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Abstract
Cross-Module Optimization (CMO) is an effective means
for improving runtime performance, by extending the scope
of optimizations across source module boundaries. Two
CMO approaches are Link-Time Optimization (LTO) and
Lightweight Inter-Procedural Optimization (LIPO). How-
ever, each of these solutions has limitations that prevent it
from being enabled by default. ThinLTO is a new approach
that attempts to address these limitations, with a goal of
being enabled more broadly. ThinLTO aims to be as scal-
able as a regular non-LTO build, enabling CMO on large
applications and machines without large memory configura-
tions, while also integrating well with distributed and incre-
mental build systems. This is achieved through fast purely
summary-based Whole-Program Analysis (WPA), the only
serial step, without reading or writing the program’s Inter-
mediate Representation (IR). Instead, CMO is applied dur-
ing fully parallel optimization backends.

This paper describes the motivation behind ThinLTO,
its overall design, and current implementation in LLVM.
Results from SPEC cpu2006 benchmarks and several large
real-world applications illustrate that ThinLTO can scale as
well as a non-LTO build while enabling most of the CMO
performed with a full LTO build.

Categories and Subject Descriptors D.3.4 [Processors]:
Compilers; D.3.4 [Processors]: Incremental compilers;
D.3.4 [Processors]: Optimization

Keywords Inter-procedural, Cross-module, Optimization,
Link-Time Optimization

1. Introduction
Compilers normally operate on a single translation unit at
a time. Each translation unit, which includes a single source
file and its expanded headers, is compiled into a single native
object file, and ultimately the linker combines multiple ob-
ject files into a resulting binary or library. Optimizations are
optionally applied within each translation unit (or module)
during the compilation, at both the function scope and the
module scope. The latter is referred to as Inter-Procedural
Optimization (IPO). Function inlining [7][6] is a key IPO.
However, normally a callee can only be inlined into its caller
if they are defined in the same module.

In order to achieve larger benefits from IPO, the compi-
lation scope can be increased to include multiple modules,
thus enabling CMO. When the scope includes all modules
being linked into an executable, WPA enables more aggres-
sive optimizations that rely on visibility into all symbol def-
initions and uses. For example, Hall’s dissertation [11] de-
scribes a mechanism for constructing a full call graph of
the program, on which IPO decisions are made, with the re-
sults applied on the program representation before contin-
uing with compilation. However, this broader optimization
scope comes at both a memory and build time cost, lim-
iting its scalability. The memory footprint is impacted by
the larger in-memory data required to hold multiple mod-
ules’ IR and analyses data. The build time cost is both due to
the reduced available parallelism in the build process, as the
modules are no longer compiled independently, and also be-
cause some algorithms scale non-linearly with the increased
scope. Different approaches to CMO vary in how they com-
bine multiple modules for analyses and optimizations, some-
times using summaries and partitioning to limit the memory
and runtime cost.

One common mechanism for enabling CMO is through
the use of LTO. While some implementations rely on binary
decompilation [19, 20, 27], most production compiler im-
plementations currently emit IR instead of object files. These
object files are then fed to the linker, which invokes the com-
piler to perform the Inter-Procedural Analysis (IPA) and sub-
sequent IPO, followed by other optimizations, and finally the
code generation of the native executable. However, the CMO
is usually performed across all modules in a serial step. In
some implementations, though, the function level optimiza-
tions and code generation are subsequently performed in par-
allel.

The LLVM [23] [14] compiler implements monolithic
LTO, which does all IPO compilation in serial. All modules
are combined into a single monolithic module on which IPO
is applied. However, there is support for parallel code gener-
ation, where the combined module is split into chunks after
optimization. The first LTO implementation in the HP-UX
compiler [3] was also operating on multiple files as a mono-
lithic unit. It includes an advanced mechanism to limit the
memory usage by loading only the IR needed for a transfor-
mation and reserializing to disk in between. While allowing
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large applications to build on a workstation, it does not per-
form very well and is bound by the intensive I/O operations.
The SYZYGY [18] high-level optimizer replaces it in the
HP-UX Itanium compiler, making summary based inlining
and other IPO decisions. However, inlining still occurs in se-
rial, and the implementation requires multiple rewrites of the
IR before parallelizing the back-end compilation. Similarly,
the Open64 [2] (and related Open Research Compiler [13])
IPA implementation makes summary based decisions, but
also rewrites the IR before launching parallel backends. In
the GCC [8] compiler’s LTO implementation (WHOPR) [9],
IPA and inlining decisions are made in serial, operating on
summaries built after reading the IR. The actual inlining
transformations are done with some level of parallelization
after dividing the call graph into multiple partitions. The im-
plementation requires additional extensive I/O in the serial
step to clone function bodies across partition boundaries.

All of these implementations require a serial IPA/IPO
step that is both memory intensive and slow, as will be
shown in Section 8.2, limiting usability on either smaller
workstations or large applications. This is particularly true
with debug information, which requires significantly more
time and memory to represent and link. Additionally, fast
incremental rebuilds are not possible in this model, since
any change requires performing this expensive IPA/IPO step
again. The Microsoft Visual Studio 2015 release includes
support for incremental LTO [17], however, the very limited
information available suggests that this is done by updating
the binary with new versions of functions affected by the
new IPA, and that the results are not the same as with a clean
rebuild.

LIPO [15][16], which is implemented on GCC’s Google
branch, was designed to overcome the need for a serial linker
plugin step. LIPO is tightly coupled with Feedback-Directed
Optimization (FDO). It leverages the training run step of
FDO to perform full program analyses at runtime (dynamic
IPA). The implementation does a coarse-grain inlining anal-
ysis on the dynamic call graph built from call profiles at the
end of the profile training run. That analysis identifies for
each module a set of auxiliary modules containing its hot
callees. In the profile-use build, each primary module is built
independently, but is extended to include all of its auxiliary
modules during parsing. LIPO scales much better than LTO,
and works naturally with distributed build systems. How-
ever, it has several limitations, including its requirement for
profiling, and a coarse-grain module grouping which leads
to memory overhead. It also requires extensive changes in
the language frontend and does not support cross language
CMO since auxiliary modules are included in the frontend.

As described above, both LTO and LIPO have their own
limitations and are not suitable for out of the box/general
use. On the other hand, ThinLTO is designed to scale like
a non-LTO build, enabling CMO on machines without large
memory configurations, while retaining most of the perfor-

mance achievement of LTO. It is also designed to integrate
well with distributed build systems, and allows fast and sta-
ble incremental builds.

The ThinLTO serial phase in the linker plugin is designed
to be thin and fast. ThinLTO exclusively utilizes compact
summaries of each module for global analyses in the serial
link step, without loading or writing any program IR. IPO
transformations are performed later when the modules are
optimized in fully parallel backends. A novel function im-
porting transformation, made possible by the summary in-
dex built during the serial step, enables the inlining benefits
provided by CMO.

While LIPO makes module grouping decisions at pro-
file training runtime, ThinLTO only makes decisions at
link time, with optional use of profile feedback. Unlike
the coarse-grained LIPO module groups or WHOPR par-
titions, during the ThinLTO parallel backend phase every
module imports just those functions useful for CMO. This
finer-grained grouping minimizes the memory overhead, and
maximizes the available parallelism.

We evaluate the performance of ThinLTO on the SPEC
benchmark suite and show how it obtains almost all of the
gain achieved through more expensive traditional LTO. Us-
ing three large real-world applications, we also demonstrate
how ThinLTO scales much better than the LTO implementa-
tions in GCC and LLVM.

The rest of the paper is organized as follows. Section 2
describes the overall design of ThinLTO. Section 3 describes
incremental build support. Section 4 describes the function
importing transformation that enables cross-module inlining
and indirect call promotion, and Section 5 describes other
currently implemented summary-based Whole-Program Op-
timization (WPO). Section 6 describes distributed build sys-
tem integration. Section 7 provides some details on the
LLVM implementation, and experimental results are pre-
sented and discussed in Section 8. Finally, Sections 9 and 10
describe future directions and conclusions, respectively.

2. ThinLTO Design
The ThinLTO process is divided into 3 phases, illustrated in
Figure 1:

1. Compile: Generate IR as with LTO mode, but extended
with module summaries.

2. Thin link: Thin linker plugin layer to combine summaries
and perform global analyses.

3. ThinLTO backend: Parallel backends with summary-
based importing and optimizations.

These phases are detailed in the following subsections.

2.1 Compile Phase: Summary Emission
The first (compile) phase is similar to a traditional LTO
compile step. The frontend is invoked to translate each input
source file into an intermediate file containing IR, after some
early optimizations (mostly for size reduction). However,

112



Figure 1: ThinLTO Overview

with ThinLTO an additional summary section is included
in each file. In LLVM this conversion to IR and summary
generation are performed in the middle end, so the frontend
only needs to pass through the options. As a result, ThinLTO
supports cross-language CMO, since it operates exclusively
on IR.

This summary is the cornerstone of the ThinLTO design.
It is emitted for each module into the object file containing
its IR. These summary sections are designed so that they can
be separately loaded without any expensive construction.
Each global variable and function has an entry in the module
summary. An entry contains metadata to drive the thin link
global analyses. Currently, a function entry contains the link-
age type, the number of instructions, optional Profile-Guided
Optimization (PGO) [4] information, and some flags. The
format is intended to be extended as needed. Additionally,
every reference (address taken, load/store) and call (direct
call targets, or indirect call targets discovered in value pro-
file information) are recorded. Calls are optionally decorated
with the PGO hotness, later used by global analyses (see
Section 7.2).

2.2 Thin Link Phase
The second (thin link) phase is the only serial step in the
ThinLTO scheme. Even though it is not a requirement, it
would usually be implemented as a linker plugin to insert
transparently in existing build systems. Also some analyses
are more accurate when this phase is fed with extra infor-
mation from the linker. This phase starts by reading just the
summary sections from the IR files, and simply aggregating

them into a single combined summary index. The reference
and call edges recorded in each module’s summary together
model an accurate reference and call graph for the program.
The IR itself is not parsed.

A key aspect of the ThinLTO model is that CMO must be
split into two parts:

1. Analysis: This part is performed in the thin link serial
phase and operates over the reference graph. To keep
the thin link as fast as possible, only the summaries are
available for the analysis. This avoids parsing and loading
any IR in memory.

2. Transformation: This is performed during the parallel
backends phase. It will use the result of the WPA to apply
transformations on the IR.

This split model is key for ThinLTO high-scalability. An
important example of such an optimization is the function
importing transformation, which will be detailed in Sec-
tion 4. Section 5 describes the implementation of additional
global analyses and optimizations.

Additionally, the combined index is augmented to con-
tain a module path symbol table, which identifies for each
symbol the path to each IR file that defines it. In cases where
a symbol with weak linkage or in a COMDAT [12] section
has definitions in multiple modules, multiple summary en-
tries may correspond to the same identifier. As described in
Section 5.2, the linker can help identify prevailing copies of
these symbols. Finally, to disambiguate local symbols from
other local or global symbols with the same name, each local
symbol is given a unique but deterministic global identifier
in the index, formed by appending its defining module’s path
to the original name.

2.3 ThinLTO Backends
The third (ThinLTO backend) phase performs the backend
compilation from IR to native code for each module in par-
allel, using the results of the earlier summary based analyses
computed during the thin link phase. These results are used
to perform the actual transformations independently for each
module.

By default, linkers are setup to launch the ThinLTO
threads in parallel from the linker process via a thread pool.
So the distinction between the second and third phases is
transparent to the user. Section 6 will show how a distributed
build system would instead execute the backends indepen-
dently on different remote build machines.

3. Incremental Builds
During software development, engineers rely on the build
system’s ability to re-compile the minimum amount of files.
The widely used make uses explicit dependency tracking and
timestamp comparisons to achieve this.

However, even modifying a single source file will always
re-trigger the link step to produce the final binary. Unfor-
tunately, with monolithic LTO, this final link step usually
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dominates the total build time, annihilating the usually fast
incremental build and limiting the use of LTO in practice.

ThinLTO is designed to integrate with incremental build
systems. To this end, the process includes the following:

1. At the end of the first phase, while emitting the IR file,
the content is hashed and the result is appended to the
file. Section 7.1 details the serialization of the hash.

2. During the third phase (ThinLTO backend), the input IR
file hash is combined with the analyses results from the
second phase (thin link) to produce a new hash. This hash
is used as a key to perform a cache lookup. The cache can
be implemented on disk in a directory, where files are
named with the key. On a cache hit, the backend loads
the entry from the cache and returns it. On a cache miss
the optimizations and code generation must proceed, and
the resulting object file is committed to the cache before
being returned to the linker.

This scheme is relatively coarse grain, since it operates at
the module level even if a single function is modified. How-
ever it naturally fits into LLVM, and provides the guarantee
that the final binary is the same whether an incremental build
was involved or not. Note that the hash computed for each
module’s IR reflects any changes to command-line options
or profile data affecting its generated code.

For a distributed build, the global analyses results relevant
to each module will be serialized out (see Section 6). A
backend job only needs to be scheduled if its IR file or
analysis results change.

Section 8.3 shows how effective this scheme is in prac-
tice, allowing use of ThinLTO during incremental develop-
ment.

4. Function Importing
The key transformation enabled by ThinLTO global analyses
is function importing, in which only those external functions
deemed likely to be inlined are imported into each mod-
ule. This minimizes the memory overhead in each ThinLTO
backend, while maximizing the most impactful CMO op-
portunity: inlining. The IPO transformations are therefore
performed on each module extended with its imported func-
tions. As introduced in Section 2.2, this optimization is split
into two parts: an analysis that is performed purely over the
summaries during the second phase (thin link), and a trans-
formation during the third phase (ThinLTO backend) where
the IR is actually modified to perform the import. This sec-
tion details these two parts and their implementation.

In the second phase (thin link), the merged call graph is
traversed to identify functions likely to benefit from import-
ing into each module. These are typically small hot functions
that are profitable to inline at their callsites. Each chain of
calls is followed until no profitable imports are found. The
profitability to import a function is controlled by a thresh-
old (currently on the function size). The threshold decays
as each call chain is traversed, as callees further away from

the original importing module are less likely to actually be
inlined into a function within the importing module.

Additionally, when making function importing decisions,
symbols referenced by imported functions will be marked
exported. This has implications for local symbols, as detailed
in Section 4.1, and on global optimizations such as internal-
ization, described later in Section 5.1.

During the third phase (ThinLTO backend), the module
being compiled imports the identified functions from their
defining module, using the paths in the combined index’s
module path symbol table. To reduce I/O, functions to be
imported from each module are batched, and each source
module is opened exactly once for each parallel backend
importing from it. Other strategies to reduce I/O overhead
are employed in our implementation, such as encoding in
each IR file a table of offsets into that file from where to
load the IR of each constituent function body.

The function importing transformation occurs very early
in each backend, so that inlining and other IPO can take
advantage of the extended module. The imported function
symbols are marked so that their definitions can be dropped
after IPO, preventing further compile time effects.

4.1 Promotion of Symbols with Local Linkage
When an imported function includes a reference to a local
symbol in the original module, that symbol must be pro-
moted to global scope so that it can be referenced from the
importing module. Additionally, in order to disambiguate
promoted locals from other promoted locals or a global with
the same name, the promoted symbol must be renamed.
However, the symbol will need to be renamed consistently in
multiple independent ThinLTO backend processes: the orig-
inal defining (exporting) module, and all modules importing
its reference. Therefore, the renaming scheme should apply
an identifier that is associated with the source module in the
combined summary index. We simply append the SHA-1
hash of the source module’s IR file, which is recorded in
the combined index as will be described in Section 7.1.

5. ThinLTO Cross-Module Optimizations
Besides function importing/inlining, other global analyses
and optimizations (including WPO) can be performed with
ThinLTO. As described in Section 2.2, these optimizations
are split into two parts. The first part is the index-based
global analysis, performed during the thin link phase, for
which the results are recorded in the index. The second
part is the transformation, which is applied independently
on the IR at the start of the ThinLTO backend, using the
information recorded in the index. This section describes
some of these global analyses and optimizations.

5.1 Internalization
In regular LTO, after all IR is merged into a single mono-
lithic module, the compiler has visibility into all symbol def-
initions and uses within the IR. Any symbol that does not
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need to be visible outside of the LTO merged module can be
internalized, meaning it is transformed from a global sym-
bol into a local one. In LLVM this is done by changing the
linkage type.

There are several advantages to internalization. The first
is that the symbol definition can be discarded by the com-
piler if there are no references, e.g. after inlining, result-
ing in a smaller resulting object file and binary. For exam-
ple LLVM is very likely to inline a local function that has a
single callsite, since the function can be discarded immedi-
ately afterward. Another advantage is that all uses of a sym-
bol are known, which can result in more accurate analyses
and more aggressive optimizations. Local functions are not
bound by the ABI: calling conventions can be adjusted at
will, unused function parameters can be removed. For local
variables, the compiler may conclude that the address is not
taken, enabling more accurate alias analyses.

In ThinLTO, we don’t have a single monolithic module on
which to perform internalization. Additionally, due to func-
tion importing, we will create new external references for
each module, as described earlier in Section 4. However, dur-
ing the second phase (thin link), using the reference graph
and the result of the function importing analysis, we flag
for internalization any global symbol that is only referenced
from within its defining module.

The amount of internalization that can be applied with
ThinLTO is inherently smaller than in regular LTO, since
keeping the modules separated induces cross-module refer-
ences. However, with linker dead stripping during the final
native object link, the resulting ThinLTO text size is nearly
the same as regular LTO, as will be shown in Section 8.5.

5.2 Weak Symbol Resolution
For symbols with weak linkage, the linker will keep one
prevailing copy, discarding the remaining preempted copies.
While it would be legal to emit all copies of weak symbols
in the ThinLTO backends, and let the final native object link
select one, we can reduce compile time through the backend
by marking the preempted copies for deletion after inlining.

Additionally, in LLVM there are two classes of weak link-
age [25]: weak linkage which means there may be a use out-
side of the module and the symbol definition is always emit-
ted into the native object, and linkonce linkage which means
that the symbol definition may be dropped during compila-
tion if there is no reference within that module (e.g. after
inlining). As a result, if there are any exported references of
a linkonce symbol, the prevailing copy must be promoted
to weak linkage to ensure that it is retained to satisfy any
exported references at link time.

5.3 Indirect Call Promotion
As will be described in Section 7.2.2, profiled references
from indirect callsites are recorded in the function summary.
During the thin link, potental indirect call targets that may
be promoted and further inlined are marked for importing

into the caller’s module. The actual indirect call promotion
transformation happens in the backend compilation phase.

6. Distributed Build Implications
To support distributed builds, the results of the global anal-
yses must be serialized out to disk. However, rather than
transfer the entire combined index for the application to
each remote build machine, for each module we can simply
emit a subset of the combined index containing results for
that module’s backend compilation. This subset includes the
summaries for the module’s own defined symbols as well the
functions it should import, along with a module path sym-
bol table entry for each module being imported from. This
communicates the importing decisions to the backend, along
with the results of the global analyses recorded in the index
as described in Section 5.

Additionally, for distributed build systems without a net-
work file system, the intermediate object files containing the
functions to import must be staged to the remote machine’s
local storage. To aid this process, the thin link phase is con-
figured to emit plain text lists of intermediate object files that
are additional inputs for each module’s backend invocation.

7. Implementation
ThinLTO is currently implemented in the upstream clang
and LLVM compiler [23]. To enable ThinLTO, simply add
the -flto=thin option to compile and link. E.g.

% clang -flto=thin -O2 file1.c file2.c -c

% clang -flto=thin -O2 file1.o file2.o

Currently, the gold, ld64 and lld linkers support ThinLTO
links of LLVM IR. By default the linker will launch the third
phase (ThinLTO backend) in parallel threads, passing the
resulting native object files back to the linker for the final
native link. As such, the usage model is the same as non-LTO
and no change to the existing build system is required. All
LLVM utilities support ThinLTO intermediate object files.

This section describes LLVM-specific aspects of the im-
plementation.

7.1 LLVM Bitcode Representation
When either regular LTO or ThinLTO is invoked for a
clang/LLVM compile step, the resulting object file contains
the LLVM IR encoded in the bitcode file format [24]. The
bitcode format is essentially a binary encoding of structured
data, organized as nested blocks containing data records.

7.1.1 Module Bitcode Files
For ThinLTO, the module bitcode files produced by the first
phase (compile) require two additions. First, the module
summary described in Section 2.1 is encoded in a new block
that can be easily read without parsing the rest of the IR.

Second, to support incremental relinks of the program, a
hash of the serialized bitcode is computed on the fly and the
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resulting SHA1 identifier is recorded in the file. Section 3
detailed the incremental build support.

7.1.2 Combined Index
The combined index created in the second phase (thin link)
can also be serialized out to a standalone bitcode file. While
the in-memory index is typically used when the backend
threads are launched from the linker, serializing it out is use-
ful for debugging, and also for the distributed build scheme
presented in Section 6.

The combined index described in Section 2.2 contains a
summary block aggregated from the individual module sum-
mary blocks, and a table of module paths. It also contains a
symbol table of global unique identifiers (GUID) for the val-
ues in the summary. The GUID is the MD5 hash of an identi-
fier formed from the original symbol name, with the source
file path appended for local values. This is not only more
compact than including the full symbol names, but also aids
integration with indirect call profiles, as will be described in
Section 7.2.2.

7.2 Integration with Profile Guided Optimization
(PGO)

While profile feedback is not required for ThinLTO, it is
complementary. The index is designed to integrate with pro-
file data when provided for PGO [4].

7.2.1 Direct Call Edge Profiles
As noted in Section 2.1, profile data is encoded in the sum-
mary: call edges can be marked hot or cold. This information
is propagated along with the rest of the summary information
into the combined summary index. It is used to help guide
function importing decisions, as will be shown in Section 8.

7.2.2 Indirect Call Profiles
Profile-based indirect call promotion [1] is an effective
technique not only for reducing the frequency of indirect
branches, but more importantly for enabling inlining of indi-
rect call targets that can’t be statically resolved. Indirect calls
are particularly prevalent in C++ due to virtual functions.
The LLVM compiler supports value profiling of indirect call
targets. On the subsequent PGO compile, hot indirect calls
with up to two frequent targets are transformed into a se-
ries of direct calls to those targets, guarded by target address
checks, and a fall-through indirect call.

In the LLVM implementation, the profile encodes the pro-
filed targets using a GUID which is the MD5 hash of the
original target callee name, with the source file appended
for local functions. The indirect call value profile data is at-
tached to indirect call instructions in the IR as metadata [25].
The indirect call promotion pass will use this metadata to
create the guarded direct calls for hot indirect calls.

Because the possible targets are identified by a hash of
their name, the transformation is only possible for target
functions available in the module (a mapping from hash to

function name is required). Also, most of the benefit from
indirect call promotion comes from being able to inline the
body of the new direct called functions. For monolithic LTO,
all the functions are available. For ThinLTO, the target func-
tions of indirect calls need to be made available through the
function importing transformation presented in Section 4.

When the module summary is being built during the first
phase (compile), indirect call value profile metadata attached
to indirect calls in the IR are translated into additional direct
call edges to each associated GUID. Note that this GUID is
the same global identifier used for symbols in the combined
index, as described in Section 7.1.2. The combined index
will include GUID-indexed summaries for any profiled tar-
gets that are defined in the application’s IR. These profile-
based indirect call edges look exactly the same as direct
call edges, and are therefore imported in the same way. The
subsequent indirect call promotion pass in the third phase
(ThinLTO backend) will be able to promote any profiled in-
direct call target definition that was imported to the module,
which can then be inlined into the new direct call.

8. Performance Evaluation
Using the clang/LLVM (v4.0), and GCC (v7.0) compil-
ers built from recent (August 2016) upstream development
sources, we collected a variety of runtime performance and
build statistics for ThinLTO and regular LTO. We compare
against GCC as it has a well-tuned and documented open-
source LTO implementation.

Unless stated otherwise, ThinLTO is configured to only
import called external functions that have less than 100 in-
structions recorded in the summary for that callee. Addition-
ally, as described in Section 4, the instruction threshold de-
cays as the call chain is traversed. The default decay factor
is 0.7 (so the callees of the first level of imported functions
have an instruction limit of 70, and so on). When PGO data
is available, edges marked hot as described in Section 7.2.1
are given a higher limit of 300 instructions and a decay factor
of 1.0.

8.1 Runtime Performance
Performance results were collected for the C/C++ SPEC
cpu2006 benchmarks on an 8-core 2.6GHz Intel Xeon E5-
2689. The benchmarks were built with LLVM in three differ-
ent configurations: plain -O2, LTO -O2, and ThinLTO -O2.
Each benchmark was run in isolation five times, and results
are shown for the average of three runs after discarding the
highest and lowest result.

Figure 2a shows the results when compiling without
PGO. While tuning is still in progress, ThinLTO already
performs well compared to LTO, in many cases matching
its performance. In a few cases ThinLTO even outperforms
LTO, which is possible because the reduced scalability of
LTO requires use of a slightly less aggressive optimization
pipeline than either non-LTO or ThinLTO.
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(a) Without Profile-Guided Optimization (PGO). (b) With Profile-Guided Optimization (PGO).

Figure 2: SPEC cpu2006 Performance Improvement over -O2 (No LTO) for ThinLTO and LTO.

Functions Imported Modules Imported
Per Module From Per Module Total

Benchmark Avg Max Inlined Avg Max Modules
444.namd 1.27 8 42.86% 0.82 5 11
447.dealII 7.59 81 86.02% 5.52 25 108
450.soplex 6.29 32 47.12% 3.47 18 63
453.povray 19.38 192 46.64% 8.82 51 99
433.milc 4.15 30 35.00% 2.38 16 68
470.lbm 3.50 7 57.14% 0.50 1 2
482.sphinx3 10.08 33 63.09% 5.25 18 44
471.omnetpp 20.37 55 48.91% 9.10 17 84
473.astar 2.73 21 70.00% 1.27 8 11
483.xalancbmk 12.83 116 56.03% 6.49 30 695
400.perlbench 52.38 108 49.80% 12.94 18 50
401.bzip2 2.57 8 22.22% 1.14 2 9
403.gcc 50.51 329 47.62% 17.75 54 146
429.mcf 1.18 5 61.54% 0.91 4 11
445.gobmk 28.98 104 34.75% 11.68 25 67
456.hmmer 5.73 37 55.81% 4.02 13 57
458.sjeng 5.31 28 64.71% 2.31 10 19
462.libquantum 10.08 36 29.77% 4.62 14 16
464.h264ref 9.00 81 41.36% 4.75 27 42

Table 1: Importing statistics for cpu2006 (no PGO)

Figure 2b shows the results when compiling all configu-
rations with PGO using the same profile data. As described
in Section 7.2, ThinLTO uses the indirect call value pro-
files to enable cross-module indirect call promotion via im-
porting. The cross-module indirect call promotion improves
ThinLTO performance by close to 6% on 453.povray, and
around 5% on 483.xalancbmk.

The few gaps between ThinLTO and LTO performance
will be reduced by enhancements to summary-based opti-
mization, such as identifying constant values to enable inter-
procedural constant propagation.

Table 1 shows some statistics on how many functions are
imported into each module, and how many unique modules
those imported functions are sourced from, as well as what
percentage of imported functions are inlined into the import-
ing module. While on average most modules import func-
tions from less than 10 other modules, there are cases where
a module may import from around 50 other modules. This
illustrates the importance of being able to import just those
functions likely to benefit from inlining, in order to reduce
the memory overhead of each backend. The results for the

percentage of imported functions inlined into the importing
module show that there is room for further tuning of import-
ing heuristics, to avoid unnecessary overhead from unprof-
itable imports.

We have also collected performance data using both
smaller and larger importing thresholds. The full results
are not shown for brevity, but it appears that the default
thresholds are enabling most of the available benefit. Dou-
bling the threshold from 100 to 200 results in similar perfor-
mance for most benchmarks, with speedups of around 2%
in 447.dealII and 483.xalancbmk. Reducing the threshold
in half to 50, however, results in significant degradations in
a number of benchmarks, including 5% in 453.povray and
6.7% in 433.milc. While there are benefits to tightening the
threshold for importing, which should reduce the build over-
head and also enable more internalization, clearly it must
not be done indiscriminately.

To determine how much of the ThinLTO improvement
comes from importing, we also collected performance data
with importing disabled, both with and without PGO. Most
of the performance gain of ThinLTO over non-LTO is lost,
with the notable exception of 473.astar, which retains about
90% of the gain. This is due to internalization performed
during the thin link, as described in Section 5.1, which dis-
covers that several functions are never accessed outside of
their defining module. The internalization enables more ag-
gressive inlining.

Additionally, we evaluated the runtime performance of
the clang binary itself. We have measured 5-8% faster per-
formance when clang is built with ThinLTO, compared to a
non-LTO build, very similar to the performance from clang
built with regular LTO.

8.2 Build Performance
Critically, due to the scalable design of ThinLTO, this per-
formance is achieved with a build time that stays within a
non-LTO build scale.

This section analyzes build performance, comparing both
the build time and the memory consumption of ThinLTO to
LLVM LTO and GCC LTO. While LLVM LTO does not
have separate WPA and CMO optimization phases, GCC
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Files Size (MB) Nodes (#k) Edges (#k)
Application (#k) -g0 -g F. GV. GA. Tot. Calls Refs Tot.
Clang 1.9 217 3554 76 91 1.6 169 216 198 414
Chromium 17.8 706 7544 559 295 3.7 858 1328 1075 2403
Ad Delivery 13.8 1073 7469 1109 760 84 1953 2251 2605 4856

Table 2: Number and sizes of IR files for large real-world
applications used in build measurements, and statistics for
thin link graph: number of nodes (Functions, Global Vari-
ables, Global Aliases) and edges (Calls and References).

splits these into separate processes. Therefore we can com-
pare the ThinLTO thin link phase to the GCC WPA phase:
these are the serial WPA phases of each solution. Later
we compare the ThinLTO parallel backend phase to GCC
LTRANS: these are the CMO and codegen phases of each
solution.

Three large real-world applications of increasing size
have been used to perform the comparison:
1. The Clang compiler [22]: This is an open-source code

base including multiple millions of lines of modern C++.
2. Chromium [21]: This is an open-source Web Browser.
3. Ad Delivery: This is an internal Google application run-

ning in the datacenter that serves targeted ads.
Table 2 indicates the size of these applications. In addi-

tion to the number of IR files input to the link, the total size
of the IR input files for both a -g0 (no debug info) build
and a -g (debug info) build are shown for LLVM ThinLTO.
The increase in total IR size from the ThinLTO summaries
is small, for example 0.8% for clang with -g0 (even less for
-g2). We also report the size of the static graph from the thin
link phase in terms of number of nodes and number of edges.
The applications range from 169k nodes and 414k edges to
1.9M nodes and 4.9M edges, which are the metrics that im-
pact the serial phase processing (thin link and WPA).

Build times and memory overhead were collected on a
16 core (32 logical) 2.9GHz Intel Xeon CPU ES-2690 with
64GB memory, running Linux and using the gold linker.

To evaluate the build memory overhead, we measured the
peak difference between the resident set size and the shared
memory as reported by the Linux Kernel for the process. The
shared memory accounts for read only mmapped files that
the kernel greedily keeps in RAM (even on unmmap) as long
as there is available memory. This memory is included in the
resident set size even though it does not incur any memory
pressure on the system.

Figure 3 shows the time and memory comparisons to-
gether for the link of Chromium using 32 threads. Note that
LLVM LTO optimizes in a single thread, and only the code-
gen is parallel. This graph illustrates how much smaller the
ThinLTO memory footprint is, and how much faster it com-
pletes the link compared to either LLVM LTO or GCC LTO.

Figure 4a shows the peak memory required for the serial
steps in ThinLTO and GCC LTO. As expected, ThinLTO’s
serial step uses very small amounts of memory, scales well
with the size of the program, and isn’t affected by debug
information. The results show that GCC LTO is not usable

Figure 3: Time versus Memory for the Chromium link. All
configurations utilize 32 threads (only affects code genera-
tion for LLVM LTO). The spike towards zero on the GCC
curve corresponds to the transition from WPA to LTRANS.

(a) Peak Memory (ThinLTO thin link
is not affected by debug information).

(b) Time (-g0).

Figure 4: Serial phase measurements for ThinLTO (thin
link) and GCC (WPA configured with 32 partitions), for the
three programs described in Table 2.

for large applications like Ad Delivery, as it cannot complete
the link. Figure 4b shows the corresponding timings which
illustrate how ThinLTO can handle large applications.

Figures 5a and 6a show the time required to link the IR
files of Clang and Chromium, respectively. This includes
both the serial LTO step and the backends for ThinLTO,
LLVM LTO and GCC LTO, using varying amounts of paral-
lelism (except for LLVM LTO). Because the ThinLTO serial
step (the second phase thin link) is so fast, and the actual
optimization work is done in parallel backends, ThinLTO
is much faster than LLVM LTO in particular. GCC LTO
is faster than LLVM LTO, but slower than ThinLTO and
doesn’t scale as well due to the longer serial step. Ad De-
livery is not shown as LLVM LTO did not complete after 2h,
and as shown in Figure 4 GCC LTO does not complete the
serial WPA step.

Figures 5b and 6b compare the peak memory consump-
tion during the link. The solid bars are the peak memory for
just the backend phases, whereas the overlaid hashed bars
show the peak for the serial phases of ThinLTO and GCC.
Note that the overall peak memory for GCC is from the se-
rial WPA phase under lower parallelism. LLVM LTO can-
not successfully link Chromium with -g because of the size
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(a) Time for the link. The inner bar represents the part of the serial
phase (thin link or GCC WPA) in the total.

(b) Peak Memory for the link. The hashed bars represent the serial
phase memory from Figure 4a (too small to see in ThinLTO), and
the solid bars are the backend phase.

Figure 5: Clang link statistics (WPA + Backends) for LLVM
LTO, ThinLTO and GCC for 8, 16, and 32 threads, without
and with debug information.

induced by the debug information. ThinLTO exhibits good
memory scaling. Only ThinLTO can complete Ad Delivery
(1m42s thin link and 5m43s backends), peaking at 3.6GB.

8.3 Incremental Build Performance
One of the major features of ThinLTO is the ability to per-
form incremental builds, as presented in Section 3. Figure 7
illustrates the effectiveness of incremental builds by compar-
ing LTO, ThinLTO, and No-LTO (-O2) when building Clang
in three different situations:
1. The full time for building from a clean build directory.
2. The developer changes the implementation of a fre-

quently referenced function in a widely used header,
which forces the rebuild of a large number of files. This
is the time to recompile these source files (first phase)
and perform the link (second and third phases).

3. The developer changes the implementation of an infre-
quently called function in an implementation file, so the
incremental build time should be fast.
The clean build shows that ThinLTO build time is very

comparable to a non-LTO build, while regular LTO is sig-
nificantly slower. With a warm build cache, even with vari-
ous types of modifications, ThinLTO provides an incremen-
tal link-time very close to a non-LTO build. This shows how
ThinLTO can replace the non-LTO build in day-to-day de-
velopment. It can even be faster than a non-LTO build: e.g. a
header file modification will not affect the IR of all including
modules, and in those cases ThinLTO will use the cached

(a) Time for the link. The inner bar represents the part of the serial
phase (thin link or GCC WPA) in the total.

(b) Peak Memory for the link. The hashed bars represent the serial
phase memory from Figure 4a (too small to see in ThinLTO), and
the solid bars are the backend phase.

Figure 6: Chromium link statistics (WPA + Backends) for
LLVM LTO, ThinLTO and GCC for 8, 16, and 32 threads,
without and with debug information.

Figure 7: End-to-end incremental build times for Clang
LLVM LTO, ThinLTO and No-LTO (-O3) with -j32.

object, skipping many optimizations and codegen. Regular
LTO is not friendly with incremental builds.

At the same time, the developer gets a significant perfor-
mance improvement on the resulting clang binary, as shown
at the end of Section 8.1.

8.4 Distributed Build Performance
Using experimental support for ThinLTO distributed builds
added to the Bazel build system [10], we compared perfor-
mance of ThinLTO and regular non-LTO builds of Ad Deliv-
ery on a cluster of remote machines. This application has a
complicated build flow, with intermediate tools that are built
and generate inputs for subsequent build actions.

Figure 8 shows the results of the end-to-end builds with-
out caching, for various values of -jN. Note that N specifies
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Figure 8: Distributed end-to-end build times for Ad Deliv-
ery -O2 and ThinLTO with various -jN allowed parallelism
values (best of 3 runs).

a limit on the amount of parallelism, which is a hint to the
build system. The actual parallelism may vary depending on
the load of the shared cluster. The graph illustrates Amdahl’s
law in effect between 200 and 500 nodes, where the critical
path for this build is reached.

The results show that ThinLTO benefits from distribution
as much as a regular non-LTO build, despite the intermediate
thin link serial step and the overhead of distributing the ad-
ditional files. As noted earlier, neither LLVM nor GCC LTO
can successfully build Ad Delivery in a reasonable amount
of time or memory, much less benefit from distribution.

8.5 Binary Size
There are several factors affecting ThinLTO binary sizes.
While ThinLTO importing does temporarily create dupli-
cate copies of functions, those that are not inlined are subse-
quently deleted. However, ThinLTO must promote to global
scope any local symbols that are exported by an imported
function. Linker dead stripping compensates by dropping
any exported references that are not kept via inlining. Also,
as described in Section 5.1, the amount of internalization is
inherently smaller in ThinLTO than in LTO, as there are re-
maining cross-module references.

Despite these factors, the sizes of the binary and text
for a non-debug compile of Clang, as well as the text size
of a debug build, are nearly identical to that of a full LTO
build. The debug binary size is much larger (622MB LTO vs
2429MB ThinLTO) due to known weaknesses in handling of
imported LLVM debug metadata types. Prototype improve-
ments have already demonstrated a significant reduction to
1335MB, which is very close to the non-LTO debug binary
size of 1203MB.

9. Future Work
The ThinLTO framework provides opportunities for many
additional types of CMO and WPA. For example, we are
currently investigating global dead symbol stripping based
on the existing summary reference graph. This optimization
improves the build time as it prunes the size of the graph,
but can also improve the accuracy of other analyses. Another
possible optimization is moving functions instead of import-

ing them: for instance if a function is only called from a sin-
gle module, moving it enables internalization in this module.
A related idea is a hybrid model, which would sometimes
merge small tightly coupled modules to enable additional
internalization.

Some new optimizations will require additional types of
summary data. For example, adding information in the sum-
maries about the possible values or ranges of values that a
global variable can take could be used to perform interpro-
cedural constant propagation. The key to many future WPA
based optimizations will involve making additional LLVM
analyses and tranformations summary-aware.

We are currently extending the summaries with enough
information to rebuild the full class hierarchy at link-time
as well as the possible overloads for each virtual call. This
would enable C++ global devirtualization as well as Control
Flow Integrity [26].

The dependency tracking using a hash at the module
level is quite coarse-grain. We identified the possibility to
track dependencies with a finer grain on the callgraph, as
described in [5]. However we anticipate that the overhead
may lead to some interesting tradeoffs in this area.

Improvements to the representation and importing of
LLVM debug metadata will reduce -g memory and binary
overheads from ThinLTO. Additional memory overhead re-
ductions will come from fine-tuning the importing algo-
rithm, particularly with profile data.

10. Conclusion
ThinLTO is a new framework for CMO, that was designed
to be both scalable and allow for incremental compiles. It
achieves this by including summary data in the intermediate
object files, and only performing fast summary based WPA
in the serial step, without reading or writing IR. All CMO
is applied in fully parallel backends, on modules extended
using function importing. This decoupling of the WPA from
the CMO is not only efficient, but also enables stable incre-
mental compilation which is not achievable with traditional
LTO, and integrates well with distributed build systems.

Performance results for SPEC cpu2006 benchmarks show
that ThinLTO can achieve most of the performance of reg-
ular LTO. At the same time, build time and memory data
for three large real-world applications show that ThinLTO is
smaller, faster, and more scalable than both LLVM LTO and
GCC LTO.

All this makes ThinLTO a good candidate to be enabled
by default and replace the standard non-LTO flow.
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