
Incremental Type Migration Using Type Algebra
Hyrum K. Wright

Google
Pittsburgh, Pennsylvania 15237

hwright@google.com

Abstract—When a new set of types is introduced into a
large software system, the task of retrofitting that system to
take advantage of those types is generally cost-prohibitive.
Existing automated type migration systems assume a one-to-
one correspondence between old types and new types, making
them unable to do partial migrations to more complex type sets.
By using compiler-based migration tooling and an algebraically
modeled type set, it is possible to use a small amount of manually
seeded type information to automatically propagate the new types
through a large monolithic C++ codebase. We demonstrate this
technique by automatically generating 20k+ individual changes
across a large industrial codebase of millions of lines of C++.

Index Terms—type inference, refactoring, software mainte-
nance

I. INTRODUCTION

Strong types help software engineers by constraining the
actions a well-formed program can perform [1]. When new
sets of types are introduced, engineers can use them to write
more clearly specified programs, avoiding bugs at compile-
time instead of depending on testing or runtime discovery
[2]. Existing legacy systems do not immediately benefit from
the improved constraints of new types. For example, existing
software may use an integer type to represent both position and
velocity, but a new set of types may represent the two concepts
as separate types with a constrained set of operations between
them to improve program correctness.

Migrating existing systems to new types is a process known
as type migration. Many tools exist which allow for auto-
mated single type migration across limited sets of code. This
model of type migration assumes that new types are directly
mappable to old ones, i.e., that the relationship between
them is one-to-one. With more complex sets of types, that
assumption no longer holds. In the above example, position
and velocity would be modeled as two different types, and
any type migration would need to infer the context in which
a given integer is semantically meaningful as a velocity or a
distance, or neither. The tool would also need to account for
other numeric types of inputs such as floating point values.

Recently Google adopted types to more correctly model
the concepts of time instants and intervals within our C++
codebase. These types are based on the mathematical model
of time instants as points in a one-dimensional affine space,
and time intervals as vectors in that space. Using this algebraic
model of Time types, we implemented automated tools which
can infer semantics of types from existing program syntax.
This technique has helped engineers use the types correctly in

new code, but also allows us to update existing legacy code
across our entire 250M lines of C++.

In this paper, we present a case study of our experiences in
doing this iterative large-scale type migration from numeric
types to this newly introduced set of Time types, using the
relationships between different variables to infer and propagate
type information. From a small amount of manually placed
initial information, known as a seed, we show how type
information spreads to additional variables, not just linearly
from caller to callee through a function call hierarchy. While
this technique relies upon the assumption that the existing code
is semantically correct, it also broadens the scope of traditional
type migrations, and scales to large codebases.

We implemented our approach as a collection of open-
source tools using the clang-tidy analysis and migration
framework on top of the clang project’s LibTooling infras-
tructure [3]. Using these tools, we have successfully applied
over 20k separate changes to Google’s corpus of 250M lines
of production C++ code, and found dozens of latent bugs in
the process.

Our goals when beginning this work were to explore the
feasibility of applying partial type migrations to our large C++
codebase, and to demonstrate that iterative gradual type infer-
ences are reasonable in a statically typed language. Concretely,
we also wanted to make our existing C++ codebase more
type safe when using time-related constructs, find existing
defects in our codebase and prevent future ones by making
code easier to write. We hope sharing our experience doing
these transformations at scale in an industrial setting, including
the limitations we encountered, is broadly useful.

II. MOTIVATING EXAMPLE

Throughout this paper, we use the example of the
Abseil Time library, which uses the absl::Time and
absl::Duration types to represent a time instant and
interval, respectively. Section III-A discusses this library in
detail. To illustate why this library is useful, consider the
legacy code example in Listing 1.

Listing 1 shows interfaces and a function which use both
time instants and time intervals, as well as several operations
between them. The code in Listing 1a uses floating point
numbers to represent both time instants and time intervals.
In the case of the time instant, this value represents units of
time since some zero point, measured in seconds. In the case
of the time interval, the value represents some amount of time
in seconds. In both of the cases shown in Listing 1a, both the



1 // Set the deadline to be `time` seconds from now.
2 void set_deadline(double time);
3

4 // Set the timeout at the timestamp `time`.
5 void set_timeout(double time);
6

7 double deadline();
8

9 double adjust(double offset_seconds) {
10 double deadline =
11 std::min(5, deadline()) - offset_seconds;
12

13 set_deadline(deadline);
14 return time(nullptr) + deadline;
15 }

(a) Example using numeric time types

1 void set_deadline(absl::Duration time);
2 void set_timeout(absl::Time time);
3 absl::Duration deadline();
4

5 absl::Time adjust(absl::Duration offset)) {
6 absl::Duration deadline =
7 std::min(absl::Seconds(5), deadline()) - offset;
8

9 set_deadline(deadline);
10 return absl::Now() + deadline;
11 }

(b) Example using strong time types

Listing 1: Comparison of numeric-typed time information
versus strongly-typed time information

kind of the variable, as well as the scale of its values (i.e.,
whether they are measured in seconds, milliseconds or hours)
is not part of the underlying type, and is communicated out-
of-band, either through documentation or variable naming.

Generic numeric types like double or int have
fewer constraints than the strongly-typed absl::Time and
absl::Duration. Because the meaning of these numeric
types is encoded by convention, and their constraints are not
enforced by the type system, programmers can easily provide
the wrong scale, or in some cases the wrong type (e.g., an
instant vs. an interval), when assigning values to variables or
function parameters. This is particularly easy when working
with ambiguous interfaces which lack a clear convention
within a large software system, or when values are propagated
through several interfaces before being used. Thorough testing
helps reduce, but not eliminate, these kinds of bugs.

In contrast, using stronger types such as absl::Time and
absl::Duration to represent time instants and intervals
encodes some of this information in the type which makes
writing correct programs easier, as in Listing 1b. Using
these types, programmers can clearly communicate intent by
constraining the meaning of a program’s data and operations.
This also eliminates the need to specify the type and scale of
a variable or parameter out-of-band.

Stronger types also improve implementations as well as
interfaces. The implementation of adjust in Listing 1a, lacks
strong type information compared to the updated implementa-
tion in 1b.These stronger types make updating an unfamiliar

implementation easier, as the type system constrains the kinds
of edits that can be made.

While these properties are useful for new code, existing
code in our codebase still uses the old types, limiting the
benefits of the new types by requiring conversions whenever
new code interacts with old systems. Additionally, engineers
often reference old code when writing new code [4], thus
perpetuating obsolete techniques. By using tools which take
advantage of the underlying type algebra, automatically mi-
grating code to stronger types is feasible.

Changing a single function’s implementation to use the im-
proved types may be reasonable for an individual programmer,
but for codebases with millions of lines of existing code, man-
ual upgrades are too costly to be feasible. Instead, if we want
to update legacy systems, we must use automation to make
the same kinds of transformations which a human programmer
would do. As we show in Section III, the absl::Time and
absl::Duration types are modeled on a one-dimensional
affine space. We can use this model and the strong relationship
between these types, along with compiler-based tooling, to
automatically perform transformations of the kind shown in
Listing 1b across a very large code base.

III. TIME TYPE SET

A type set is simply a collection of related types. While
any collection of types satisfies this broad definition, to be
useful for migration purposes, a type set should embody a
specific mathematical model which defines the valid operations
between types in the set. A simple example is C++ pointers
and integers. The C++ standard defines arithmetic operations
between pointer types and integers, modeled on the underlying
numeric operations, but some operations, such as addition of
two pointers, are undefined.

A. Abseil Time Library
The Abseil Time library defines the set of types

for time instants and intervals as absl::Time and
absl::Duration, respectively. The library also defines
operators which implement the defined operations in a type-
safe way, and omits those for which the operations are not
defined by the underlying algebra. The result of this increased
type safety is a natural way to do computations on time
intervals and instants, and fewer runtime bugs due to compile-
time enforcement. A complete description of the Abseil Time
Library can be found in its public repository [5].

To assist with migrations from existing codebases, and to
provide interoperability with legacy systems, Abseil Time also
provides conversion functions to and from the absl::Time
and absl::Duration types. A selection of these functions
is listed in Table I. These functions allow a system to incre-
mentally migrate to the new types, which is important when
doing non-atomic refactoring over a large system [6].

These functions operate over six different fixed-length
scales: hours, minutes, seconds, milliseconds, microseconds
and nanoseconds. For brevity, we will omit hours, microsec-
onds and nanoseconds from most of our examples, but migra-
tion techniques for them are analogous to the other scales.



absl::Duration absl::Minutes(double);
absl::Duration absl::Seconds(double);
absl::Duration absl::Milliseconds(double);

(a) absl::Duration factory functions: convert numeric values to
absl::Duration value at the given scale.
double absl::ToDoubleMinutes(absl::Duration);
double absl::ToDoubleSeconds(absl::Duration);
double absl::ToDoubleMilliseconds(absl::Duration);

(b) absl::Duration conversion functions: convert an
absl::Duration to the indicated scale.
absl::Time absl::FromUnixMinutes(int64_t);
absl::Time absl::FromUnixSeconds(int64_t);
absl::Time absl::FromUnixMillis(int64_t);

(c) absl::Time factory functions: convert a numeric value at the
given scale since the Unix epoch to an absl::Time representing
that time instant.
int64_t absl::FromUnixMinutes(absl::Time);
int64_t absl::FromUnixSeconds(absl::Time);
int64_t absl::FromUnixMillis(absl::Time);

(d) absl::Time conversion functions: take an absl::Time and
return a numeric value at the given scale since the Unix epoch.

TABLE I: Selections from the Abseil Time API

Expression Result

Time + Duration Time
Time - Duration Time
Time + Time Undefined
Time - Time Duration
Duration + Duration Duration
Duration - Duration Duration
Duration + Time Time
Duration - Time Undefined

TABLE II: Addition and Subtraction operations for Abseil
Time types

B. Time Algebra

Throughout this paper, we have discussed two types that
represent two distinct, yet related concepts: that of a time
instant and a time interval. Mathematically, these are part of
a one-dimensional affine space, with time instants as points
in that space and time intervals as vectors in that space. The
Abseil Time library defines the various operations which are
valid with and between and within this type set, summarized
in Table II. It is these algebraic relationships which we later
use to do type inference as part of our type migration.

This mathematical relationship implies operations beyond
addition and subtraction. For example, multiplication and
division by scalars are defined for absl::Duration, but
undefined for absl::Time. Because time intervals and time
instants are ordered, relational comparisons between like types
are also defined. absl::Duration factory functions also
distribute over mathematical operations and other C++ lan-
guage constructs. Examples of some additional operations are
summarized in Table III.

With enough existing type information, we can use this
type algebra to deduce additional type information about the
surrounding code. For example, if we know the result of an

Expression Result

Duration * Scalar Duration
Duration / Scalar Duration
Duration * Duration Scalar
Time <=> Time bool
Duration <=> Scalar bool
absl::Seconds(b ? x : y) b ? absl::Seconds(x)

: absl::Seconds(y)

TABLE III: Additional operations for Abseil Time types

addition expression is an absl::Time, and that its first
operand is also an absl::Time, we can deduce that the
second operand is semantically a time interval, regardless of
its declared type. We will explore the implications of these
kinds of deductions in Section IV.

C. Compiler-Based Transformations

Our tooling uses compiler-based techniques to scalably
match patterns found in a program’s abstract syntax tree (AST)
and generate proposed changes. This process can be efficiently
parallelized to run at scale across many machines, resulting in
full-system analyses which take only tens of minutes across
millions of lines of code. For C++, we use a collection of
tools built on the clang-tidy static analysis infrastructure,
which can be parallelized using the ClangMR architecture [7].

Using Clang’s AST matcher library allows us to efficiently
match specific patterns of nodes in the AST. After a node
is matched, we transform its text, using semantic information
about that node and its surroundings. This technique becomes
powerful when doing type transformations, since we can look
for specific expressions and then examine their context to
determine what the appropriate transformation should be. For
example, if a variable’s type is being changed, its references
must also be changed, but how to do so will depend on whether
it is being used as an lvalue or an rvalue—information which
is available in AST-based tools, but not in text-based ones.

These tools are implemented as part of the clang-tidy
infrastructure and can be run manually by engineers over
specific changes, as well as part of a broader static analysis
pipeline, such as the Tricorder framework during code review
[8]. Surfacing these fixes at review time helps prevent new
usage of old patterns from creeping back into our codebase,
and that ensures good patterns are applied moving forward.
Our set of clang-tidy checks for the Abseil Time library
is open source and available as part of the large clang-tidy
tooling suite [9].

IV. TRANSFORMATION PROCESS

We now describe the process we use to transform numeric
types, such as int and double, to the Abseil Time types
absl::Time and absl::Duration. Because this is not
a one-to-one mapping, we use the algebra described in Section
III-B to infer semantics from the existing syntax and perform
partial type migration. As these tools are applied iteratively,
they spread an initial small amount of information about the
time type set across millions of line of code.



Transformation Purpose

Expression-based Transformations

DurationComparison Convert comparisons to the
absl::Duration domain.

TimeComparison Convert comparisons to the absl::Time
domain.

Subtraction Deduce type information from subtraction
expressions

Addition Deduce type information from addition ex-
pressions

Variable Transformations

DurationLocalVariable Convert variables to absl::Duration
TimeLocalVariable Convert variables to absl::Time
DurationClassVariable Convert class members to

absl::Duration
TimeClassVariable Convert class members to absl::Time

Interfunction Transformations

DurationReturn Convert return type to absl::Duration
TimeReturn Convert return type to absl::Time
DurationParameter Convert parameters to absl::Duration
TimeParameter Convert parameters to absl::Time
DurationOverload Convert arguments at call sites to

absl::Duration
DurationOverload Convert arguments at call sites to

absl::Time

TABLE IV: Abseil Time transformations

A. Symbol Names

First, we note a tempting, but futile avenue for deducing
time type information: symbol names. Many functions and
variables hint at their time type semantics through their
names.1 Function names such as DeadlineSeconds and
GetSecondsSinceYesterday, as well as variable names
such as deadline_sec may seem to indicate that the
object in question could be unconditionally converted to a
absl::Duration, regardless of its surrounding context.

We have discovered that such transformations, however
tempting, are not advisable, because a function or variable
name is not sufficient to unambiguously determine whether the
value in question is a time interval or time instant. Making the
wrong transformation is often worse than making no transfor-
mation at all, since the iterative nature of the transformation
process means that such a mistake would propagate through
the entire software system. In these cases, we wait until more
context is available to determine the correct transformation.

B. Transformation Categories

The time algebra in Section III-B, allows us to enumerate
the different possible transformations we can perform using
only partial type information. We show why they are equiva-
lent to expressions using integers, and then show the limita-
tions of these transforms. A list of various transformations and
their purposes is shown in Table IV, and each one is described
in detail within the remainder of this section.

1) Expression-based Transformations: We refer to the first
class of transformation functions as expression-based trans-
formations because they use information available in a single

1The style guide our corpus uses constrains these names to a particular
form, giving some degree of parsability.

1 double deadline_seconds;
2 if (absl::ToDoubleSeconds(duration) >
3 deadline_seconds) ...

(a) Before transformation

1 double deadline_seconds;
2 if (duration > absl::Seconds(deadline_seconds)) ...

(b) After DurationComparison has been applied

Listing 2: DurationComparison transformation example

expression to propagate type information. Since expressions
often contain references to multiple variables, these transfor-
mations help deduce information about related variables in an
expression, providing a mechanism to spread type information
beyond the variables originally declared with a strong type.

a) Comparison: When a time interval is compared
against some other value, we infer that that value must also
be a time interval, and then deduce the scale of the interval
from the scale of the conversion function used. We call
this transformation DurationComparison, and apply it in any
boolean context. An example is shown in Listing 2.

It is more semantically correct to perform comparisons
in the absl::Duration domain both because it is
more precise—having defined behavior for overflow and
saturation—and better matches the semantic intent of the code.
We can later use the result in Listing 2 to infer information
about the deadline_seconds variable, a fact we use in
Section IV-B2.

While we use absl::Duration in this example, the
same principle applies for automated transformations to
absl::Time comparisons, which we call TimeComparison.
And while we use the seconds scale in our example, the tooling
for this and other examples works for all of the time scales
Abseil Time supports.

b) Subtraction and Addition: From Table II, we note
that subtraction is defined for several combinations of
absl::Duration and absl::Time types. Using the par-
tial type information available in a subtraction expression, we
infer information about the other members of the expression.
For example, the subtraction expression in Listing 3a has an
absl::Duration result, and the first operand is converted
from an absl::Time. Using the type information from Table
II, we infer that the second operand must also represent a
time instant. From this inference, we apply a transformation
which performs the subtraction operation using Abseil Time
types natively and avoids the final conversion of the entire
expression. We call this transformation Subtraction, and the
result is shown in Listing 3b.

It is important to note that just knowing the type of the first
operand in the above example is not sufficient to do a proper
transformation: we cannot infer from Table II what the second
operand’s type is without knowing the result (or the result’s
type without knowing the second operand’s). However, in the
case where we know the second operand is an absl::Time,
we have sufficient information to infer the types of both



1 int x;
2 absl::Time t;
3 absl::Duration d = absl::Seconds(
4 absl::ToUnixSeconds(t) - x);

(a) Before transformation

1 int x;
2 absl::Time t;
3 absl::Duration d = t - absl::FromUnixSeconds(x);

(b) After Subtraction has been applied

Listing 3: Subtraction transformation example

1 absl::Duration dur;
2 int number_of_milliseconds =
3 absl::ToInt64Milliseconds(dur);
4 int number_of_minutes = absl::ToInt64Minutes(dur);
5

6 absl::Seconds(dur / absl::Seconds(1));
7 absl::Seconds(absl::ToInt64Seconds(dur));
8 absl::Seconds(absl::ToDoubleSeconds(dur));
9 absl::Seconds(number_of_milliseconds / 1000.0);

10 absl::Seconds(number_of_minutes * 60);

Listing 4: Complex absl::Duration expressions

the first operand and the result, because subtraction of an
absl::Time from an absl::Duration is undefined.

The Addition transformation infers information in a similar
manner to the Subtraction transformation. Much like Dura-
tionComparison and TimeComparison, these transformations
allow type information to be propagated between separate
variables or subexpressions, which is crucial to the overall
goal of broad type propagation through a software system.

c) Local Canonicalizations: The final set of expression-
based transformations performs local canonicalizations. While
these do not have a direct role in propagating type information,
they simplify existing absl::Time and absl::Duration
expressions to enable the AST-based pattern matchers to be
simpler and to match a more comprehensive set of candidates.
Each of the expressions shown in Listing 4 can be simplified,
so rather than handle all of these cases in each transformation
tool, we instead use separate tools to homogenize the codebase
to the simplest possible expression.

2) Local Variable Transformations: After applying the
above expression-based transformations, we can then expand
our scope to look at changes which span expressions within
the same function. These transformations fall into a single
category: local variable type changes.

Consider the function in Listing 5a—which may have been
the result of a previous application of DurationComparison.
We infer from the use of absl::Seconds in line 3 that
the variable x is interpreted as a number of seconds. Using
this information, we change the type of x, and update all its
references with appropriate conversion functions to maintain
existing semantics of the function, as shown in Listing 5b.

We call this transformation DurationLocalVariable, with an
analog of TimeDurationVariable for the absl::Time do-
main. In general, we identify candidate variables in two ways.

1 void func(absl::Duration d) {
2 int x = get_deadline();
3 if (d < absl::Seconds(x)) ...
4

5 x += 60;
6 x *= 2;
7 int y = x;
8 }

(a) Before transformation

1 void func(absl::Duration d) {
2 absl::Duration x = absl::Seconds(get_deadline());
3 if (d < x) ...
4

5 x += absl::Seconds(60);
6 x *= 2;
7 int y = absl::ToInt64Seconds(x);
8 }

(b) After DurationLocalVariable has been applied

Listing 5: DurationLocalVariable transformation example

First, we look for variables which are initialized or assigned to
by calls to absl::Duration conversion functions, such as
absl::ToDoubleSeconds. Second, we look for variables
which are used as arguments to absl::Duration factory
functions, as is the case with x in Listing 5a. Finally, we
prune the candidate list by eliminating variables for which the
address is taken, because the tooling is not yet robust enough
to handle transformations for pointers, only values.

This identification method is conservative, because it only
finds variables which are currently being used in an Abseil
Time context. We prefer this conservative approach because it
avoids making the wrong inference, and possibly propagating
the wrong time information further through the program.

DurationLocalVariable is an example of how AST-based
tooling makes type set migration possible. The context in the
AST gives information about how each reference to a variable
should be transformed. For example, variable references which
are the result of an assignment should apply a conversion
function to the expression they are being assigned to, whereas
references used as an rvalue should themselves be wrapped in
a conversion function. Certain parts of the language, such as
lambda capture lists, remain unchanged.

We discovered early in our pilot process that human re-
viewers preferred certain variable name changes in conjunc-
tion with the type change. Accordingly, the DurationLocal-
Variable tool updates variable names in cases where it can
infer that the name was being used to denote a certain
scale. Thus deadline_seconds becomes deadline, but
sleep_interval remains unchanged. The result is code
which looks more natural to a human reader.

3) Interfunction Transformations: The combination of
expression-based transformations and local variable transfor-
mations can push type information to the boundaries of a func-
tion: its inputs as parameters and its outputs as return values.
From here, we can continue pushing type information through
our system by identifying and changing function parameter



1 void f1(double deadline_seconds) {
2 double my_deadline = deadline_seconds + 5.0;
3 }
4

5 void f2() {
6 absl::Duration dur = absl::Seconds(3);
7 f1(absl::ToDoubleSeconds(dur));
8 }

(a) Before transformation

1 void f1(absl::Duration deadline) {
2 double my_deadline = absl::ToDoubleSeconds(

deadline) + 5.0;
3 }
4

5 void f2() {
6 absl::Duration dur = absl::Seconds(3);
7 f1(dur);
8 }

(b) After DurationParameter has been applied

Listing 6: DurationParameter transformation example

types and return types, along with the associated callers, using
traditional data flow and type inference techniques.

a) Function Parameters: We can identify function pa-
rameter candidates for transformation much the same way that
we can identify local variables: looking for parameters which
are initialized or assigned to by calls to absl::Duration
conversion functions within a function, or finding parameters
which are used as arguments to absl::Duration factory
functions. It is also possible to use information external
to a function to identify parameter migration candidates: if
a function is called with arguments which are themselves
conversions from an absl::Duration, we know that the
argument can be migrated. An example is given in Listing 6.

This type of transformation is possible for both
absl::Duration and absl::Time types, and we
call the respective transformations DurationParameter and
TimeParameter. Changing the type of a function parameter
spreads type information across function boundaries, and
more importantly to other callers of the same function which
might be in completely unrelated contexts.

The size of our codebase prohibits changing all callers to
all functions atomically. In cases where we cannot show that
all callers can be changed at the same time as the function
being updated, we add an appropriate overload in one change,
and then apply a separate transformation, DurationOverload
(or TimeOverload for absl::Time parameters) to update
callers to use the new overload in subsequent changes.

Adding separate transformations to only migrate callers to a
new overload has an additional advantage: we can seed high-
caller functions by manually adding new overloads and then
run the standard transformation to migrate their callers. In our
case study, we seeded just 10 functions, which collectively had
tens of thousands of callers, and then allowed that information
to inform the remaining transformations.

b) Return Types: As with function parameters, we can
identify return type migration candidates using information

1 int get_future() {
2 return absl::FromUnixSeconds(absl::Now() + absl::

Seconds(5));
3 }
4

5 void func() {
6 int future = get_future();
7 }

(a) Before transformation

1 absl::Time get_future() {
2 return absl::Now() + absl::Seconds(5);
3 }
4

5 void func() {
6 int future = absl::ToUnixSeconds(get_future());
7 }

(b) After TimeReturn has been applied

Listing 7: TimeReturn transformation example

1 class Fuzz {
2 private:
3 int delay_ms;
4

5 void func() { set_deadline(absl::Milliseconds(
delay_ms)); }

6 };

(a) Before transformation

1 class Fuzz {
2 private:
3 absl::Duration delay;
4

5 void func() { set_deadline(delay); }
6 };

(b) After DurationClassVariable has been applied

Listing 8: DurationClassVariable transformation example

from both inside and outside a function. If a function’s return
value is converted from an absl::Duration inside the
function’s return statement, or if the value being returned
from a function is converted to an absl::Duration at the
callsite, then the function is a reasonable candidate for the
DurationReturn transformation (or TimeReturn if the value
is converted from or to an absl::Time value). As with
DurationParameter, changes to both the function and its
callers must be made simultaneously. Listing 7 shows an
example of the TimeReturn transformation.

c) Class Variables: The final class of supported intra-
function transformations touches class variables. We limit
these transformations, DurationClassVariable and TimeClass-
Variable, to private variables, so that we can see all of their
references in a single translation unit.

As with other intrafunction transformations, changing the
type of private variables allows other references to those vari-
ables to infer further information about the type characteristics
of their enclosing expressions, as in Listing 8.



C. Iteration

One final note about the transformations presented in this
section: we have observed that because of their constructive
nature, they are best run iteratively across our codebase. For
example, DurationComparison might find a variable which
LocalDurationVariable can then migrate, which might then
generate an expression which Subtraction can change. Using
a regularly running static analysis framework enables the
expression-based changes to be flagged during code review
and allows engineers to group several transformations together
into a single committed change.

The result is a suite of tools which can be run constantly
across our large C++ codebase and, over time, cause this
codebase to converge to a more type-safe state using Abseil
Time types. This kind of iterative type transformation results
in a fixed-point iteration for a given set of transformations.

V. CASE STUDY

Google’s codebase is a massive collection of code rep-
resenting many different types of development patterns and
usages [10]. Our codebase uses time concepts extensively to
express deadlines and timeouts. In this section, we present the
practical experience deploying our tools across this corpus of
250M lines of C++ code. We also explore the limitations of
our techniques as discovered through this deployment process.

A. Methodology

Using the distributed analysis infrastructure mentioned in
Section III-C, we ran each of the transformations described
in Section IV-B across our entire corpus of C++ code. This
process generated one large set of changes for each trans-
formation spanning the entire corpus. This large change was
then split along individual project boundaries for testing and
code review purposes. These boundaries generally correspond
to individual directories within the monolithic corpus. Each of
these subchanges was then tested and reviewed like any other
change to code going into our production systems.

For practical reasons in our evaluation, we limited ourselves
to 50 pending simultaneous outstanding changes2. We also
focused our efforts on specific transformations, rather than
attempting to run all of them over the codebase simultaneously.
Over the course of many months, this process generated
thousands of individual changes which have been committed
to our production C++ codebase. Table V shows a summary
of the number of committed changes for each transformation.

Because we grouped changes for the same transformation
together when sending them to individual teams, the results in
Table V are a lower bound on the number of discrete edits our
tooling has produced. These numbers also omit changes made
as part of pre-review testing or automated static analysis, due
to tracking deficiencies in our source control system.

The number of DurationOverload changes dominates the
total results primarily because it was the first change to start

2Since we are doing this work on live systems, this limitation prevents our
automated tooling from overwhelming engineer review capacity.

Transformation Change count

Subtraction 1779
Addition 1979
DurationComparison 839
TimeComparison 904
DurationLocalVariable 3743
TimeLocalVariable 1583
DurationPrivateVariable 1473
TimePrivateVariable 458
DurationOverload 7266

Total 20024

TABLE V: Number of changes applied by transformation

running. Recall that to start the process we manually add
overloads to high-caller functions, and then use DurationOver-
load to spread that initial type information throughout the
codebase. While still a very rough estimate, the remaining
changes outnumber those of DurationOverload by a 2:1 ratio.

1) Correctness: We used three methods to evaluate our
tools’ correctness: the compiler, existing unit tests, and human
inspection. As part of the review process, each generated
change was run through the compiler to ensure that the
transformation tooling produced syntactically valid output.
When we discovered cases where it did not, we used that
case as an example to refine our tooling.

After compilation, the change was then run through our unit
test system, which runs not only the tests directly affected
by a given change, but all tests transitively impacted by the
change [11]. The result is a robust assurance that the change
generated is semantic-preserving.

Finally, each change was inspected by a human reviewer
as part of Google’s standard code review process. More
than 97% of changes were approved by reviewers without
comment. Of the remaining changes, most reviewers suggested
additional improvements inspired by the transformation at
hand, and some were simply complimentary of the change
being made. In a few instances, reviewers were concerned
about the proposed change, but this almost always stemmed
from unfamiliarity with the Abseil Time library itself, and not
the correctness of the underlying change.

2) Performance: Because our transformation tooling oper-
ates on the AST, and ASTs from different translation units are
independent, we can parallelize our analysis across translation
units. Using an analysis system such as MapReduce [12],
and sharding our analysis across thousands of machines, it is
possible to analyze our 250M line C++ corpus in less than an
hour. The dominant factor in getting each independent change
submitted to the codebase was not the analysis step, but the
time spent in testing and human review.

We continue to run the automated tools across our codebase
to catch newly-added instances of transformation candidates.
Anecdotally, it is not uncommon for recipients of an au-
tomated change to make further manual improvements in
the area around the automated transformation, rather than
wait for future transformations to make those changes. These
improvements often preempt cases in which the output of one
transformation produces an input pattern to a subsequent one,



1 void func(double wait_seconds);
2

3 void gunc() {
4 double wait_milliseconds = ...
5 func(wait_milliseconds);
6 }

(a) Calling a function a numeric parameter with incorrect scale

1 void func(absl::Duration wait);
2

3 void gunc(double wait_milliseconds) {
4 double wait_milliseconds = ...
5 func(absl::Seconds(wait_milliseconds));
6 }

(b) After DurationOverload has been applied

Listing 9: Example of an incorrect time interval scale

so those are not counted in Table V. We expect the work to
be complete when the transformations reach a fixed point.

B. Defects Found

One of the aims of this work is to find and fix software
defects resulting from using numeric types to hold time values.
We found a number of these defects, though the rate of oc-
currence was less than we expected, around twenty confirmed
cases, which represents a defect rate of only 0.13%. We expect
that due to a robust testing culture, semantic mismatch bugs
tend to be resolved quickly, and not linger for this type of
analysis to find. The low number of existing defects does not
diminish the value of performing these changes: engineers
within Google report that the more explicit type set makes
future development less error prone, though we have not
measured the numbers of prevented bugs. Here we highlight
two common defect modes we found, and which improved
types help prevent: incorrect scale, and incorrect type.

1) Incorrect Scale: One bug pattern which emerged from
this work is that of passing a value with the incorrect scale as
a parameter to a function (see Listing 9). The function func
takes a numeric value which it interprets as some number of
seconds, but the calling function passes a value which is scaled
in milliseconds. This means the value provided to func is a
thousand times larger than the engineer likely intended.

After performing the DurationArgument transformation, the
argument to func is wrapped in an absl::Duration
factory for an explicit scale. This does not fix the bug, because
transformations are intended to be behavior preserving, but it
does make the bug much more obvious, making it likely that
reviewers will fix the bug in a subsequent change.

2) Incorrect Type: The other kind of defect we have
encountered is the substitution of a time interval for a time
instant, or vice versa. For example, the code in Listing
10 incorrectly passes an integer representing the number of
seconds since the Unix epoch as a time interval. The caller
is inadvertently providing an interval on the order of many
years, rather than a few seconds as is probably intended.

After several transformations, the bug is much more obvious
to a reader of the code, who can then independently fix

1 void func(int wait_seconds);
2

3 void gunc() {
4 int wait_until = time(nullptr) + 5;
5 func(wait_until);
6 }

(a) Calling a function with a interval parameter with an instant value

1 void func(absl::Duration wait_seconds);
2

3 void gunc() {
4 absl::Duration wait_until =
5 absl::Seconds(time(nullptr) + 5);
6 func(wait_until);
7 }

(b) After DurationOverload has been applied

Listing 10: Example of an incorrect time type

it. The reason for maintaining semantic equivalence and not
fixing these bugs when they are discovered comes from the
realization that seemingly minor “fixes” like these can often
lead to unexpected effects in broader systems, and those effects
should be separated from the transformation itself.

C. Limitations

In spite of the power of our existing library of transfor-
mations, there are several instances where we cannot or do
not automatically convert variables or expressions to further
propagate type information, which we outline below.

1) Conservative Transformations: We intentionally limit
the scope of our transformations to those which we can
demonstrate maintain functional and semantic equivalence.
This means that we miss some transformation opportunities,
rather than speculate on the result of a transformation and
potentially change the meaning of a program. Our experience
with complex software systems indicates that it is hard to show
that any change is perfectly safe, so we limit ourselves to
changes for which we have a high degree of confidence.

In practice, this means rather than changing every vari-
able in a transformation such as DurationLocalVariable, we
only change variables with names which indicate they are
likely to be time intervals, such as waiting_seconds or
update_interval. This limitation means we may not fully
propagate as much information as we would like.

The nature of the Clang AST matcher library imposes
another constraint. Because the library matches on very spe-
cific constructs of the abstract syntax tree, it misses cases
where programs use non-conventional syntax in specifying
absl::Duration values, such as by casting. The local
canonicalization transformations help by making these con-
structs more homogeneous, but ultimately some cases will be
missed because of non-matching by the AST-based tooling.

Finally, while we support the Abseil Time library across
the entire C++ codebase, we have discovered that, individual
teams have adopted custom types for time instants and inter-
vals. These relatively rare cases, rarely extend past a single
team or subsystem, so we just ignore them.



2) Information Deficiencies: Lack of information about
some expressions also limits our current process. In Section
III-B, we mentioned that multiplying and dividing by scalar
values is a supported operation for absl::Duration val-
ues, yet we do not automatically distribute multiplication or
division across absl::Duration expressions. In theory
this transformation should produce an equivalent result, but in
practice, many scalar values have additional semantic meaning,
much like pre-Abseil Time integers do.

Consider scalars which represent a rate: when multiplied
by an absl::Duration, they do not yield a time interval,
but different semantic value instead. Listing 11 shows such an
example.

1 absl::Duration d = ...
2 int frames_per_seconds = ...
3 int frames = absl::ToInt64Seconds(d) *
4 frames_per_second;

Listing 11: Nontransformable multiplication by a scalar

In this case, we do not want to move the multiplication
inside the call to absl::ToInt64Seconds, because the
resulting argument is not semantically a time interval, but a
number of frames. Being overly aggressive when transforming
multiplications may have the effect of making future type
changes more difficult, so we currently omit them.

System boundaries also represent a type of information
deficiency. Because the C++ software in our corpus eventually
interacts with systems not written in C++, and those systems
do not share a common representation of time information,
they represent a hard limit on how far we are able to push our
type propagation. These system inputs and outputs may be in
the form of flags, configuration values, user input, or a remote
procedure call serialization framework.

3) Overridden Functions: While TimeParameter and Dura-
tionParameter work for both free and class member functions
and constructors, they do not work for virtual functions.
Function overrides and their base class definitions need to
be updated in concert, and because we are primarily focused
on single-translation-unit transformations, we avoid virtual
functions and their overrides. This is a practical limitation,
not a theoretical one, and could be improved in the future.

4) Templates and Macros: C++ templates and macros pro-
vide a mechanism for writing generic code. Macros are not
part of a program’s AST, and patterns found inside a macro
definition often confuse the clang-tidy-based tools. Tem-
plates also present additional tooling challenges. Fortunately,
these kinds of tooling failures result in compile-time errors
which can be caught early in the process. In reality, we found
fewer than 10 such failures across our entire codebase, and
opted to make these changes by hand, rather than implement
workarounds for them in our tooling.

VI. RELATED WORK

This case study builds upon two primary areas of work:
type inference and type migration. The tools developed for
our case study combine both of these techniques to migrate

types in more complex ways than traditional type migration
tools. Our work builds upon earlier theoretical efforts by
producing changes which are tested, reviewed and submitted
into a production corpus, rather than just identifying cases
where type mismatches may occur, as in traditional static type
analysis. Our work also differs because it allows many-to-
many type inference and migration, rather than the one-to-one
limitations of existing work.

A. Type Inference

The area of type inference is not new [13], and remains a
subject of active research, particularly for dynamically typed
languages. For example, Ruby [14], Javascript [15], [16], and
Python [17], [18] have all seen a significant work in inferring
types to help improve program correctness. There has been
much less work for more strongly typed languages, such as
C++. Previous work on dynamic languages is usually limited
to identifying problems during static analysis, rather than
making permanent edits to the program. They also follow the
type system linearly, rather than using algebraic underpinnings
of a type set to spread time information both vertically through
a function call hierarchy and horizontally through expressions.

Our tools build upon earlier efforts in the area of gradual
typing [19], [20]. While most theoretical efforts in this area,
require complete soundness, our practical experience indicates
that we can rely upon ”defense in depth” to catch deficiencies
in our tooling. Most gradual typing techniques have been
applied to languages more amenable to the approach, such
as functional languages [21], rather than a more common
industrial language like C++. While completely sound gradual
typing may face significant theoretical challenges [22], in
practice complete soundness is not required for usefulness.

B. Type Migration

Researchers have extensively examined the process of mi-
grating from one type to another, primarily in the context of
library upgrades and migration [23], [24]. Other approaches
include generating new adapters for new libraries [25] or
migrating types based on existing examples [26]. Many of
these approaches do not scale to large codebases, nor do they
work in iteratively as described in our case study. Other work
shows that type migration can scale to a larger and more
complex call hierarchy, but still relies upon the ability to
commit changes atomically [27].

Our work also builds on constraint-based type migrations
[28], only our constraints are informed by the underlying
type algebra, rather than inference. Derivative constraint-based
solutions often require an existing type-correct program, and
while our solution requires that code be syntactically correct
(so that the compiler-based tools can function), it works in a
real-world environment where code is often not semantically
correct (as shown by the types of defects we discovered).

Furthermore, most of the existing type migration tools target
the Java language. With a different type system design, C++
presents a different set of practical considerations than Java



when doing type migration. Our work shows that it is also
practical to do automatic type migration in C++ as well.

VII. CONCLUSION

Historically, large-scale automated migrations have focused
on changing single function calls or types through dataflow
analysis. Type inference has likewise been used to propagate
information about existing types linearly through a codebase.
In this paper we have shown that is is possible to do deeper
type inference by using the algebra that models a set of types
to do inference of related types, and then iteratively spread
that information through a C++ codebase of 250M lines.

This work has demonstrated the feasibility of doing partial
type migrations across a large codebase, and has inspired
additional efforts within our codebase, such as inferring and
migrating pointer ownership analysis. By being able to au-
tomatically migrate entire type sets, not just single types,
we reduce the cost of adding further type safety to legacy
code, and prevent bugs by making it easier for engineers to
understand and use legacy systems.

ACKNOWLEDGMENT

The author wishes to thank Greg Miller and Bradley White
for their work on designing and implementing the Abseil Time
library, as well as the many reviewers of drafts of this paper.

REFERENCES

[1] L. Cardelli, “Type systems,” ACM Computing Surveys,
vol. 28, no. 1, pp. 263–264, Mar. 1996. [Online]. Available:
http://doi.acm.org/10.1145/234313.234418

[2] B. C. Pierce, Types and Programming Languages, 1st ed. The MIT
Press, 2002.

[3] “Clang-tidy,” https://clang.llvm.org/extra/clang-tidy/, 2019.
[4] J. Brandt, P. J. Guo, J. Lewenstein, M. Dontcheva, and S. R. Klemmer,

“Two studies of opportunistic programming: Interleaving web foraging,
learning, and writing code,” in Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems, ser. CHI ’09. New
York, NY, USA: ACM, 2009, pp. 1589–1598. [Online]. Available:
http://doi.acm.org/10.1145/1518701.1518944

[5] “Abseil time,” https://github.com/abseil/abseil-cpp/tree/master/absl/time,
2019.

[6] T. Winters, “Non-atomic refactoring and software sustainability,” in
Proceedings of the 2nd International Workshop on API Usage and
Evolution, ser. WAPI ’18. New York, NY, USA: ACM, 2018, pp. 2–5.
[Online]. Available: http://doi.acm.org/10.1145/3194793.3194794

[7] H. K. Wright, D. Jasper, M. Klimek, C. Carruth, and Z. Wan,
“Large-scale automated refactoring using ClangMR,” in Proceedings of
the 2013 IEEE International Conference on Software Maintenance, ser.
ICSM ’13. Washington, DC, USA: IEEE Computer Society, 2013, pp.
548–551. [Online]. Available: http://dx.doi.org/10.1109/ICSM.2013.93

[8] C. Sadowski, J. van Gogh, C. Jaspan, E. Söderberg, and C. Winter,
“Tricorder: Building a program analysis ecosystem,” in Proceedings of
the 37th International Conference on Software Engineering - Volume 1,
ser. ICSE ’15. Piscataway, NJ, USA: IEEE Press, 2015, pp. 598–608.
[Online]. Available: http://dl.acm.org/citation.cfm?id=2818754.2818828

[9] “Abseil time tools,” https://github.com/llvm-mirror/clang-tools-
extra/tree/master/clang-tidy/abseil, 2019.

[10] R. Potvin and J. Levenburg, “Why Google stores billions of lines
of code in a single repository,” Communications of the ACM, 2016.
[Online]. Available: https://dl.acm.org/doi/10.1145/2854146

[11] A. Memon, Zebao Gao, Bao Nguyen, S. Dhanda, E. Nickell,
R. Siemborski, and J. Micco, “Taming google-scale continuous
testing,” in 2017 IEEE/ACM 39th International Conference
on Software Engineering: Software Engineering in Practice
Track (ICSE-SEIP), 2017, pp. 233–242. [Online]. Available:
https://ieeexplore.ieee.org/document/7965447

[12] J. Dean and S. Ghemawat, “MapReduce: Simplified data processing on
large clusters,” Commun. ACM, vol. 51, no. 1, pp. 107–113, Jan. 2008.
[Online]. Available: http://doi.acm.org/10.1145/1327452.1327492

[13] A. M. Tenenbaum, “Type determination for very high level languages.”
Ph.D. dissertation, USA, 1974, aAI7509706.

[14] M. Furr, J.-h. D. An, J. S. Foster, and M. Hicks, “Static type inference
for Ruby,” in Proceedings of the 2009 ACM Symposium on Applied
Computing, ser. SAC ’09. New York, NY, USA: ACM, 2009, pp. 1859–
1866. [Online]. Available: http://doi.acm.org/10.1145/1529282.1529700

[15] C. Anderson and P. Giannini, “Type checking for JavaScript,” Electron.
Notes Theor. Comput. Sci., vol. 138, no. 2, pp. 37–58, Nov. 2005.
[Online]. Available: http://dx.doi.org/10.1016/j.entcs.2005.09.010

[16] S. Chandra, C. S. Gordon, J.-B. Jeannin, C. Schlesinger, M. Sridharan,
F. Tip, and Y. Choi, “Type inference for static compilation of JavaScript,”
in Proceedings of the 2016 ACM SIGPLAN International Conference on
Object-Oriented Programming, Systems, Languages, and Applications,
ser. OOPSLA 2016. New York, NY, USA: ACM, 2016, pp. 410–429.
[Online]. Available: http://doi.acm.org/10.1145/2983990.2984017

[17] Z. Xu, X. Zhang, L. Chen, K. Pei, and B. Xu, “Python
probabilistic type inference with natural language support,” in
Proceedings of the 2016 24th ACM SIGSOFT International Symposium
on Foundations of Software Engineering, ser. FSE 2016. New
York, NY, USA: ACM, 2016, pp. 607–618. [Online]. Available:
http://doi.acm.org/10.1145/2950290.2950343

[18] M. M. Vitousek, A. M. Kent, J. G. Siek, and J. Baker, “Design
and evaluation of gradual typing for Python,” in Proceedings of
the 10th ACM Symposium on Dynamic Languages, ser. DLS ’14.
New York, NY, USA: ACM, 2014, pp. 45–56. [Online]. Available:
http://doi.acm.org/10.1145/2661088.2661101

[19] J. Siek and W. Taha, “Gradual typing for objects,” in Proceedings
of the 21st European Conference on Object-Oriented Programming,
ser. ECOOP’07. Berlin, Heidelberg: Springer-Verlag, 2007, pp. 2–27.
[Online]. Available: http://dl.acm.org/citation.cfm?id=2394758.2394762

[20] A. Rastogi, A. Chaudhuri, and B. Hosmer, “The ins and outs of gradual
type inference,” in Proceedings of the 39th Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, ser.
POPL ’12. New York, NY, USA: ACM, 2012, pp. 481–494. [Online].
Available: http://doi.acm.org/10.1145/2103656.2103714

[21] J. Siek and W. Taha, “Gradual typing for functional languages,” 01 2006.
[22] A. Takikawa, D. Feltey, B. Greenman, M. S. New, J. Vitek, and

M. Felleisen, “Is sound gradual typing dead?” in Proceedings
of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, ser. POPL ’16. New
York, NY, USA: ACM, 2016, pp. 456–468. [Online]. Available:
http://doi.acm.org/10.1145/2837614.2837630

[23] I. Balaban, F. Tip, and R. Fuhrer, “Refactoring support for
class library migration,” in Proceedings of the 20th Annual
ACM SIGPLAN Conference on Object-oriented Programming,
Systems, Languages, and Applications, ser. OOPSLA ’05. New
York, NY, USA: ACM, 2005, pp. 265–279. [Online]. Available:
http://doi.acm.org/10.1145/1094811.1094832

[24] P. Kapur, B. Cossette, and R. J. Walker, “Refactoring references for
library migration,” in Proceedings of the ACM International Conference
on Object Oriented Programming Systems Languages and Applications,
ser. OOPSLA ’10. New York, NY, USA: ACM, 2010, pp. 726–738.
[Online]. Available: http://doi.acm.org/10.1145/1869459.1869518

[25] V. L. Winter and A. Mametjanov, “Generative programming techniques
for Java library migration,” in Proceedings of the 6th International
Conference on Generative Programming and Component Engineering,
ser. GPCE ’07. New York, NY, USA: ACM, 2007, pp. 185–196.
[Online]. Available: http://doi.acm.org/10.1145/1289971.1290001

[26] Z. Xing and E. Stroulia, “API-evolution support with diff-catchup,”
IEEE Trans. Softw. Eng., vol. 33, no. 12, pp. 818–836, Dec. 2007.
[Online]. Available: http://dx.doi.org/10.1109/TSE.2007.70747

[27] A. Ketkar, A. Mesbah, D. Mazinanian, D. Dig, and E. Aftandilian,
“Type migration in ultra-large-scale codebases,” in Proceedings of
the 41st International Conference on Software Engineering, ser.
ICSE ’19. IEEE Press, 2019, p. 1142–1153. [Online]. Available:
https://doi.org/10.1109/ICSE.2019.00117

[28] F. Tip, R. M. Fuhrer, A. Kieżun, M. D. Ernst, I. Balaban, and
B. De Sutter, “Refactoring using type constraints,” ACM Trans.
Program. Lang. Syst., vol. 33, no. 3, pp. 9:1–9:47, May 2011. [Online].
Available: http://doi.acm.org/10.1145/1961204.1961205


