cheney. 1970. A Nonrecursive List Compacting Algorithm. Com-
mun. ACM 13, 11 (Nov. 1970), 677–678. https://doi.org/10.1145/362790.
362798

[8] Perry Cheng and Guy E. Blelloch. 2001. A Parallel, Real-time Garbage
Collector. In Proceedings of the ACM SIGPLAN 2001 Conference on
Programming Language Design and Implementation (PLDI ’01). ACM,
New York, NY, USA, 125–136. https://doi.org/10.1145/378795.378823

101

https://doi.org/10.1145/153724.153741
https://doi.org/10.1145/2594291.2594332
https://source.android.com/devices/tech/dalvik/improvements
https://source.android.com/devices/tech/dalvik/improvements
https://doi.org/10.1145/359460.359470
https://doi.org/10.1145/359460.359470
https://doi.org/10.1145/1926385.1926394
https://doi.org/10.1145/1375581.1375591
https://doi.org/10.1145/1375581.1375591
https://doi.org/10.1145/362790.362798
https://doi.org/10.1145/362790.362798
https://doi.org/10.1145/378795.378823


ISMM ’19, June 23, 2019, Phoenix, AZ, USA Degenbaev, Lippautz, and Payer

[9] Daniel Clifford, Hannes Payer, Michael Stanton, and Ben L. Titzer.
2015. Memento Mori: Dynamic Allocation-site-based Optimizations.
In Proceedings of the 2015 International Symposium on Memory Man-
agement (ISMM ’15). ACM, New York, NY, USA, 105–117. https:
//doi.org/10.1145/2754169.2754181

[10] Daniel Clifford, Hannes Payer, Michael Starzinger, and Ben L. Titzer.
2014. Allocation Folding Based on Dominance. In Proceedings of the
2014 International Symposium on Memory Management (ISMM ’14).
ACM, New York, NY, USA, 15–24. https://doi.org/10.1145/2602988.
2602994

[11] Nachshon Cohen, Arie Tal, and Erez Petrank. 2017. Layout Lock: A
Scalable Locking Paradigm for Concurrent Data Layout Modifications.
In Proceedings of the 22Nd ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming (PPoPP ’17). ACM, New York, NY,
USA, 17–29. https://doi.org/10.1145/3018743.3018753

[12] Benoit Daloze, Arie Tal, Stefan Marr, Hanspeter Mössenböck, and Erez
Petrank. 2018. Parallelization of Dynamic Languages: Synchronizing
Built-in Collections. Proc. ACM Program. Lang. 2, OOPSLA, Article
108 (Oct. 2018), 30 pages. https://doi.org/10.1145/3276478

[13] Ulan Degenbaev, Jochen Eisinger, Manfred Ernst, Ross McIlroy, and
Hannes Payer. 2016. Idle Time Garbage Collection Scheduling. In
Proceedings of the 37th ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI ’16). ACM, New York, NY,
USA, 570–583. https://doi.org/10.1145/2908080.2908106

[14] Ulan Degenbaev, Jochen Eisinger, Kentaro Hara, Marcel Hlopko,
Michael Lippautz, and Hannes Payer. 2018. Cross-component Garbage
Collection. Proc. ACM Program. Lang. 2, OOPSLA, Article 151 (Oct.
2018), 24 pages. https://doi.org/10.1145/3276521

[15] David Detlefs, Christine Flood, Steve Heller, and Tony Printezis. 2004.
Garbage-first Garbage Collection. In Proceedings of the 4th International
Symposium on Memory Management (ISMM ’04). ACM, New York, NY,
USA, 37–48. https://doi.org/10.1145/1029873.1029879

[16] Edsger W. Dijkstra, Leslie Lamport, A. J. Martin, C. S. Scholten, and
E. F. M. Steffens. 1978. On-the-fly Garbage Collection: An Exercise
in Cooperation. Commun. ACM 21, 11 (Nov. 1978), 966–975. https:
//doi.org/10.1145/359642.359655

[17] MDN Web Docs. 2018. Garbage collection. Retrieved November 11,
2018 from https://developer.mozilla.org/en-US/docs/Mozilla/Projects/
SpiderMonkey/Internals/Garbage_collection

[18] Google. 2018. Catapult. Retrieved November 10, 2018 from https:
//github.com/catapult-project/catapult

[19] Google. 2018. Chrome Benchmarks. Retrieved November 10, 2018
from https://chromium.googlesource.com/chromium/src/+/master/
tools/perf/benchmarks

[20] Google. 2018. Octane benchmark. Retrieved November 10, 2018 from
https://chromium.github.io/octane

[21] Andreas Haas, Andreas Rossberg, Derek L. Schuff, Ben L. Titzer,
Michael Holman, Dan Gohman, Luke Wagner, Alon Zakai, and JF

Bastien. 2017. Bringing the Web Up to Speed with WebAssembly. In
Proceedings of the 38th ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI 2017). ACM, New York,
NY, USA, 185–200. https://doi.org/10.1145/3062341.3062363

[22] Maurice Herlihy. 1991. Wait-free Synchronization. ACM Trans. Pro-
gram. Lang. Syst. 13, 1 (Jan. 1991), 124–149. https://doi.org/10.1145/
114005.102808

[23] Myles Hollander, Douglas A. Wolfe, and Eric Chicken. 2013. Nonpara-
metric statistical methods. John Wiley & Sons, Hoboken, NJ, USA.

[24] Richard L. Hudson. 2018. Getting to Go: The Journey of Go’s Garbage
Collector. Retrieved November 3, 2018 from https://blog.golang.org/
ismmkeynote

[25] Richard L. Hudson and Austin Clements. 2016. Proposal: Eliminate
STW stack re-scanning. Retrieved November 3, 2018 from https:
//gist.github.com/aclements/4b5e2758310032dbdb030d7648b5ab32

[26] Richard L. Hudson and J. Eliot B. Moss. 2001. Sapphire: Copying GC
Without Stopping the World. In Proceedings of the 2001 Joint ACM-
ISCOPE Conference on Java Grande (JGI ’01). ACM, New York, NY, USA,
48–57. https://doi.org/10.1145/376656.376810

[27] Richard Jones, Antony Hosking, and Eliot Moss. 2016. The Garbage
Collection Handbook: The Art of Automatic Memory Management. CRC
Press.

[28] Meggin Kearney, Addy Osmani, Kayce Basques, and Jason Miller. 2018.
Measure Performance with the RAIL Model. Retrieved Novem-
ber 10, 2018 from https://developers.google.com/web/fundamentals/
performance/rail

[29] Mozilla. 2018. Bug tracker. Retrieved November 10, 2018 from
https://bugzilla.mozilla.org/show_bug.cgi?id=1364346

[30] Mozilla. 2018. Bug tracker. Retrieved November 10, 2018 from
https://bugzilla.mozilla.org/show_bug.cgi?id=1348772

[31] Addy Osmani, Mathias Bynens, and Ryosuke Niwa. 2018. Speedometer
2.0. Retrieved November 10, 2018 from https://webkit.org/blog/8063/
speedometer-2-0-a-benchmark-for-modern-web-app-responsiveness/

[32] Filip Pizlo. 2017. Introducing Riptide: WebKit’s Retreating Wavefront
Concurrent Garbage Collector. Retrieved November 11, 2018 from
https://webkit.org/blog/7122

[33] Yaron Riany, Nir Shavit, and Dan Touitou. 2001. Towards a practical
snapshot algorithm. Theoretical Computer Science 269 (2001), 163–201.

[34] Gil Tene, Balaji Iyengar, and Michael Wolf. 2011. C4: The Continuously
Concurrent Compacting Collector. In Proceedings of the International
Symposium on Memory Management (ISMM ’11). ACM, New York, NY,
USA, 79–88. https://doi.org/10.1145/1993478.1993491

[35] Taiichi Yuasa. 1990. Real-time Garbage Collection on General-purpose
Machines. Journal of Systems and Software 11, 3 (March 1990), 181–198.
https://doi.org/10.1016/0164-1212(90)90084-Y

[36] Limin Zhu. 2017. ChakraCore: Architecture Overview. Retrieved
November 11, 2018 from https://github.com/Microsoft/ChakraCore/
wiki/Architecture-Overview

102

https://doi.org/10.1145/2754169.2754181
https://doi.org/10.1145/2754169.2754181
https://doi.org/10.1145/2602988.2602994
https://doi.org/10.1145/2602988.2602994
https://doi.org/10.1145/3018743.3018753
https://doi.org/10.1145/3276478
https://doi.org/10.1145/2908080.2908106
https://doi.org/10.1145/3276521
https://doi.org/10.1145/1029873.1029879
https://doi.org/10.1145/359642.359655
https://doi.org/10.1145/359642.359655
https://developer.mozilla.org/en-US/docs/Mozilla/Projects/SpiderMonkey/Internals/Garbage_collection
https://developer.mozilla.org/en-US/docs/Mozilla/Projects/SpiderMonkey/Internals/Garbage_collection
https://github.com/catapult-project/catapult
https://github.com/catapult-project/catapult
https://chromium.googlesource.com/chromium/src/+/master/tools/perf/benchmarks
https://chromium.googlesource.com/chromium/src/+/master/tools/perf/benchmarks
https://chromium.github.io/octane
https://doi.org/10.1145/3062341.3062363
https://doi.org/10.1145/114005.102808
https://doi.org/10.1145/114005.102808
https://blog.golang.org/ismmkeynote
https://blog.golang.org/ismmkeynote
https://gist.github.com/aclements/4b5e2758310032dbdb030d7648b5ab32
https://gist.github.com/aclements/4b5e2758310032dbdb030d7648b5ab32
https://doi.org/10.1145/376656.376810
https://developers.google.com/web/fundamentals/performance/rail
https://developers.google.com/web/fundamentals/performance/rail
https://bugzilla.mozilla.org/show_bug.cgi?id=1364346
https://bugzilla.mozilla.org/show_bug.cgi?id=1348772
https://webkit.org/blog/8063/speedometer-2-0-a-benchmark-for-modern-web-app-responsiveness/
https://webkit.org/blog/8063/speedometer-2-0-a-benchmark-for-modern-web-app-responsiveness/
https://webkit.org/blog/7122
https://doi.org/10.1145/1993478.1993491
https://doi.org/10.1016/0164-1212(90)90084-Y
https://github.com/Microsoft/ChakraCore/wiki/Architecture-Overview
https://github.com/Microsoft/ChakraCore/wiki/Architecture-Overview

	Abstract
	1 Introduction
	2 V8 Overview
	2.1 Object Representation and Optimizations
	2.2 Garbage Collection

	3 Notation and Memory Model
	4 Basic Marker and Mutator Operations
	4.1 Draining Marking Worklist
	4.2 Following References
	4.3 Write Barrier

	5 Object Shape Changes
	5.1 Safe and Unsafe Shape Changes

	6 Snapshotting Algorithm
	6.1 Optimized Array Snapshot

	7 Lock-based Algorithm
	8 Related Work
	9 Evaluation
	9.1 Benchmarking Setup
	9.2 Metrics
	9.3 Results

	10 Conclusion
	Acknowledgments
	References

