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ABSTRACT
Napa holds Google’s critical data warehouses in log-structured

merge trees for real-time data ingestion and sub-second response

for billions of queries per day. These queries are often multi-key

look-ups in highly skewed tables and indexes.

In our production experience, only progressive query-specific

partitioning can achieve Napa’s strict query latency SLOs. Here

we advocate good-enough partitioning that keeps the per-query

partitioning time low without risking uneven work distribution.

Our design combines pragmatic system choices and algorithmic

innovations. For instance, B-trees are augmented with statistics of

key distributions, thus serving the dual purpose of aiding lookups

and partitioning. Furthermore, progressive partitioning is designed

to be “good enough” thereby balancing partitioning time with per-

formance. The resulting system is robust and successfully serves

day-in-day-out billions of queries with very high quality of service

forming a core infrastructure at Google.
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1 INTRODUCTION
Napa powers Google-wide data warehouse needs [9]. It ingests peta-

bytes of data per-day and serves billions of queries with sub-second
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latency. Napa has hundreds of databases with thousands of tables

and materialized views; many of those are multi-petabytes in size.

Napa tables are continuously updated by a massive planetary-scale

stream of writes modifying existing rows or adding new rows. Users

require the query results to be consistent and fresh, and demand

continuous availability in the presence of data center failures or

network partitions.

Napa serves business critical clients who expect strict service

level objectives (SLOs) on their sub-second query response time.

To support the competing demands of high throughput ingestion

and low-latency querying, Napa implements a fairly standard dis-

tributed table and view maintenance framework that is based on

the LSM-tree (Log-Structured Merge Tree) paradigm [18]. LSM is

widely used in the current generation of data warehouses to ef-

ficiently integrate and incorporate streaming updates to existing

data. Napa scales LSM to meet the challenges of Google’s operating

environment, which includes ingesting trillions of rows daily.

SELECT K1, K2, SUM(Val)
↩→ FROM t(K1, K2, K3)
↩→ WHERE K1 in (1, 7, ..., x )
↩→ AND K2 in (10, 20, ..., y)
↩→ GROUP BY K1, K2;

Figure 1: An example many-key look up query that is rep-
resentative of the Napa query workloads.

Napa’s diverse query workload consists of large scans and

many-key lookups. The analytical queries with many-key lookups

have strict QoS requirements and is the main focus of this paper.

Figure 1 is an example representative of a many-key lookup query.

The Napa table 𝑡 has K1, K2, and K3 as primary keys and further-

more is also sorted and indexed by their primary keys. The query

specifies a lookup on two of the prefix keys K1 and K2. The goal

here is to break up the key space of, possibly, a petabyte table into
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Figure 2: The Napa architecture

fairly evenly sized partitions such that the query can be parallelized

and has low query latency. From our experience in running produc-

tion services, we found the following three requirements important:

↩→ [Query-specific partitioning] Any approach that we take
should meet the latency SLOs across a diverse set of query work-

loads. Parallelizing the query execution via partitioning is often

required to meet the strict latency SLO. In our experience, the par-

titioning granularity needs to be adjusted on a per-query basis to

meet the latency and resource budget requirements. The expecta-

tion from the partitioning step is that it is able to produce number

of partitions denoted by the parallelization requirement within

bounded amount of error.

↩→ [Evenness] Execution involves the partitioning of the tables
into key ranges such that the partitioning results in even partitions.

Partitioning should operate on tables with extreme skews where

some keys span terabytes in disk. As an example, in Figure 1, a

key range like < 𝐾1 = 1, 𝐾2 = 20 > may correspond to, say, a

hundred GB portion of the table while another key range may be

considerably smaller at a few MB.

↩→ [Progressiveness]Query partitioning must balance overall

execution time against the time and effort to produce query-specific

partitions. For instance, one can produce perfectly even partitions

while still ending up missing the QoS requirement. It is imperative

that the partitioning method has the notion of “good enough” in

the sense that it stops when the partitioning is of sufficient quality.

Our proposed technique in the paper is progressive such that 1)

the longer the algorithm runs the better the quality of the resultant

partitioning; 2) the algorithm stops once the desired error bound

has been met.

Numerous techniques have been proposed in the literature that

leverage the performance improvements resulting from database

partitioning [1, 6, 17, 19–21, 25]. Much of the published literature

focuses on write-time organization of the database and tables as

a way to speed up query performance. Here good performance is

a fortuitous alignment of write-time partitioning granularity and

query parallelization requirements. A table is split at write time into

many units using hash or range partitioning on keys. If the unit is

large, it is not conducive for queries that may require fine grained

partitioning to achieve low latency. If the unit is small, the metadata

book-keeping overhead is high, and processing the metadata alone

imposes challenges to low latency; also, scan query’s performance

suffers due to per-unit overhead. Our experimental results show

that the use of statistics that is too fine-grained can often result

in queries spending too much time generating partitioning at the

expense of overall query execution time.

As noted, by using fine-grained statistical distribution of the data

at the storage level, one can produce even query-specific partition-

ing albeit at a high cost. We address this dilemma by leveraging

B-trees to optimize access to the statistical information on the tables.

Each LSM run has an associated B-tree index which are enhanced

so that index nodes maintain size information for the associated

key ranges. With these enhancements, we can estimate the input

data size of the query starting with the root of the B-tree. If this

estimation is not accurate enough or if the statistics point to areas

of skews, we can descend to the next level in the index structure

to obtain a finer level of statistical distributions for the key ranges

overlapping with the query.

Our proposed algorithm traverses the B-tree to produce even

and query-specific partitioning. It is progressive in the sense that it

descends and accesses additional index information only if it does

not satisfy the stipulated error bounds. In addition, the refinement

is selective that it only descends to the lower levels of trees for

those partitions that do not have tight enough bounds on the er-

ror. Effectively, this means that if we want to create 3 partitions

(i.e., 2 split points) for a query range, the first split point may be

found at the root itself but for the second split point may require

us to descend to the level below the root. This is the essence of our

overall approach for progressive query-specific partitioning. The

complexities that need to be addressed is that we have to identify

these split points across many LSM runs or equivalently by com-

bining information from multiple B-trees of varying sizes. These

are described later in the paper.

The rest of the paper is organized as follows. Section 2 provides

related work. Section 3 provides a high-level overview of the Napa

system while the data and query models are explained in Section 4.



Our progressive algorithm is provided in Section 5 and experiment

results are presented in Section 6. Concluding remarks are drawn

in Section 7.

2 RELATEDWORK
Parallel Databases and parallel execution of SQL operators has

had a long history in database research [3, 11]. Due to the set-

oriented semantics of SQL execution, the key idea to parallelize the

execution of SQL queries is to partition the input data and use SIMD

(single instruction multiple data) model of computation for parallel

query execution. The early work on parallel databases and database

machines [4] based on dataflow architectures were all predicated on

this paradigm. With the emergence of large data centers and cloud

computing aswell as themassive scale of data inmost contemporary

applications there is an emerging need to leverage this classical

paradigm of data partitioning (also referred to as data sharding)

in the context of modern data infrastructures. In the early years

of scalable analysis of internet application data companies such

as Google and others discarded database technologies and instead

developed large-scale analysis infrastructures that were based on

the map-reduce paradigm [8]. The key principle underlying the

map-reduce paradigm was to partition the input datasets over a

large number of machines and process them in parallel to reduce

the latency of analysis queries significantly.

As database research and practice started to embrace cloud com-

puting, the prevalent approach that is used is to partition the data or

to split a table on some key, using hash or range partitioning. Thus

queries that have selection predicates involving the key can be pro-

cessed by only accessing the relevant portions of data. In the same

vein, an ideal data partitioning mechanism can enable efficient col-

located join, and minimize the number of distributed transactions.

Due to these performance improvements resulting from database

partitioning, numerous techniques have been proposed in the lit-

erature [1, 6, 17, 19–21, 25]. Optimizing data partitioning based on

query workloads has been explored in commercial databases such

as IBM DB2 [21, 25] and Microsoft SQL Server [1, 17]. For OLTP

workloads, graph-based [6, 20] and skew-aware [19] partitioning

approaches have been developed to minimize the number of dis-

tributed transactions. We note however that all of these approaches

are focused on finding the ideal data partitioning solutions at the

write time based on given query workloads. That is, most of the

focus is to ensure that the data is partitioned appropriately when

it is stored in the database with the hope that a large percentage

of the query workload will be aligned with the data partitioning

mechanism and granularity determined at write-time.

To the best of our knowledge, there are no efforts to partition the

data in a way that is optimized for individual query’s latency and

resource budget requirements. The closest work is what is referred

to as database cracking [12, 14, 15, 22, 23]. In database cracking, the

data layout is dynamically rearranged based on the input query

workload. The idea of adaptively improving partitioning online

has been extended to distributed database settings [24]. These ap-

proaches, although can adjust to aggregated workload changes

over time, are not designed to optimally handle a wide spectrum

of concurrent query workloads. Recently, there are research initia-

tives to use machine learning to better guide the process of data

partitioning for databases stored in the cloud [13]. In this work,

the authors introduce a new learned partitioning advisor based on

Deep Reinforcement Learning (DRL) for OLAP-style workloads.

However, as is the case with prior work in data partitioning, the

focus of this work is also in the context of write-time partitioning.

3 NAPA PRELIMINARIES
Napa [9] stores and manages many petabytes of historical data

that is continuously ingested from a diverse set of internet-scale

applications. Napa was designed to be used Google-wide and to

serve the diverse needs of many analytical applications. Many of

our front-end clients issue complex analytical queries over petabyte

scale tables and expect answers in sub-seconds. The following key

aspects of Napa are the bedrock principles of its design and are

aligned with our client requirements: (i) Robust Query Performance:

Napa clients expect low query latency, typically sub-seconds, as

well as low variance in latency under a wide spectrum of query

and data ingestion load; (ii) System Flexibility: While performance

is important, our clients also require the flexibility to change sys-

tem configurations to their dynamic requirements such as trading

freshness or recency of ingested data for better performance; (iii)

High-throughput Data Ingestion: Napa’s ingestion, storage and

query serving functions perform under a massive update load.

Napa’s system [9] diagram shown in Figure 2 consists of an in-

gestion infrastructure, a table and materialized view maintenance

framework and a query serving infrastructure. There is also a con-

troller component that is responsible for the overall management

of the entire system. Napa’s tables and materialized views are or-

ganized as LSMs and the goal of the system is to ensure that the

LSM is maintained against the latency, cost and freshness demands

specified by the database owners.

A Napa table consists of multiple data sets called deltas (corre-

sponding to sorted runs of an LSM-tree) and we have one B-tree

index for each delta. Note that each delta corresponds to updates on

a table during a time window (e.g., last 1 minute, 1 day etc.). Napa

tables have multi-part keys and aggregate values. Queries often

run lookups on some subset of keys. Note that while the deltas

are non-overlapping temporally based on ingestion time, they are

overlapping in the key space. In other words, a query specifying a

lookup key may find qualifying rows in all the deltas that make up

the table span.

↩→ Progressive partitioning using B-trees: The B-trees on
the deltas are fairly generic except that it hierarchically stores sta-

tistics of the underlying data. In particular, we store the number

of rows that is indexed by each sub-tree and aggregate that sta-

tistics up the level. The partitioning algorithm we propose in the

paper takes queried keys as input, retrieves and merges relevant

keys taken from these B-tree indices, to generate an approximate

histogram. Starting with the highest level histograms (i.e., the B-

tree root index blocks), it tries to find accurate enough partitions.

If it needs more detailed information, the algorithm will retrieve

required index blocks from the next highest level, repeating this

trial and retrieve until it reaches the desired accuracy.



4 DATA AND QUERY MODEL
4.1 LSM Data Model
To support efficient snapshot reads over large scale data sets under

high-throughput ingestion, we employ log-structured merge (LSM)

trees [16, 18]. An LSM tree is an append-only data structure where

new data ingestion is stored separately from the old data. To main-

tain read efficiency and reduce storage costs, an operation called

compaction is periodically applied to merge new and old data.

LSM consists of immutable files stored in a distributed file system,

each containing data updates for a specific timestamp range. The

data in each file is sorted and indexed by a hierarchical B-tree index.

Such an immutable file along with its associated indexes is called a

delta. For compaction, we employ the tiered merging policy [16]:

Ingested data is committed as a base level delta with a singleton

time range (e.g., [T1, T1]), and a compaction reads multiple deltas

at one level (e.g., [T1, T2], [T3, T4], [T5, T6]) and writes a new

delta (e.g., [T1, T6]) at the next level. We leverage this tiered delta

structure to support multiversion snapshot reads: For a query over

a snapshot at time T, the system finds the smallest set of deltas that

contain all the updates in [0, T] without any duplicates.

When the table has a primary (unique) key, we need to identify

the value of the row at time T while the updates of the same key

can appear in multiple deltas in [0, T]. These rows are versions or
updates of the same key, and should be merged into a single final

row during read time. The merging can be done in different ways

and the solution in this paper does not assume a particular merging

method. One frequently used way of merging is to take the most

recent update among the occurrences.

↩→ Progressive partitioning & LSM: The LSM data model

complicates the task of query-specific partitioning in the following

ways. First, the keys specified in the query may be present in many

(possibly all) of the deltas. Note that the same query worker must

process all deltas where the keys are present in order to reconcile all

relevant versions. This effectively means that the work per worker

is the sum of the matched rows across the various deltas. Second,

this proves to be a serious challenge for the evenness of the parti-

tioning since some deltas may contribute many more matched rows

than others. Third, a query may involve seeking across multiple

deltas and not all deltas equally contribute to the query. Thus, the

partitioning effort may not be uniform across the deltas. For some

deltas, it may be sufficient to perform coarser partitioning while

others require significantly more effort in producing equal splits.

4.2 Query Model

SELECT * FROM R
↩→ WHERE CustomerId IN (c1, c2, c3) AND
↩→ Date BETWEEN d1 and d2;

Figure 3: Sample query with keys specified.

While we support parallel execution of general SQL queries,

the focus of this paper is parallelizing scans accessing the table

data stored as deltas. A scan worker involves part of the distributed

query plan that is executable locally in a single machine. Operations

done by a scan worker include selection, projection and partial

(local) aggregation. Typically, the output of scan workers will be

consumed by other distributed downstream operations such as full

aggregation, sort, and join. Parallelization of other operations are

not directly associated with the stored data (deltas) and not the

focus of this paper.

For selection, the scan worker seeks over sorted rows in the

deltas using prefix keys referenced by the query predicates. As

an example, consider the following query shown in Figure 3 with

different selection conditions than shown in Figure 1.

Suppose table 𝑅 holds measurements in multiple dimensions

including CustomerId and Date. If the primary key (i.e. compound

of dimensions) has sort order ⟨CustomerId, Date, · · · ⟩, we can use

a prefix key ⟨CustomerId, Date⟩ = {⟨𝑐1, 𝑑1⟩, ⟨𝑐1, 𝑑2⟩, · · · , ⟨𝑐3, 𝑑2⟩}
to seek the relevant blocks in the deltas. In general, the scan worker

takes a set of prefix key ranges. A prefix key range is a prefix

of the table key where the last column of the prefix can be a

range condition. The query example has such a range condition

“Date BETWEEN 𝑑1 AND 𝑑2”, so we will have 3 prefix key ranges

{⟨𝑐1, [𝑑1, 𝑑2]⟩, ⟨𝑐2, [𝑑1, 𝑑2]⟩, ⟨𝑐3, [𝑑1, 𝑑2]⟩}. Each prefix key range

corresponds to a (potentially empty) contiguous row range in a

delta sorted by the primary key. In the following example, we argue

that the partitioning should be dynamically generated on a per

query basis to meet the latency requirements across a spectrum of

query workloads.

↩→ Why rely on progressive query-specific partitioning?
Consider a 1PB table. Typical queries have selective predicates, but

with high variance in their selectivity (e.g., from 0.0001% to 1%).

They also come with different resource budget which translates

into different limits on the number of scan workers. Thus, the ideal

partitioning unit size can vary from 10MB (e.g., when reading 1GB

data using 100 scan workers) to 1GB (e.g., when reading 1TB data

using 1000 scan workers) on a per-query basis. The next complexity

here is that it is possible that there is one particular “Date = 𝑑3”,

which accounts for most of the data to be scanned in a query. So,

that means that we need to partition the range ⟨𝑐1, 𝑑3⟩, ⟨𝑐2, 𝑑3⟩ and
⟨𝑐3, 𝑑3⟩ much more finely than the other key ranges. This means

the partitioning algorithm needs to be progressive such that it can

stop early on other dates and focus on generating finer grained

partitions for “Date = 𝑑3.”

Standard write-time partitioning mechanisms are not able to

address the requirements discussed above. Consider these examples:

↩→ Fine-grained range partitions (e.g., 10MB per partition). This

means at partitioning time of reading 1TB data with 1000 scan

workers, at least 100K write-time partitions need to be considered,

resulting in unnecessarily high partitioning cost.

↩→ Coarse-grained range partitions (e.g., 1GB per partition).

While this reduces partitioning cost for the case mentioned above,

it can only produce a single partition when reading 1GB data even

with 100 scan workers, and therefore is unable to meet the paral-

lelism requirements.

↩→ Hash partition on ⟨CustomerId,Date⟩. Given the skewness

in data (e.g., one particular “Date = 𝑑3” can have a lot more data

than the other dates), such partitioning does not have good control



on the partitioning granularity, and can potentially lead to both

high partitioning cost and insufficient parallelism depending on

query workloads.

B-tree of Delta #1

Matching 
entry set

Query

“Drill down” to 
the lower level

B-tree of Delta #2

P=2

Figure 4: An example query requesting 2 partitions over 2
deltas

Note by this example, we have established that partitioning is

highly specific to query under consideration and existing write-

time partitioning is inadequate for workloads with a wide spectrum

of query workloads. We have also established that one needs a way

of producing both fine and coarse grained partitions even on the

same key range, based on the query predicates, latency target and

resource budget.

This leads to the central idea in this paper to leverage an in-

dexing structure that is used to serve lookup queries. If the index

structure can also serve in aiding the partitioning and satisfying

the requirements mentioned above, it can serve the dual purpose

of fast querying and fast, even and “good enough” partitioning. We

discuss the nature of the progressive query-specific partitioning

algorithm that Napa uses in the following section.

5 PROGRESSIVE PARTITIONING
In this section, we present the progressive query-specific parti-

tioning algorithm using size-enhanced B-trees. Our solution is to

enhance typical B-trees with the statistics on data size in a hier-

archical manner. For each delta, we maintain a B-tree pointing to

data blocks, e.g. a block in the PAX layout [2]. The index not only

helps a query to efficiently seek on data using prefix keys but also

provides statistical information for partitioning. Both querying and

query-specific partitioning traverse the B-tree. The querying tra-

verses the B-tree through the leaf level to visit data blocks. The

query-specific partitioning does not visit data blocks and visits the

index node at the leaf level only when required for finding “good

enough” partitions as we describe below.

To tie the algorithm with the use-case described thus far, recall

that the query latency QoS and resource budget considerations are

reduced to a limit on the number of scan workers. Given a particular

query, this limit is equal to the number of target partitions P. Next,

depending on the QoS requirements and prior workload analysis,

we also specify an error margin ratio \ which is a parameter to con-

trol the precision of partitioning results. The error margin ratio is

defined as the ratio between the estimated size of the partition splits

and the ideal size of the partition if one could partition perfectly

equally. We illustrate this with an example later in this section. An

external tuning module automatically adjusts P and \ in a feedback

loop but the details of these are beyond the scope of this paper.

Note that the proposed algorithm is progressive in terms of \ in the

sense that it terminates as soon as the the required error margin

ratio is achieved.

5.1 Algorithm Overview
For a given query𝑄 , the algorithm divides D deltas into P key range

partitions that are nearly even with an error margin of \ . Each delta

has a size-enhanced B-tree, which carries keys and the size of data

between these keys. We analyze the estimated size of matching data

by combining keys and sizes from D indices. To get the most precise

matching estimate from B-trees, we may need to visit the leaf index

entries matching with the query. However, reading all the B-trees

at the leaf index entries level can be prohibitively expensive for a

latency sensitive query. On the other extreme, a lightweight solution

would try to infer the sizes of the P partitions by just accessing the

root nodes of the B-trees of each delta. Clearly, the ideal solution lies

somewhere between the two extremes. The progressive algorithm

starts the analysis at the highest level (i.e., root) of the B-trees and

accesses lower levels of the tree index selectively and strategically

only if more precise information is required.

Figures 4–5 provide an illustration of how the algorithm works.

Figure 4 shows a query which is on a table with two deltas (i.e.,

𝐷 = 2). The number of partitions requested is 2 (i.e., 𝑃 = 2). Without

loss of generality, the table’s primary key consists of a single column

Key, and the query includes a predicate Key IN (𝐾1, 𝐾2, ..., 𝐾8).
In Figure 4, we can see the traversal of the algorithm as it seeks

positions to cut the matching data half, precisely enough with the

error margin ratio \ which will be introduced later in the example.

As one can see from the figure, the algorithm traverses deeper

(referred to as drill down) in the first B-tree but not all index entries

that match with the query (called matching entries) need to be

drilled down equally. In some sense, the algorithm forms a “wave”

or “front” that is just sufficient to partition the data at the required

error margin ratio.

Now, we can look at the mechanics of the actual decision process

that decides if deeper visits of the trees are needed. Figure 5 shows

matched prefix key ranges of query 𝑄 with the root node of B-

trees corresponding to deltas #1 and #2, resulting in two ordered

sets of matching entries: {[𝐾1, 𝐾3), [𝐾4, 𝐾8)} from one B-tree and

{[𝐾2, 𝐾5)}, [𝐾6, 𝐾7)} from the other. The index also includes the

size such as the number of rows or bytes of each entry. For example,

the second matching entry of the first ordered set indicates that the

data size between 𝐾4 and 𝐾8 is 20 in delta #1.

To find where to partition (or split), the algorithm merges these

keys in the matching entries to distinct keys in the sort order,

which serve as split point candidates. In this example, the total size

is estimated as 15 + 20 + 20 + 15 = 70 from the sum of all matching

entry sizes, and the algorithm selects a split point between K4

and K5. Note that this split will cut entries [𝐾4, 𝐾8) and [𝐾2, 𝐾5)
somewhere in the middle. Since we do not know the precise data

distribution within these entries, we can only estimate the partition
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Figure 5: Size estimation for a potential split

sizes. For the first partition, the smallest possible size is 15 (when

the data in the cut entries is skewed to the right side of the partition)

and the largest possible size is 55 (when the data in the cut partition

is skewed to the left side of the partition). We estimate the size as

(15+55)/2 = 35with the size margin 55−15 = 40. Similarly, for the

second partition the smallest possible size is also 15 (when all the

data is skewed towards the left in the split nodes) and the largest

possible size is 55 (when all the data is skewed towards the right)

resulting in the size margin 40. If the ratio of the size margin to the

estimate size (40/35 for the first partition and 40/35 for the second
partition) is within the error margin ratio \ , this split is considered

to be accurate enough. On the other hand, if the error margin is

too large, the algorithm will retrieve matching entries from the

lower level of the B-trees for more fine-grained size information.

In this example, we replace entries [K4, K8) and [K2, K5) with their

matching child entries. We call this operation of replacing an entry

with lower-level entries a drill down. Note that we only need to drill

down entries contributing to the error margin. The other entries

are kept in the working set (called the matching entry set) without
drill down.

The progressive algorithm repeats the analysis and drill-down

until it finds a “good enough" partitioning result. In the following,

we describe the details of the algorithm.

5.2 Algorithm Details
In this section, we describe in detail the progressive partitioning

algorithm. We start with the basic building blocks of the algorithm

followed by a complete description.

During partitioning, we maintain information acquired from

index entries for each delta 𝑑𝑖 s.t., 𝑖 = 1, · · · , 𝐷 matching with query

𝑄 . We call this information a matching entry set 𝐸𝑖 for delta 𝑑𝑖 with
query 𝑄 . Given 𝐷 deltas, we maintain the matching entry sets

E = {𝐸1, 𝐸2, · · · , 𝐸𝑖 , · · · , 𝐸𝐷 }.
In a B-tree node, we embed the size information between two

consecutive entries 𝑒𝑖 and 𝑒𝑖+1. The size corresponds to the number

of rows or number of bytes between [𝑘𝑒𝑦𝑖 , 𝑘𝑒𝑦𝑖+1) where 𝑘𝑒𝑦𝑖 is

the boundary key corresponding to entry 𝑒𝑖 . For simplicity of expo-

sition, we assume that the size is the number of rows corresponding

to the data block. To represent approximate estimation of matching

data for a query, we utilize this size information during the match

between the index entries and the queried keys.

We represent this size-embedded index entry in a B-tree index

node as 𝑒 = ⟨start, end, size, level, block⟩, which corresponds to the

key range [𝑒.start, 𝑒 .end) having the estimated size 𝑒.size. The entry

𝑒 is in an index block at tree level 𝑒.level (the value of 0 for 𝑒.level

corresponds to the leaf level). Finally, 𝑒.block is a pointer to the

child index block having range [𝑒.start, 𝑒 .end) (if 𝑒.level > 0).

Initially, we start with a (virtual) root entry 𝑒0 that represents

the entire delta. Its start (end) key is the minimum (maximum) key

of the input and the size is the total delta size. This gives the initial

size estimate of the query: 𝑒0 .size if [𝑒0 .start, 𝑒0 .end] overlaps with
the query 𝑄 (0 otherwise). To refine this size estimation, we can

visit the root index block and match it with the queried keys. Entry

𝑒 is matching if its range [𝑒.start, 𝑒 .end) overlaps with 𝑄 . From the

root index block, we can identify the set of matching entries.

The matching entry set 𝐸 provides approximate distribution of

matching data: sampled keys and sizes between them. If the entry

range [𝑒.start, 𝑒 .end) is included in 𝑄 , the corresponding size is

the “precise” estimate whereas if it only partially overlaps with

𝑄 , it provides the maximum (or minimum) size estimate. If we

want a more precise estimate of matching data, we can select the

corresponding entry from 𝐸 and visit the corresponding block at

the lower level of the B-tree. We call this operation DrillDown,

which is defined formally as follows as Algorithm 1.

Algorithm 1 DrillDown(𝐸, 𝑒 , 𝑄)

1: return 𝐸 \ {𝑒} ∪ {𝑐 |𝑐 ∈ GetBlockEntries(𝑒.block) AND
[𝑐.start, 𝑐 .end) ∩𝑄 ≠ ∅};

In DrillDown, entry 𝑒 is removed from the matching entry set

𝐸, and replaced with a new set of entries retrieved from 𝑒’s child

index block that also overlap with the query 𝑄 . GetBlockEntries

is the process to acquire entries from 𝑒’s child index block via

pointer 𝑒.block. This process involves I/O operations. In our

actual implementation, we drill down multiple entries 𝐷𝐷 =

{𝑒1, · · · , 𝑒𝑘 } over the matching entries E across all deltas in a batch:

DrillDown(E, 𝐷𝐷,𝑄) to exploit I/O parallelism.

5.3 Split point candidates
Given the entry sets E = {𝐸1, · · · , 𝐸𝐷 } acquired from the indices

of 𝐷 input deltas, we next find keys to split them into 𝑃 parti-

tions. We do this in two stages: (1) generate a set of split point

candidates and (2) find split points from the candidates. The split

point candidates are the keys in each 𝐸𝑖 that have an overlap

with the query. Let there be m such candidates represented by

distinct keys 𝐾 = {𝑘1, 𝑘2, · · · , 𝑘𝑚} and cumulative size estimates
𝐶 = {𝑐1, 𝑐2, · · · , 𝑐𝑚}. Note that 𝐾 = {𝑘1, 𝑘2, · · · , 𝑘𝑚} is a sorted list

of the distinct keys that appear either as the start or end key of

an entry in E (i.e., combined from all the deltas). Given the target

partition size based on the number of partitions 𝑃 and cumulative

size identified in𝐶 , we find split points in𝐾 such that the difference

between the actual partition size and the target partition size is



minimized (the greedy heuristic will be described in detail below).

As shown in the example (Figure 5), we consider splitting the input

at a location between two consecutive keys. We call the location

between 𝑘𝑖 and 𝑘𝑖+1 a split point candidate at i. We consider𝑚 − 1
split point candidates between m keys. The i-th point is to cut some-

where between 𝑘𝑖 and 𝑘𝑖+1 using a prefix key p where p in (𝑘𝑖 , 𝑘𝑖+1]
and is a minimum distinguishable prefix of 𝑘𝑖+1. The reason for

using a prefix p instead of key 𝑘𝑖 is to prioritize a shorter key length

in a partition boundary. When we read rows from the data, we will

need to compare key columns between the boundary and a row.

When the data is laid out in a columnar-oriented way (e.g. PAX [2]),

a longer key length involves more columnar access.

To find a place to split the input, we introduce a cumulative size

estimate 𝑐𝑖 for each key 𝑘𝑖 as the size of the matching data within a

range (−∞, 𝑘𝑖 ]. Instead of having one number for 𝑐𝑖 , we maintain

the minimum and maximum estimation bounds (i.e., 𝑐𝑖 .𝑚𝑖𝑛 and

𝑐𝑖 .𝑚𝑎𝑥). We define the minimum and maximum cumulative sizes

as follows. 𝑐𝑖 .𝑚𝑖𝑛, the minimum cumulative size at split point can-

didate i, is the sum of the entry sizes where the entry range [e.start,

e.end] is contained in (−∞, 𝑝) for any prefix key 𝑝 ∈ (𝑘𝑖 , 𝑘𝑖+1].
𝑐𝑖 .𝑚𝑎𝑥 , the maximum cumulative size at split point candidate i, is

the sum of the entry sizes where the entry range [e.start, e.end]

overlaps with (−∞, 𝑝) for some prefix key 𝑝 ∈ (𝑘𝑖 , 𝑘𝑖+1]. For exam-

ple, in Figure 5, the split point candidate at K4 has the minimum

cumulative size as the size of entry [𝐾1, 𝐾3] and the maximum

cumulative size as the total size of entries [𝐾1, 𝐾3], [𝐾2, 𝐾5], and
[𝐾4, 𝐾8].

When evaluating a partition between two consecutive split

points 𝑖 and 𝑗 (𝑖 < 𝑗), we use the following two metrics:

(1) the estimated partition size between 𝑖 and 𝑗 :
𝑠𝑖𝑧𝑒 (𝑖, 𝑗) = ( |𝑐 𝑗 .𝑚𝑖𝑛 − 𝑐𝑖 .𝑚𝑎𝑥 | + |𝑐 𝑗 .𝑚𝑎𝑥 − 𝑐𝑖 .𝑚𝑖𝑛 |)/2

(2) the size margin at i:

margin(𝑖) = 𝑐𝑖 .𝑚𝑎𝑥 − 𝑐𝑖 .𝑚𝑖𝑛
𝑠𝑖𝑧𝑒 (𝑖, 𝑗) is the average of minimum and maximum partition sizes,

and margin(i) and margin(j) provide the estimation precision for

𝑠𝑖𝑧𝑒 (𝑖, 𝑗) at both ends. If𝑚𝑎𝑟𝑔𝑖𝑛(𝑖)/𝑠𝑖𝑧𝑒 (𝑖, 𝑗) > \ , we consider the
margin at 𝑖 is too large for the partition between 𝑖 and 𝑗 .

To create 𝑃 partitions, we need to choose 𝑃 − 1 points from

the𝑚 split point candidates to split the input evenly. Notice that

such selection may not always be possible. First, if 𝑚 < 𝑃 , the

number of candidates is too few for 𝑃 partitions. Even if there

are many candidates 𝑚 > 𝑃 , we may not have points that split

the data accurately enough (the size margin is too large). In both

cases, we need to find where to drill down to get more granular

information. In the following, we describe how to select points (split

point selection), how to check if they are good enough (partition

quality), and how to select where to drill down if the result does

not meet the quality threshold.

5.4 Split point selection
Given cumulative size estimates 𝐶 = {𝑐1, · · · , 𝑐𝑚} and the target

number of partitions P, we find split points 𝑆 = {𝑠1, · · · , 𝑠𝑃−1}
where 𝑠𝑖 ∈ [1,𝑚). We employ a simple greedy selection of split

points.

We use target cumulative sizes 𝑇 = {𝑡1, · · · , 𝑡𝑃−1} : 𝑡𝑘 =

TotalSize(E) ∗ 𝑘/𝑃 for each 𝑘 = 1, · · · , 𝑃 − 1. For example, if

TotalSize(E) = 1000, and P = 10, then T = {100, 200, · · · , 900}. Note
that TotalSize(E) is the total size of the matching set

∑︁
𝑒∈E 𝑒.𝑠𝑖𝑧𝑒 ,

which is already computed in C as the cumulative size of the last

entry (𝑐𝑚 .𝑚𝑎𝑥 = 𝑐𝑚 .𝑚𝑖𝑛).

We search for a split point closest to each target 𝑡𝑘 such that

𝑠𝑘 = 𝑎𝑟𝑔𝑚𝑖𝑛𝑖=1, · · · ,𝑚−1𝑚𝑎𝑥 ( |𝑡𝑘 − 𝑐𝑖 .𝑚𝑖𝑛 |, |𝑡𝑘 − 𝑐𝑖 .𝑚𝑎𝑥 |) .

Given that the target sizes are monotonically increasing, we can

find points in 𝑂 (𝑚𝑖𝑛(𝑃 log𝑚, 𝑃 +𝑚)) where 𝑃 is the number of

partitions and𝑚 is the number of distinct keys in E that overlap

with the query.

5.5 Partition Qualification
We next evaluate whether the partitioning results with given splits

𝑆 = {𝑠1, · · · , 𝑠𝑃−1} is good enough. Specifically, we identify unqual-

ified points in 𝑆 , which will contribute to the degraded partition

quality. We employ two criteria for qualification and identify un-

qualified points𝑈 as:

𝑈 = {𝑠𝑖 |𝑠𝑖 ∈ 𝑆, (𝑠𝑖 = 𝑠𝑖+1)
∨ (𝑚𝑎𝑟𝑔𝑖𝑛(𝑠𝑖 )/𝑠𝑖𝑧𝑒 (𝑠𝑖−1, 𝑠𝑖) > \ )
∨ (𝑚𝑎𝑟𝑔𝑖𝑛(𝑠𝑖 )/𝑠𝑖𝑧𝑒 (𝑠𝑖 , 𝑠𝑖+1) > \ )}

The first term (𝑠𝑖 = 𝑠𝑖+1) means two target sizes hit the same

split point, resulting in an empty partition range. For example, if the

number of split point candidates m is smaller than the number of

partitions P, a selection will have such unqualified partitions. This

is a candidate of drill down because having more fine-grained keys

may make the two target sizes hit different points. The remaining

two terms imply that the size margin at 𝑠𝑖 is too large for the error

margin ratio \ with respect to the two partition splits here. In either

case, the problem of an unqualified point is its size margin being

too large relative to the partition size. A large size margin suggests

that we need a drill down here to identify more keys at a granular

level as split point candidates. If𝑈 is empty, the given split points

in 𝑆 meet the quality threshold.

5.6 Drilldown selection
For each𝑢 in the unqualified points𝑈 , we find entries to drill down,

expecting that we will find better partitioning result from updated

E. Figure 6 illustrates an example of an unqualified point and entries.

Seven entries from 4 deltas are merged as split point candidates, and

the split point candidate at K4 is considered unqualified. We need

to identify entries that involve the imprecision (i.e., size margin)

at point K4. Such entries are included in the maximum cumulative

size but not included in the minimum cumulative size at K4 (i.e., 3

entries [𝐾2, 𝐾5], [𝐾3, 𝐾6], [𝐾4, 𝐾8]). We call them the entries cut

by point i.

The entries in E that are cut by point 𝑖 are given by:

Cut(E, 𝑖) = {𝑒 |𝑒 ∈ E, 𝑒 .start ≤ 𝑘𝑖 < 𝑒.end}

Now we consider drill down candidates 𝐷𝐷 (E,𝑈 ) for a set of un-
qualified points𝑈 from entries E.

𝐷𝐷 (E,𝑈 ) = {𝑒 |𝑒 ∈ Cut(E, 𝑢), ∃𝑢 ∈ 𝑈 ∧ 𝑒.level > 0}.
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Figure 6: Entries cut by an unqualified point at K4.

Note that we only consider an entry with 𝑒.level > 0 (i.e., an entry

we can drill down). If 𝑒.level is 0, the entry already provides the

finest granular information available in the index.

A naive way to find𝐷𝐷 (E,𝑈 ) involves key comparison between

entry start/end keys and 𝑘𝑢 for Cut(E, 𝑢), which can be expensive

when a key has many columns. We should be able to avoid key

comparison because we have done that when we generate distinct

keys 𝐾 = 𝑘1, · · · , 𝑘𝑚 . The initial approach we implemented was to

track and record entries that have started but have not ended at

each key when we generate K. For each key 𝑘𝑖 ∈ 𝐾 , we have a set of
entry indices that covers split point candidate i. In the example, the

entries corresponding to K4 can be represented as {0, _, 1, 0} (entry
#0 of delta #0, entry #1 of delta #2, entry #0 of delta #3). Similarly,

the entries at K5 are {0, 1, 1, _}. A drawback of this approach is

that the required memory size for this mapping is 𝑂 (𝐷 × 𝐾) and
therefore expensive in production for a large number of deltas 𝐷 .

When we split 𝐷 deltas into 𝑃 partitions, we usually need to have

𝐾 = 𝑂 (𝐷 × 𝑃) keys (i.e. 𝑂 (𝑃) keys from each delta). Then the size

of the mapping would be 𝑂 (𝑃 × 𝐷2).
An alternative approach is to maintain a mapping M from each

entry E to keys𝐾 : We remember that the start and end keys of each

entry appear in𝐾 (i.e., 𝑖 and 𝑗 if 𝑒.start = 𝑘𝑒𝑦𝑖 , 𝑒 .end = 𝑘𝑒𝑦 𝑗 ). In the

example, themapping has (2, 4, 5, 7) for delta #1, indicating that they
have keys K2, K4, K5, K7. This approach consumes less memory

𝑂 ( |E |) ∼ 𝑂 (𝑃 × 𝐷) (i.e., 𝑂 (𝑃) entries from each delta) but needs

search to find entries for an unqualified point: For each unqualified

point u, we take 𝑂 (𝐷 log 𝑃) (instead of 𝑂 (𝐷)) to find Cut(E, 𝑢).
Note that, compared to multi-column key comparison, the binary

search 𝑂 (log 𝑃) only requires integer comparisons. Given that the

drill down involves potentially expensive I/O, the extra CPU cost of

search was negligible in practice (for 𝑃 up to thousands), providing

a better trade off to conserve memory.

We have at most D entries (one from each delta) in Cut(E, 𝑢) for
each unqualified point. Instead of drilling down all the entries, we

employ the following heuristic: select entries in Cut(E, 𝑢) where
level is the maximum. The underlying intuition is as follows: deltas

typically have exponential size distributions (multiple small deltas

will be compacted into a larger delta), ending up with B-trees with

different sizes. When we have two entries with different levels,

it means one is much larger than the other. The contribution of

drilling down the smaller entry will be much smaller than the one

from drilling down the larger entry.

5.7 Putting it together: The Progressive
Partitioning Algorithm

The overall partitioning algorithm is illustrated in Algorithm 2.

AccumulateKeysAndSizes will find distinct keys 𝐾 , the corre-

sponding cumulative sizes C, and mapping M from entry keys in E
to keys in 𝐾 . We find 𝑃 − 1 split points 𝑆 to cut 𝐶 evenly and check

whether there are unqualified points𝑈 . If all the points are qualified

(𝑈 is empty), we have found good enough partitions. Generate split

keys from 𝐾 and 𝑆 and estimate partition sizes from𝐶 and 𝑆 . Other-

wise, we find entries to drill down as 𝐷𝐷 . If𝐷𝐷 is empty, we can no

longer improve E. Return partitioning based on the current result 𝑆 .

DrillDown() will perform index block retrieval in parallel for 𝐷𝐷

and matching with the query 𝑄 to update E with new matching

entries. In our implementation, the retrieval for individual deltas is

independently done in parallel, and the retrieval of blocks in each

delta is done in a batch through our proprietary distributed file

cache.

Algorithm 2 The Progressive Partitioning Algorithm

1: E ⇐ 𝑒01, · · · , 𝑒0𝐷 ; ⊲ virtual root entry.

2: 𝑃 ⇐ num. split points

3: repeat:
4: ⟨𝐾,𝐶,𝑀⟩ ← AccumulateKeysAndSizes(E);
5: 𝑆 ← FindSplitPoints(C, P);

6: 𝑈 ← FindUnqalifiedPoints(𝑆,𝐶, \ );

7: if 𝑈 = ∅ then ⊲ good enough result.

8: return CreatePartitions(K, C, S);

9: end if
10: 𝐷𝐷 ← FindEntriesToDrilldown(U, M, E);
11: if 𝐷𝐷 = ∅ then ⊲ no more improvement.

12: return CreatePartitions(K, C, S);

13: end if
14: E ←DrillDown(E, 𝐷𝐷,𝑄);
15: until True

The above algorithm takes the number of partitions P as the ini-

tial input. In practice, we use other variations of the inputs, which

can be handled in the framework of this algorithm. (1) Minimum

partition size and target number of partitions. We provide the user

a way to specify the number of workers (i.e., parallelism), which

lets the user control the trade-off between the latency (benefit) and

resource usage (cost). However, since the user has little idea on the

actual query cost (e.g., the total size to read), the specified number

of workers can be too large. Unnecessarily high query parallelism

can hurt query performance due to having higher chance of hitting

random tail events. The system can prevent such over-partitioning

by enforcing the minimum partition size. (2) Maximum partition

size and maximum number of partitions. In a batch-oriented work-

load with large scans, it is often more convenient to specify the

desired scan size rather than the number of partitions.

When the partitioning input involves minimum ormaximum par-

tition size, the algorithm will derive the target number of partitions



P based on the total estimated size. Notice that extra information

acquired through drill down operations can provide more accu-

rate input size estimation. Thus, although Algorithm 2 takes P as

an input, the actual implementation derives P every time when

FindSplitPoints is called.

6 EVALUATION
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Figure 7: The cumulative number of rows for top-k distinct
values: (the number of rows having the top-k values) / (the
total number of rows) with varying k for the entire table

We have implemented progressive query-specific partitioning in

Napa. The partitioning algorithm described in this paper has been

used for both low latency queries and large-scale batch queries for

multiple years. In the experiments, we use our testing environment

that runs the production code under controlled resource provision-

ing. This environment is developed for performance regression

tests: although the wall time of a query execution is different from

the production, the relative performance reflects the actual per-

formance when the proposed partitioning scheme is deployed in

production.

6.1 Implementation in Napa
Napa uses F1 Query [10] to perform general SQL queries. Whereas

the F1 system drives the distributed processing of the entire query

(e.g., join), the Napa query server decides the Napa scan parallelism

and the resulting partitioning requirements for the query. Partition-

ing of the data scan is determined at the planning time: F1 requests

Napa to find partition ranges for each query and dispatches them

to parallel F1 workers to execute the query. Note that the planning

time is included in the end-to-end query latency. The algorithm

must find good partitions within a limited time budget since slow

partitioning will result in higher query latency. On the other hand,

fast but inaccurate partitioning will lead to data skew in the parallel

scan, and the slowest worker affected by the skew will determine

the overall query latency.

Napa’s deltas and indices are stored on the Colossus File Sys-

tem [7] and its metadata is stored in Spanner [5]. The query servers

employ caching and prefetch data and metadata. The servers read

index file blocks through a distributed caching layer both for par-

titioning and querying. The caching layer reduces the number of

storage I/Os but cannot eliminate them, as the total working set size

for Napa’s query serving is significantly larger than the aggregated

cache memory available [9]. Hence, reducing the amount of index

I/Os for the partitioning phase is critical for robust performance. If

partitioning uses only a few levels of the B-trees, it is more likely

that it requires few expensive storage I/Os. Our implementation

of the partitioning algorithm also uses prefetching to reduce the

impact of distributed cache misses.

The production system employs additional optimizations that

are specific to Napa’s data model. In the experiments, we disable

these optimizations. In production, we use different values for \

depending on the workloads. For example, when the workload has

sub-second latency SLO, we can use \ = 1.0 allowing a 2x larger

partition than the estimation for faster partitioning. On the other

hand, if the workload is for large-scale data processing, we can use

\ = 0 to require most accurate partitioning. In this case, the query

is expected to take more than a few seconds, we can afford extra

drill down to the leaf level (reading𝑂 (𝑃 ×𝐷) leaf nodes). We use \

= 1.0 in the experiments on latency-sensitive lookup queries, which

is the focus of this paper.

6.2 Data And Query Sets
All our experiments use tables with real production data. For de-

tailed analysis, we use a benchmark query template abstracted from

common production queries. The referenced table holds statistics

with a key < 𝐾1, 𝐾2, ..., 𝐾15 >, representing 15 dimensions. The

first key K1 represents ids (e.g. customer id, product id, etc.) and

K2 represents a temporal dimension (e.g. date). The table contains

multi-year data with K1 having hundreds of thousands of keys

while K2 has tens of thousands of keys. Figure 7 shows the distri-

bution of distinct values of K1 for this table, showing high skew

(which is very common for ids).

Benchmark query template.
For detailed analysis of the algorithms, we use a query looking

up on prefix ranges < 𝐾1, 𝐾2 > of a table:

SELECT K1, K2, SUM(V1),... SUM(Vn) FROM T
↩→ WHERE K1 IN (a1,· · · , a8)
↩→ AND K2 BETWEEN b1 AND b2
↩→ GROUP BY K1, K2;

We select 8 ids for K1 to demonstrate skewed distribution: 1

“large” id (sampled from the most frequent values) and 7 “median”

ids (sampled from the median frequent values). The number of rows

having the large id is 57K times larger than the other ids combined.

We change the size of the range of K2 to control the selectivity of

the query. We use relative selectivity compared to the number of

rows having K1 IN (a1,..., a8) (i.e., no filter on K2).

As is the case in production, the number of workers (= 𝑃 ) is

specified as an input parameter to the query. To provide a good

trade-off between the resource consumption and latency, the query

should speed up as 𝑃 increases. The actual number of partitions

can be smaller than P if there are not enough keys available from

the indices. We call this actual parallelism the effective number of
workers.

To measure the performance of a benchmark query instance

while minimizing unrelated noises, we run it multiple times, dis-

card initial runs, and acquire the average performance after the

distributed cache layer warms up.

Production queries.We also sample queries from the production

query logs to confirm that the observations in the benchmark are

consistent with production queries. We use our performance testing



Table 1: Skew ratio (maxworker time / average worker time) of each partitioning scheme (CPU time). The skew ratio 1.0means
perfect partitioning and a larger value indicates skew. The number in a parenthesis indicates the effective number of workers.

Progressive S = 250MB S = 500MB| S = 1GB S = 2GB
P = 10 1.48 (10) 1.49 (10) 1.87 (10) 2.21 (10) 4.31 (10)

P = 100 1.64 (100) 2.34 (60) 3.09 (32) 2.94 (19) 3.33 (12)

mechanism to automatically run a large number of different queries

for different system configurations. Given the diversity of queries in

the set, we report (50p, 90p) percentiles in addition to the average.

6.3 Evaluation of Query-specific Partitioning
First, we demonstrate the challenge in fast parallel lookup queries

that lead us to develop query-specific partitioning. We compare

query-specific partitioning to the approach of a fixed set of partition-

ing boundaries (e.g., data is range partitioned and stored into sepa-

rate files). At run time, the query will find partitions that overlap

with the query prefix ranges. To emulate this partitioning scheme,

we implement a modified version (called “fixed-size partitioning”)

of the partitioning component of Napa. The algorithm merges en-

tries from the B-tree indices and finds boundary keys for each size 𝑆 .

The algorithm checks each partition between boundaries whether

it overlaps with the query prefix ranges. Finally it returns only the

partitions that overlap (if the number of overlapping partitions is

larger than 𝑃 , they will be concatenated into 𝑃 partitions). This

partitioning algorithm emulates the case of pre-determined bound-

aries, but actually takes runtime cost to generate them. Hence, the

execution time of partitioning is not useful in this experiment. We

focus on the quality of partitioning (i.e., how evenly the prefix

range scan is split). The performance is measured as the speed up

relative to the sequential execution of the query: (wall time of a

sequential scan) / (max wall time of P parallel scans). We measure

the speed up for different partition sizes S and compare them with

the progressive partitioning (\ = 1). In the experiments the size S

ranges from 250MB to 2GB (in logical size after decompression and

decoding of physical data).

Figure 8 shows the results for the query with a relative selectiv-

ity 0.05. The fixed-size partitioning underperforms the progressive

partitioning for all the sizes for 𝑃 > 10.

For further investigation, Table 1 shows the skew ratio (max

worker time / average worker time) in terms of CPU time (which

will indicate whether the amount of work is evenly distributed

across the workers) and the effective number of workers. For P

= 100, all the fixed sizes failed to achieve the effective number of

workers desirable. S = 250MB is still too large to speed up this query

with P = 100. For P = 10, all the fixed sizes achieve the effective

number of workers. However, only S = 250MB splits partitions as

even as the progressive partitioning. The larger the fixed size is,

the more skewed the results are. This result indicates that the fixed

partition size should be much smaller than the scan partition size

of a query in order to avoid skew.

The experiment result indicates that, if we want to achieve a

sub-second latency for this query with 100 workers, we will need

fixed-size partitions smaller than 250MB, which means we have to

store a peta-byte table into the order of 10 million partitions. Such

fixed-size partitioning would be very inefficient, especially under

P (the number of workers specified)
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Figure 8: Speed-up of the parallel execution time (max
worker wall time relative to P = 1).

continuous data ingestion: the ingested data may be stored into a

large number of tiny files.

Instead of physically partitioning the data into files, we may

maintain the logical partition boundaries for fixed-size partitions.

Then we do not need physical partition alignment in LSM structure

that causes file fragmentation. However, maintaining and retrieving

such logical boundary keys in this scale is challenging by itself. This

is the problem we have addressed in this paper using B-tree per

delta within LSM-Tree structure.

6.4 Evaluation of Progressive Partitioning
This experiment compares the performance of progressive algo-

rithms against approaches that maintain flat equi-samples of the

tables to aid partitioning. To emulate such flat samples, we imple-

ment a non-progressive version of query-dependent partitioning

as another baseline, called fixed-level partitioning. The fixed-level

partitioning with level = K will retrieve matching index entries at

level K of each B-tree index (or highest possible level if the tree is

shorter). Level 0 is the leaf level, meaning that the keys of all the

matching data blocks are used in partitioning. Level 1 will retrieve

sparser key sampling from the next level of the B-trees. Given the

set of matching index entries, we perform the same partitioning

algorithm for only one round (i.e., no further drill down). In Napa

tables, the capacity (the number of entries) of B-tree nodes has

been tuned for the progressive partitioning algorithm: A leaf node

has 10 entries, and a node at a higher level has 1000 entries. If the

algorithm drills down one entry at level 1, it will get up to 10 more

matching entries from a level 0 node. We consider the fixed-level



Table 2: Detailed performance comparison at two selectivity points (0.005 and 0.5): the partitioning/total wall time ratio and
the effective number of workers.

Relative Selectivity Algorithms Partitioning time/total wall time ratio Effective number of workers

0.005

Progressive 59.66% 33

Level 0 55.50% 44

Level 1 26.26% 11

0.5

Progressive 19.70% 200

Level 0 43.35% 200

Level 1 21.07% 200

partitioning with level = 0 and 1. We have measured performance of

level = 2 but excluded from the results as it clearly underperforms

having only 1/1000 of the level 1 keys.

In this experiment, we consider end-to-end wall time including

the time taken in partitioning. Note that if the partitioning takes

significant time, the performance will be limited even if the scan

is split perfectly even. Figure 9 shows the relative wall time of

the fixed level partitioning level 0 and 1 against the progressive

algorithm (\ = 1) for varying the selectivity of the benchmark query

template for P = 200. When the relative selectivity is small (< 0.1),

the fixed level 1 is slower than the progressive and level 0. This is

because the fixed level 1 does not have enough keys for partitioning.

When the relative selectivity is large (> 0.4), fixed level 0 is slower

than progressive and level 1.
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Figure 9: The total wall time of Level 0 and 1 relative to
Progressive partitioning with verified selectivity of prefix
ranges

Table 2 shows the detailed performance at a small selectivity

(0.005) and a large selectivity (0.5). At the small selectivity (0.005),

Level 1 uses a smaller number of workers than Progressive and Level

0, which should affect its slow execution. To parallelize this small

query, we need to get keys from the leaf index nodes. Progressive

and Level 0 have similar total execution time because Progressive

also needs to visit read index nodes. At the large selectivity (0.5),

all the methods achieve the max number of workers (200) and

Progressive and Level 1 outperform Level 0, suggesting that there

are enough keys at level 1 index nodes to split this large query.

Level 0 reads all the matching leaf index blocks getting more keys

than required, resulting in significantly higher partitioning/total

wall time ratio.

While this experiment shows a general trend, the actual degree

of performance difference can be different in production. Recall

that the measured performance is with warm distributed caches to

reduce noise. In the actual production, the leaf index blocks can be

colder, and the impact of extra index reads to the tail performance

can be even more significant. In addition, the impact of skewed

distribution to prefix sizes will be more complex in the real queries:

it will be hard to determine the fixed level of sampling without

actually trying to split in a progressive way.

6.5 Evaluation of Production Queries
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Figure 10: Max worker wall time of progressive and fixed
size partitioning normalized relative to the average wall
time of progressive partitioning.

We use logged production queries on one representative table to

evaluate the performance of progressive partitioning. The cost of

the queries varies: from small queries that only need one worker (no

parallelism) to queries that use 100 workers. For small queries, the

exact partitioning scheme does not make significant performance

difference. Hence we exclude small queries (the effective number

of workers is less than 10) in the result. Even though small queries

don’t necessarily need the techniques described in this paper, most

of our query evaluation effort goes into large queries that need

these techniques and benefit greatly from them. Overall, these

techniques enable meaningful savings in our data centers. Figure 10

and Figure 11 are comparisons of progressive partitioning with

fixed size partitioning and fixed level partitioning, respectively.

Similar to the benchmark, we use the max worker wall time (i.e.

excluding partitioning) for fixed size partitioning and the total wall



Table 3: Detailed performance comparison: the partitioning/total wall time ratio and the effective number of workers. The
partitioning time is not available (meaningful) for fixed size partitioning (S).

Partitioning Time / Total Wall Time Ratio Effective Number of Workers
avg 50p 90p avg 50p 90p Max

Progressive 3.53% 3.22% 5.37% 27.52 18 64 100

Level 0 3.98% 3.67% 6.67% 30.103 20 69 100

Level 1 0.99% 0.79% 1.73% 5.192 4 10 77

S = 250MB N/A N/A N/A 12.093 8 27 100

S = 500MB N/A N/A N/A 6.8 5 14 100

S = 1GB N/A N/A N/A 3.897 3 8 51

S = 2GB N/A N/A N/A 2.479 2 4 29

time (i.e., including partitioning) for fixed level partitioning. Table 3

shows detailed performance that affect the time difference between

the progressive and baseline partitioning methods.
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Figure 11: Total wall time of progressive and fixed level par-
titioning normalized relative to the averagewall time of pro-
gressive partitioning.

As shown in Table 3, the fixed size partitioning (from 250MB

to 2GB) fails to gain as much parallelism (the effective number

of workers) as the progressive partitioning can get, resulting in

the larger max worker wall time in Figure 10. Similarly, Level 1

suffers from reduced parallelism and takes longer total wall time in

Figure 11. Notice that the effective number of workers is smaller

than 100 for most of the queries even with Level 0. For such queries,

parallelizing more than Level 0 would not gain much improvement:

A leaf index node has keys per data block, and a partition that is

much smaller than one data block will increase the read overhead

per row. Only a small fraction (< 10%) of the sampled queries

from the log (even after removing very small queries) are large

enough to use 100 workers. For such small queries, the behavior

of Progressive partitioning would be very similar to Level 0 as we

observe in Figure 11 and Table 3.

The benchmark result indicates that the fixed level 0 would suffer

from extra index read to run a large query with high parallelism.

Such queries are relatively infrequent and hard to get statistics

from the automatic replay of the query log. Instead, we picked up

5 largest queries from query log, ran individual queries multiple

times in the same manner as the benchmark query, and observed

similar results as the benchmark: The fixed level 0 took 2.6 ∼ 3.9x

more partitioning time than the progressive, resulting in 13 ∼ 26%

more total wall time under the warm distributed cache.

7 CONCLUSION
Napa’s progressive query-specific partitioning helps it achieve ex-

ceptional quality of service on billions of queries per day, with

sub-second response time and high efficiency. Our query-specific

technique partitions petabyte tables with onerous data skews, to

best meet the per-query latency and resource budget requirements.

The proposed approach is progressive in the sense it carefully bal-

ances the tradeoffs between “perfect” but time consuming versus

quick yet “uneven” during the partitioning process. B-tree supports

both indexed lookups as well as aids in the partitioning, thus aid-

ing both integral parts of query execution. Experimental results

demonstrate the effectiveness of our approach.
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