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ABSTRACT

Single-channel speech enhancement (SE) is an important task in
speech processing. A widely used framework combines an anal-
ysis/synthesis filterbank with a mask prediction network, such as
the Conv-TasNet architecture. In such systems, the denoising per-
formance and computational efficiency are mainly affected by the
structure of the mask prediction network. In this study, we aim
to improve the sequential modeling ability of Conv-TasNet archi-
tectures by integrating Conformer layers into a new mask predic-
tion network. To make the model computationally feasible, we ex-
tend the Conformer using linear complexity attention and stacked
1-D dilated depthwise convolution layers. We trained the model on
3,396 hours of noisy speech data, and show that (i) the use of lin-
ear complexity attention avoids high computational complexity, and
(ii) our model achieves higher scale-invariant signal-to-noise ratio
than the improved time-dilated convolution network (TDCN++), an
extended version of Conv-TasNet.

Index Terms— Speech enhancement, Conv-TasNet, Con-
former, dilated convolution, self-attention.

1. INTRODUCTION

Speech enhancement (SE) is the task of recovering target speech
from a noisy signal [1]. In addition to its applications in telephony
and video conferencing [2], single-channel SE is a basic compo-
nent in larger systems, such as multi-channel SE [3,4], multi-modal
SE [5–8], and automatic speech recognition (ASR) [9–11] systems.
Therefore, it is important to improve both the denoising perfor-
mance and the computational efficiency of single-channel SE.

In recent years, rapid progress has been made on SE using deep
neural networks (DNNs) [1]. Conv-TasNet [12] is a powerful model
for SE that uses a combination of trainable analysis/synthesis filter-
banks [13] and a mask prediction network using stacked 1-D dilated
depthwise convolution (1D-DDC) layers. Since the denoising per-
formance and computational efficiency are mainly affected by the
mask prediction network, one of the main research topics in SE is
improving the mask prediction architecture [14–20]. For example,
the improved time-dilated convolution network (TDCN++) [14,15]
extended Conv-TasNet to improve SE performance.

A promising candidate for improving mask prediction networks
is the Conformer architecture. The Conformer [21] architecture has
been shown to be effective in ASR [21], diarization [22], and sound
event detection [23, 24]. Conformer is derived from the Trans-
former [25] architecture by including 1-D depthwise convolution
layers to enable more effective sequential modeling.

In this paper we combine Conformer layers with the dilated
convolution layers of the TDCN++ architecture. However, this in-
troduces two critical problems related to the short window and hop

sizes used in trainable analysis/synthesis filterbanks. The first prob-
lem is large computational cost because the time-complexity of the
multi-head-self-attention (MHSA) in the Conformer has a quadratic
dependence on sequence length. Secondly, the small hop-size of
neighboring time-frames reduces the temporal reach of sequential
modeling when using temporal convolution layers.

In order to make the model computationally feasible, we use a
linear-complexity variant of self-attention in the Conformer, known
as fast attention via positive orthogonal random features (FA-
VOR+), as used in Performer [26]. These ideas are partly inspired
by the local-global network for speaker diarization using a time-
dilated convolution network (TDCN) [22] which shows that the
combination of a linear complexity self-attention and a TDCN im-
proves both local and global sequential modeling. We show in ex-
periments below that the resulting model, which we call the dilated
FAVOR Conformer (DF-Conformer), achieves better enhancement
fidelity than the TDCN++ of comparable complexity.

2. PRELIMINARIES

2.1. Conv-TasNet and its extensions on speech enhancement

Let the T -sample time-domain observation x ∈ RT be a mixture of
a target speech s and noise n as x = s + n, where n is assumed
to be environmental noise and does not include interference speech
signals. The goal of SE is to recover s from x.

In mask-based SE, a mask is estimated using a mask prediction
network and applied to the representation of x encoded by an en-
coder, then the estimated signal y ∈ RT is re-synthesized using a
decoder. The enhancement procedure can be written as

y = Dec (Enc(x)�M(Enc(x))) (1)

where Enc : RT → RN×De and Dec : RN×De → RT are
the signal encoder and decoder, respectively, De is the encoder
output dimension, � is the element-wise multiplication, and M :
RN×De → [0, 1]N×De is the mask prediction network. Early stud-
ies used the short-time-Fourier-transform (STFT) and the inverse-
STFT (iSTFT) as encoder and decoder [9, 27], respectively. More
recent studies use a trainable encoder/decoder [12] which are often
called trainable “filterbanks” [28], e.g. in Asteroid [13].

One of the main research topic in SE is the design of the
network architecture of M, because the performance and compu-
tational efficiency of SE are mainly affected by the structure of
M. Conv-TasNet [12] is a powerful model for speech separa-
tion and SE, and whose M consists of stacked 1D-DDC layers.
TDCN++ [14, 15] is an extension of Conv-TasNet. The main dif-
ference of TDCN++ with Conv-TasNet is the use of instance norm
instead of global layer norm and the addition of explicit scale pa-
rameters after each dense layer. The pseudo-code for M in the
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Algorithm 1: M of TDCN++ [14, 15] where X =
Enc(x) and σ is logistic sigmoid function.

1 Function MaskPredictorOfTDCN++(X):
2 z ← Dense(X) // RN×De

+ → RN×Db

3 for i = 1 to L do
4 d← pow(2, mod (i− 1, Ls))
5 z ← z + i-th TdcnBlock (z, d)

6 M ← σ (Dense(z)) // RN×Db → [0, 1]N×De

7 return M

8 Function TdcnBlock(z, d):
9 z ← Dense(z) // RN×Db → RN×Dc

10 z ← InstanceNorm (PReLU (Scale(z)))
11 z ← DepthwiseConv1D (z, dilation=d)
12 z ← InstanceNorm (PReLU (z))

13 z ← Dense(z) // RN×Dc → RN×Db

14 return Scale(z)

Algorithm 2: Conformer block [21]. BN means
batch normalization. For details of MhsaModule and
FeedForwardModule, see [21].
1 Function ConformerBlock(z):
2 z ← z + 1

2
FeedForwardModule(z)

3 z ← z +MhsaModule(z)
4 r ← GLU(Dense (LayerNorm(z)))
5 r ← DepthwiseConv1D (r, dilation=1)
6 z ← z +Dropout (Dense (Swish (BN(r)))))

7 z ← z + 1
2
FeedForwardModule (z)

8 return LayerNorm(z)

TDCN++ is shown in Algorithm 1. TDCN++ consists of L stacked
TDCN-blocks, and each TDCN-block mainly consists of two dense
layers for frame-wise feature modeling and one 1D-DDC layer for
sequence modeling. The dilation factor d increases exponentially
to ensure a sufficiently large temporal context window to take ad-
vantage of the long-range dependencies of the speech signal, and
Ls TDCN-blocks are repeated R times where L = RLs. The time
complexity of TDCN++ is roughly proportional to O(LN) when
N � Db, where Db is the input dimension of TDCN-blocks.

2.2. Conformer

Conformer [21] is a derived model of Transformer [25] that was
originally proposed for ASR [21] and later adopted in audio-related
applications such as audio event detection [23, 24] and speech sep-
aration [29]. The structure of the Conformer is similar to the
TDCN++, in that it consists of L stacked Conformer-blocks [21].
Algorithm 2 shows the pseudo-code of a Conformer-block. By
comparing Algorithm 1 and 2, we can see that the constituent lay-
ers of the Conformer-block and the TDCN-block are also similar;
one Conformer-block mainly consists of several dense layers for
frame-wise feature modeling, and one 1-D depthwise convolution
layer and one MHSA-module for sequence modeling [21]. One of
the main differences between the TDCN-block and the Conformer-
block is the MHSA-module. Conformer enables global sequence
modeling by using MHSA-modules instead of dilated depthwise
convolution layers with local receptive fields.

Algorithm 3:M using DF-Conformer-L. Red lines are
differences from TDCN++ and Conformer-block.
1 Function DF-Conformer(X):
2 z ← Dense(X) // RN×De

+ → RN×Db

3 for i = 1 to L do
4 d← pow(2, mod (i− 1, Ls))
5 z ← z + i-th DF-ConformerBlock (z, d)

6 M ← σ (Dense(z)) // RN×Db → [0, 1]N×De

7 return M

8 Function DF-ConformerBlock(z, d):
9 z ← z + 1

2
FeedForwardModule(z)

10 z ← z +MhsaFavorModule(z)
11 r ← GLU(Dense (LayerNorm(z)))
12 r ← DepthwiseConv1D (r, dilation=d)
13 z ← z +Dropout (Dense (Swish (BN(r)))))

14 z ← z + 1
2
FeedForwardModule (z)

15 return LayerNorm(z)

3. PROPOSED METHOD

In this section, we first describe two problems for incorporating the
Conformer into TDCN++ framework in Sec 3.1, and our solutions
for each problem are described in Sec. 3.2 and 3.3, respectively.

3.1. Model structure and computational challenges

Based on the successes of Conformer in speech-related tasks, we
aim to replace the TDCN blocks in TDCN++ with Conformer-
blocks. Unfortunately, the simple combination of trainable filter-
banks and Conformer-blocks causes two critical problems. These
problems are caused by the short window size of 2.5 ms and hop
size of 1.25 ms used in trainable filterbanks for short-time analysis
of the input signal.

Problem 1: The computational complexity. The computational
cost of MHSA-module is quadratic in the number of frames N . In
the original Conformer model [21], convolutional subsampling lim-
its the size of N . For example, for a 1 second signal, N is 25. In
contrast, for TDCN++, the same signal would result in N = 500.

Problem 2: The receptive field for sequence modeling is insuf-
ficient. The original Conformer has a hop-size of 40 ms, while the
standard trainable filterbank has a hop-size of 1.25 ms. This means
that the receptive field for depthwise convolution is 6.25 ms when
using the default kernel size of 5, which may degrade the accuracy
of the analysis of local changes in the signal.

One possible approach is to use the dual-path approach [16–18],
which is equivalent to using sparse and block diagonal attention
matrices corresponding to the inter- and intra-transformers, respec-
tively. Alternatively, we use FAVOR+ attention introduced in Per-
former [26] which has linear computational complexity: O(N).
The novelty in our approach comes from using linear FAVOR+
attention to replace softmax-dot-product attention as well as per-
forming local analysis with 1D-DDC to replace non-dilated con-
volutions in Conformer. Based on these two characteristics of the
proposed method, we name our M as dilated-FAVOR-Conformer
(DF-Conformer), and L-layer DF-Conformer is referred as DF-
Conformer-L. The pseudo-code of DF-Conformer-L is shown in
Algorithm 3. The time complexity of DF-Conformer-L is also
roughly in proportion to O(LN) when N � Db.
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3.2. Linear time-complexity MHSA-module using FAVOR+

Recently, many extended Transformer architectures have been pro-
posed to make improvements around computational and memory
efficiency [30, 31]. Performer [26] is one of them; it is an O(N)
Transformer architecture which uses FAVOR+. In self-attention,
the query, Q, key, K, and value, V ∈ RN×D are combined as
sa(Q,K,V) = softmax(QK>)V. In FAVOR+, this is approx-
imated as sa(Q,K,V) ≈ D−1φ(Q)

(
φ(K)>V

)
, for a suitable

feature map φ(·) applied to the rows of each matrix, avoiding the
quadratic term QK>. Here D is a normalizing diagonal matrix
with diag(D) = φ(Q)(φ(K)>1), and 1 ∈ RN an all ones vector.
This approximation is made accurate in FAVOR+ using a random
projection based non-negative valued φ(·) of a suitable size [26].
To implement this idea, we replace the softmax-dot-product self-
attention in Algorithm 2 with FAVOR+ self-attention. Hereafter,
we refer to this new module as “MHSA-FAVOR-module”.

3.3. Use of dilated depthwise convolution in Conformer

We strengthen the network’s temporal analysis capability by using
1D-DDC instead of the standard 1-D depthwise convolution used in
the Conformer-blocks. As in TDCN++, we use an exponentially in-
creasing dilation factor d. To implement this idea, DF-Conformer-
block also takes d as an argument, and it is passed to the 1D-DDC
layer as the dilation parameter.

In a similar strategy as [22] and DF-Conformer, MHSA-
FAVOR-module can also be incorporated into the TDCN-block.
As an alternative network architecture, we insert z ← z +
MhsaFavorModule(z) between line 9 and 10 of Algorithm 1, and
refer to it as “Conv-Tasformer”.

4. EXPERIMENTS

We conducted ablation studies and objective experiments in Sec. 4.2
and 4.3, respectively. Audio demos are available1.

4.1. Experimental setup

Dataset: We used the same dataset used in the SE experiment
of [15]. This dataset uses speech from LibriVox (librivox.org)
and non-speech sounds from freesound.org . The duration of
all samples were 3 sec, and sampling rate was 16 kHz. Training,
validation, and test datasets consisted of 4,076,102 (3396.8 hours),
7,417 (6.2 hours), and 7,387 (6.2 hours) examples, respectively. We
mixed speech and noise samples in the same manner of [32]. The
minimum and maximum signal-to-noise ratio (SNR) of noisy input
were −40 dB and 45 dB, respectively, and the average extended
short-time objective intelligibility measure (ESTOI) [33] score was
63.7%.
Loss function: We estimated masks for both speech and noise
in the same manner of [10, 15]. Each mask was multiplied with
Enc(x) and re-synthesized to the time-domain using the same de-
coder. A mixture consistency projection layer [32] was applied to
ensure the mixture of estimated speech and noise equals the noisy
input. Finally, the negative thresholded SNR [15] loss2 was calcu-
lated for both speech and noise, and mixed by weighting 0.8 for
speech and 0.2 for noise.

1google.github.io/df-conformer/waspaa2021/
2L = −10 log10(‖s‖2/(‖s − y‖2 + τ‖s‖2)) where τ = 10α/10 a

soft threshold that clamps the loss at α dB. In this study, we used α = 30.

Figure 1: Comparison of RTF. (a) RTF of Conformer-4 increases
as duration of input waveform increases, whereas that of F-
Conformer-4 becomes constant. (b) RTFs of DF-Conformer-8 and
TDCN++ are comparable, whereas that of Conv-Tasformer is larger
than others due to additional MHSA-FAVOR-block.

Comparison of methods and hyper-parameters: For the ab-
lation studies in Sec. 4.2, we used three Conformer-based mod-
els. The first model is Conformer-L which simply replaces TDCN-
blocks in TDCN++ with Conformer-blocks. The second model is
F-Conformer-L which is a model that uses only FAVOR+ in DF-
Conformer-L. The last model is Conformer-L-STFT which uses
STFT and iSTFT as Enc and Dec, respectively. For Conformer-L-
STFT models, we estimated a complex-valued mask [34]. We can-
not increase the number of parameters of Conformer-L due to its
computational complexity, therefore, we used two different model
sizes; 3.7M and 8.75M parameters. The former size was determined
according to the maximum model size of Conformer-L that can be
trained on third-generation Tensor Processing Units (TPUv3). The
latter size is that of TDCN++ used in previous studies [14,15]. The
hyper parameters were L = 4 and Db = 192 were used for 3.7M
models, and L = 8, Ls = 4, and Db = 216 were used for 8.75M
models. For both model sizes, 6 attention heads and Dr = 384
random projection features were used in FAVOR+.

For the SE performance evaluation in Sec. 4.3, we compared
DF-Conformer-L and Conv-Tasformer with TDCN++ [14, 15] to
confirm the superiority of the proposed models from its base model.
In TDCN++, we used the same setting used in [32], namely, L =
32, Ls = 8, Db = 256 and Dc = 512. In Conv-Tasformer, we
used the same setting of TDCN++ except L = 16 and Dr = 128
to reduce the number of parameters.

For all models, De = 256, and the window and hop sizes
of trainable filterbanks were 2.5 ms and 1.25 ms, respectively.
For STFT, the window and hop sizes were 30 ms and 10 ms,
respectively, and fast-Fourier-transform size was 512. All mod-
els were trained for 500k steps on 128 Google TPUv3 cores
with a global batch size of 512. We configured the Adam opti-
mizer [35] with weight decay 1e-6, and learning rate schedule [25]
of D−0.5

b min(n × 25000−1.5, n−0.5), where n is a number of
training steps. We clipped the gradient by global `2 norm to 5.0.
We stored a separate checkpoint of exponential-moving-averaged
weights accumulated over training steps with decay rate 0.9999.

4.2. Evaluation of FAVOR+

To confirm the effects of FAVOR+, we compared the real-time fac-
tor (RTF) of Conformer-4-STFT, Conformer-4, and F-Conformer-4
using 1 CPU. Figure 1 (a) shows the comparison results. In the case

https://librivox.org/
https://freesound.org/
https://google.github.io/df-conformer/waspaa2021/
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Table 1: Results of evaluation for FAVOR+. Prefix “F” means the
use of FAVOR+, and postfix “STFT” means the use of STFT and
iSTFT for Enc and Dec, respectively.

Model #Params SI-SNRi ESTOI RTF

Conformer-4-STFT 3.82 M 12.47 83.4 0.02
Conformer-4 3.74 M 13.91 84.8 0.31

F-Conformer-4 3.59 M 12.40 80.5 0.06

Conformer-8-STFT 9.30 M 12.64 84.5 0.03
F-Conformer-8 8.83 M 13.81 83.7 0.13

Table 2: Experimental results. Meaning of prefix and postfix are the
same as Table 1. Additional prefixes “D” and “i” mean the use of
1D-DDC and iterative model, respectively.

Model #Params SI-SNRi ESTOI RTF

TDCN++ [15] 8.75 M 14.10 85.7 0.10
Conv-Tasformer 8.71 M 14.36 85.6 0.25
DF-Conformer-8 8.83 M 14.43 85.4 0.13

iTDCN++ [15] 17.6 M 14.84 87.1 0.22
iConv-Tasformer 17.5 M 15.25 87.2 0.48
iDF-Conformer-8 17.8 M 15.28 87.1 0.26

iDF-Conformer-12 37.0 M 15.93 88.4 0.46

of Conformer-4-STFT, RTF does not increase significantly because
N was 100/sec in our STFT setting and it is still feasible with
O(N2) MHSA-module. Whereas RTF of Conformer-4 increases
linearly as N was 500/sec in our trainable filterbank setting and
MHSA-module. Since the time-complexity of FAVOR+ is in pro-
portion to O(N), F-Conformer-4 has solved this problem.

We also compared these methods using two objective metrics;
scale-invariant SNR improvement (SI-SNRi) [36] and the ESTOI.
Table 1 shows the results. By comparing Conformer-4-STFT and
Conformer-4, the use of a trainable filterbak achieved higher scores
than STFT as similar to previous studies [14]. When using the
small-size model, the SI-SNRi score of F-Conformer-4 was almost
the same as those on the Conformer-4-STFT. Meanwhile, with the
8.75M models, SI-SNRi of F-Conformer-8 was 1.2 dB higher than
that of Conformer-8-STFT, and ESTOI scores of those were al-
most comparable. These results suggest that the use of FAVOR+
can achieve high time-domain SE performance with a larger model
while avoiding the increase in computational complexity.

4.3. Objective evaluation

We compared DF-Conformer-8, TDCN++, and Conv-Tasformer us-
ing SI-SNRi, ESTOI, and RTF. From the comparison results shown
in Table 2, DF-Conformer-8 and Conv-Tasformer achieved compa-
rable scores, and these scores were higher than that of TDCN++.
Also, by comparing DF-Conformer-8 and F-Conformer-8 in Ta-
ble 1, the use of 1D-DDC significantly improved the scores while
avoiding to increase RTF. These results suggest that the use of both
1D-DDC and FAVOR+ is effective in SE. We also compared RTF of
these methods as shown in Fig. 1 (b). RTFs of DF-Conformer-8 and
TDCN++ were comparable, whereas that of Conv-Tasformer was
larger than others due to additional MHSA-FAVOR-block. There-
fore, when inserting FAVOR+ in TDCN-block as Conv-Tasformer,

Figure 2: Examples of attention matrices in DF-Conformer-8.
Spectrograms of noisy input and enhanced output (top row), and
attention matrices for first and third (middle row) and last (bottom
row) Conformer blocks calculated by D−1φ(Q)φ(K)>. The x and
y axes of attention matrices denote the key and query, respectively.

it will be necessary to devise the position and number of MHSA-
FAVOR-module in order to improve the computational efficiency.

We also compared the iterative extension of these models [14].
Using iterative model improved the scores of all methods, and
the results tended to be similar to the non-iterative models. Fur-
thermore, we evaluated a larger model as iDF-Conformer-12 with
L = 12, Db = 256, and the number of attention heads were 8.
The size of model was determined so that RTF becomes compa-
rable with iConv-Tasformer. As we can see the results, the scores
clearly improved using a large model, thus DF-Conformer would be
able to scale the performance according to the model size.

We finally point out three characteristics in DF-Conformer’s at-
tention matrices. First, none of all attention matrices has a local
structure that focuses only on nearby time-frames. Secondly, most
attention matrices in earlier layers referred to low SNR time-frames
to capture the noise characteristics (e.g. Fig. 2 middle-left), or re-
ferred to time-frames with similar spectral structures (e.g. Fig. 2
middle-right). Thirdly, some attention matrices of deep layers re-
semble a sum of a nearly-diagonal matrix and a block matrix (e.g.
Fig. 2 bottom). This results suggest that the earlier layers roughly
analyze the speech and noise from the entire utterance, and later
layers refine the mask based on the local structure.

5. CONCLUSION

In this study, we proposed DF-Conformer which is a Conformer-
based time-domain SE network. To improve the computation com-
plexity and local sequential modeling, we extended Conformer us-
ing a linear complexity attention mechanism and 1-D dilated sepa-
rable convolutions. Experimental results showed that (i) the use of
a linear complexity attention solves the computational-complexity
problems, and (ii) our model achieve higher performance than
TDCN++. From the results of experiments, we conclude that DF-
Conformer is an effective model for SE. Future works include joint-
training of SE and ASR using an all Conformer model, and com-
parison with the dual-path methods [16–18] on the SE task.
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