
LAIT: Efficient Multi-Segment Encoding in Transformers with
Layer-Adjustable Interaction

Jeremiah Milbauer1,2∗, Annie Louis1, Mohammad Javad Hosseini1,
Alex Fabrikant1, Donald Metzler1, Tal Schuster1

1Google Research 2Carnegie Mellon University
jmilbaue@andrew.cmu.edu, talschuster@google.com

Abstract

Transformer encoders contextualize token rep-
resentations by attending to all other tokens
at each layer, leading to quadratic increase
in compute effort with the input length. In
practice, however, the input text of many
NLP tasks can be seen as a sequence of re-
lated segments (e.g., the sequence of sen-
tences within a passage, or the hypothesis
and premise in NLI). While attending across
these segments is highly beneficial for many
tasks, we hypothesize that this interaction
can be delayed until later encoding stages.
To this end, we introduce Layer-Adjustable
Interactions in Transformers (LAIT). Within
LAIT, segmented inputs are first encoded in-
dependently, and then jointly. This par-
tial two-tower architecture bridges the gap
between a Dual Encoder’s ability to pre-
compute representations for segments and a
fully self-attentive Transformer’s capacity to
model cross-segment attention. The LAIT
framework effectively leverages existing pre-
trained Transformers and converts them into
the hybrid of the two aforementioned architec-
tures, allowing for easy and intuitive control
over the performance-efficiency tradeoff. Ex-
perimenting on a wide range of NLP tasks, we
find LAIT able to reduce 30-50% of the at-
tention FLOPs on many tasks, while preserv-
ing high accuracy; in some practical settings,
LAIT could reduce actual latency by orders of
magnitude.

1 Introduction

Although the meaning of a sentence may depend
on the context in which it appears, sentences still
have meaning per se. However, in tasks involving
reasoning across multiple sentences or text seg-
ments — like natural language inference (NLI),
fact verification, question answering (QA), seman-
tic similarity (STS), etc. — the common setting
is to concatenate and jointly process all tokenized

∗ Work done as an intern at Google Research.

EVIDENCE:

L

EVIDENCE:

all geeks are mortal

all geeks are humans

all humans are mortal

CLAIM:

Fully parallel encoding:
L

all geeks are mortal

all geeks are humans

all humans are mortal

CLAIM:

EVIDENCE:

EVIDENCE:

Fully self-attentive encoding:

CLAIM:

P L P-

all geeks are mortal

all geeks are humans

all humans are mortal

EVIDENCE:

EVIDENCE:

Layer-adjustable interaction:

Figure 1: A comparison of three approaches to multi-
segment modeling for an arbitrary claim verification
task. a) Fully-self attentive architecture, with each to-
ken attending to each other token over L layers. b) Gen-
eralized dual encoder, with each segment encoded sep-
arately by an L-layer Transformer and representations
concatenated. c) Layer-adjustable interactions (ours),
with N layers of independent segment encoding and
L− P layers of fully self-attentive segment encoding.

segments as input to a neural model, most often
some form of bidirectional Transformer-based ar-
chitecture (Vaswani et al., 2017). In this setting,
the self-attention blocks of the Transformer layers
contextualize the per-token representations against
all other input tokens, including those of differ-
ent input segments. The potential for independent
sentence-level semantics is largely ignored.

While this practice has shown to achieve high
accuracy, it is computationally expensive due to
the quadratic increase in cost with the input length.
And in practical settings, such as large-scale cita-
tion retrieval (Petroni et al., 2022a) or document-
level NLI (Koreeda and Manning, 2021), where
a given segment may occur multiple times, the
full Cartesian product of the sets of text segments

must be processed, e.g., Schuster et al. (2022a)
processes all sentence pairs from two Wikipedia
articles around one subject but in two different lan-
guages to identify potential discrepancies. This
leads to yet another quadratic increase in cost. Our
goal is to reduce both of these computational bur-
dens, rendering transformer architectures more ef-
ficient for large-scale multi-segment reasoning.

In this paper, we present LAIT (/leIt/), a late
interaction Transformer model with easy to im-
plement Layer-Adjustable Interactions. LAIT in-
cludes encoder layers that process each segment
locally and independent of the other segments, fol-
lowed by traditional Transformer layers, in a sim-
ple but effective way. Unlike the late interaction
components of other models, such as ColBERT
(Khattab and Zaharia, 2020), which are specifi-
cally geared toward measuring a similarity score
between two text segments, LAIT generally sup-
ports any sequence-to-sequence task and any num-
ber of input segments.

LAIT enables several desirable properties for an
efficient encoder: it (1) is easy to train on top of
existing pretrained language models; (2) readily
supports any seq-2-seq task, and any segmenta-
tion of the input; (3) improves the encoding ef-
ficiency by skipping a large number of attention
computations; (4) disentangles independent seg-
ment representations from joint processing to al-
low caching of intermediate segment representa-
tions for repeated computations; and (5) provides
an easy-to-tune hyperparameter for controlling the
efficiency-performance tradeoff.

2 Background: Full Self-attention vs.
Dual Encoders

A key strength of a fully self-attentive (FSA) archi-
tecture, such as BERT or T5 (Devlin et al., 2019;
Raffel et al., 2020) is the ability of each token in
the input to interact with each other token in the
input throughout all layers of the model. Although
expensive, this type of architecture has shown im-
pressive performance across a wide variety of NLP
tasks such as those in the GLUE and SuperGLUE
benchmarks (Wang et al., 2019b,a).

A common alternative to FSA is the dual encoder
(DE) framework (Gillick et al., 2018). With DE,
two text segments are embedded independently,
either by separate networks or by two networks
that share parameters. A DE typically involves two
encoders, Encq(·) and Encd(·), and a comparison

function Comp(·), and for a given pair of input
segments q, d: score = Comp(Encq(q),Encd(d)).
In practice, the two encoders can share parameters.

DE is typically trained with a contrastive loss
over a set of positive q, d pairs, with the goal of
having the score of positive pairs greater than that
of negatives. Therefore, DE is most suited for simi-
larity tasks such as information retrieval.

A specific advantage of the DE architecture for
retrieval tasks is its ability to independently encode
the two input segments. In practice, this allows
encoding and storing many documents’ representa-
tions in parallel in advance. Then, only new queries
need to be encoded into a vector that can be used
for retrieving the top similar documents from the
pre-encoded corpus using efficient methods such
as maximum inner product search (MIPS).

The method above, however, only supports simi-
larity tasks or binary classification tasks over input
pairs. To expand this setting to multi-class tasks,
prior approaches like Casanueva et al. (2020); Ni
et al. (2022) add a classification head with optional
non-linear layers on top of the two encoded rep-
resentations. Since the classifier requires a fixed-
size input, the segment representations are aggre-
gated (e.g., by taking the average over tokens, or
by selecting a predefined special token). While
conceptually enabling any classification task, the
performance of such models is usually far behind
the state-of-the-art (see Section 5).

3 Layer-Adjustable Interactions

We argue that both FSA and DE Transformer mod-
els can be seen as special cases of a general ar-
chitecture with adjustable layer depths for both
segment-independence and segment-interaction,
which we will call a “Layer-Adjustable Interaction
Transformer" (LAIT).

For a Transformer with L layers and an input
with N segments, LAIT is a set of N independent
stacks of P layers each, followed by L− P fully
self-attentive encoder layers. Any function can
be used after the encoder. Thus a typical fully
self-attentive Encoder-Decoder Transformer is a
LAIT where P = 0, and a shared-parameter dual
encoder is a LAIT where P = L and N = 2. In
the fully self-attentive Transformer, each token in
each segment is interacting with each token in each
other segment throughout the entire depth of the
encoder; in a Dual Encoder, each segment is treated
independently throughout the encoder.

2

p x p

[prem
ise]

[pre
mise

]
[hyp

othe
sis]

p x p
p x p
p x p
p x p
p x p
p x p

LAIT with full caching

[premise] [hypothesis]

p x p
p x h

h x p
h x h

p x p
p x h

h x p
h x h

long-term store or
short-term segment cache

LAIT with partial caching

[hypothesis]

p x p
p x h

h x p
h x h

p x p
p x h

h x p
h x h

p x p

[prem
ise]

[pre
mise

]

[hypo
thesis]

[hyp
othe
sis]

h x h
p x p h x h
p x p h x h
p x p h x h
p x p h x h
p x p h x h
p x p h x h
p x p

p x h

h x p
h x hp x p

p x h

h x p
h x h

p x p
p x h

h x p
h x h

LAIT without caching

Figure 2: Depiction of a 9-layer LAIT architecture for a 2 segment task (such as NLI) with 7 parallel layers and 2
fully self-attentive layers. Without caching, LAIT reduces computation by eliminating cross-attention for 7 layers.
With partial or full caching of segments, LAIT achieves further reductions by re-using independently encoded
segment representations.

The LAIT framework allows us to make the core
questions of this work precise: (1) to what extent
are interactions across multiple input text segments
necessary? And (2) If they are not always neces-
sary, how can we take advantage of this fact to per-
form multi-segment modeling efficiently at scale?

Specifically, given an input X with m tokens
that is split into n segments si . . . sn of possibly
different lengths, the LAIT encoder is defined as:

LAIT(s1, s2, . . . , sn) =

EncL−P ([EncP (s1);EncP (s2); . . . ;EncP (sn)]),

where [x; y] denotes concatenating vectors x and y,
and EncK(·) denotes a Transformer encoder with
K layers.

The rule for splitting the input into segments
R(x1, . . . , xm) → s1, . . . , sn is predefined for
each task, based either on prior knowledge of the in-
put structure, or on a simple segmentation function.
For example, in NLI we can simply use the hypoth-
esis and premise as two segments. In passage-level
QA, we can use the question as one segment and the
passage as another. However, splitting the passage
into multiple shorter segments could help further
reduce compute. For instance, we can split the pas-
sage by sentences to k segments, leading to a total
of k + 1 segments.

For P ∈ [0, L], LAIT interpolates between an
N -Encoder model and a fully-self attentive Trans-
former. Because interaction between segments is
delayed, representations computed at layer P of
the model can be stored or cached for later reuse as

they are independently generated. Figure 2 demon-
strates the basic LAIT architecture, as well as pos-
sibilities for partial caching (for instance, multiple
unique questions about the same passage), or full
caching (for instance, NLI-based cross-document
reasoning (Schuster et al., 2022a)).

Similar to general text-to-text models, the out-
puts of the LAIT encoder, consisting of m contex-
tualized representations for m tokens, are passed to
the Transformer-decoder for generating the output
sequence. Similarly, the decoder may be replaced
with a classification head, or any other module.

3.1 Attention Complexity

By first processing text independently, and then
processing the intermediate representations jointly,
LAIT reduces the attention complexity within a
Transformer in accordance with both the degree of
independence (i.e., P) and the balance of length
across segment inputs. We can calculate the num-
ber of attention operations, O, for a given input to
LAIT with the formula:

O = OPAR +OFSA (1)

OPAR = P ·
n∑

i=1

|si|2 (2)

OFSA = (L− P) ·
[n∑
i=1

|si|
]2

(3)

where |si| denotes the length of segment i out of n
total segments for a given input.

3

se
lf-
at
te
nt
io
n
qu
er
ie
s

self-attention keys/values

Each token
attends only
within its

local segment

S1 SN...

} }}

Figure 3: In the parallel layers of LAIT, segments are
concatenated but a block-diagonal attention mask main-
tains independent encoding of each segment. Figure
design adapted from Guo et al. (2021).

Ultimately, the number of FLOPs to process a
single example will depend on the lengths of the
input segments, the Transformer architecture used,
and the degree of independence P . We discuss
these practical details in Section 4.2, and Table 4.

3.2 Training LAIT

Thanks to LAIT not adding any new parameters
to the Transfomer architecture, we can easily con-
vert an existing Transformer to the LAIT frame-
work and train it end-to-end with any objective. In
this work, we focus on the T5 (Raffel et al., 2020)
model since it is a general text-to-text Transfomer,
and apply LAIT to the encoder stack. In our exper-
iments here, since we focus on classification tasks,
we only keep a single decoding layer.

Given an input with n text segments, LAIT first
encodes and concatenates the segments. During
encoding, a block-diagonal attention mask restricts
attention between different text segments for the
early layers of the model (denoted “parallel lay-
ers"), and allows cross-segment attention for the
later layers of the model (“joint layers"). Figure 3
illustrates the block-diagonal attention mask used
for parallel layers.

This approach allows for parameter sharing
while independently encoding the segments, as
well as flexibility for tasks with different numbers
of input segments without needing to initialize ad-
ditional models.

4 Experimental Setting

Below, we describe our evaluation setting, tasks,
used metrics, and baselines.

4.1 Implementation details

We implement LAIT on top of the T5 model (Raffel
et al., 2020) using Google’s T5x library (Roberts
et al., 2022). In all experiments, we use T5-base
which has a total of 12 encoder layers and 220M
parameters. To reduce compute effort, we use only
a single decoder layer for LAIT (See Appendix B.1
for larger models). We load the parameters from the
public pretrained checkpoint, and finetune on the
target task for up to 100K steps with different LAIT
configurations (value of P). We train LAIT on 16
TPUv3 chips, taking about 4 hours per run. We
run a small grid search over learning rate and batch
size configurations, and pick the top performing
checkpoint based on validation performance.

4.2 Tasks and metrics

We experiment using LAIT on a diverse set of com-
mon tasks and datasets. For each task, we must
determine which fields of the dataset to use as input
segments for LAIT. We evaluate each task using its
typical quality metric. In addition, to measure the
efficiency gains of different LAIT configurations,
we compute the average self-attention FLOPs. We
use Equation (1) and the precise configuration of
the T5-base model we implement LAIT within,
which has 768-dimensional embeddings and 12 64-
dimensional attention heads.

The evaluated tasks are described below. Many
of these tasks are from the popular GLUE (Wang
et al., 2019b) and SuperGLUE (Wang et al., 2019a)
benchmarks, and all are in English. Number of
used segments and average lengths per task are
summarized in Table 1. Pre-processing and con-
catenation strategy are described in Appendix A.
MNLI (Williams et al., 2018): A dataset for nat-
ural language inference across diverse categories.
We use the hypothesis and premise as separate seg-
ments, and predict one of three labels: “entailment",
“contradiction", and “neutral". We report accuracy
on the “matched” eval set.
RTE: The Recognizing Textual Entailment dataset
combines the data from a series of annual textual
entailment challenges (Dagan et al., 2005; Bar-
Haim et al., 2006; Giampiccolo et al., 2007; Ben-
tivogli et al., 2009). We use the hypothesis and the

4

Task n Avg. segment lengths

MNLI 2 hyp.: 16.14, prem.: 30.79
RTE 2 hyp.: 9.40, prem.: 43.39
QQP 2 q.1: 11.94, q.2: 12.17
STSB 2 sent.1: 19.71, sent.2: 19.75
AE 3 cand.: 6.80, ref.: 6.12, q.: 12.10
BoolQ 2 pass.: 135.82, q.: 14.54
BoolQ-Split 6 pass.1-5: 29.57, q.: 14.54
WiC 2 w.+sent.1: 14.69, w.+sent.2: 14.88
FEVER 2 claim: 15.90, evid.: 46.20
VitaminC 2 claim: 21.43, evid.: 43.78
MultiRC 3 pass.: 253.49, q.: 11.70, ans.: 5.84

Table 1: Summary of the evaluated tasks: number of
segments (n) and average token length of each segment.
Measured on training sets.

premise as separate segments and predict “entail-
ment” vs. “non-entailment”, and measure accuracy.
QQP (Iyer et al., 2017): Quora Question Pairs
dataset is a collection of question pairs from Quora,
where the task is to determine whether a pair of
questions have the same meaning. For LAIT, we
treat each question as a segment, and predict “du-
plicate” or “not_duplicate”, and measure accuracy.
STSB (Cer et al., 2017): Semantic textual similar-
ity benchmark, a task for estimating the similarity
of a pair of sentences. We use each sentence as
a separate segment, and predict a score in [0, 5],
represented as a string rounded to 2 decimal places.
We measure Spearman correlation.
AE (Bulian et al., 2022): Answer Equivalence
requires determining whether a “candidate" answer
is semantically equivalent to a “reference" answer,
given a question. We use the question and each of
the answers as independent text segments, make
a binary prediction “true” or “false”, and measure
accuracy.
BoolQ (Clark et al., 2019): Boolean Questions is
a binary question answering task with passages and
questions. We use the provided text passage and
the question as text segments, and make a binary
prediction “true” or “false”, and measure accuracy.
BoolQ-Split A modification of BoolQ, where each
passage is split into 5 sub-passages, treated as
independent input segments. The sub-passages
are formed by greedily merging the passage’s sen-
tences, smallest merge first.
WiC (Pilehvar and Camacho-Collados, 2019):
Words in Context is a task for evaluating contextual
word meanings. Given a word and two sentences
in which it occurs, determine whether the word has
the same meaning in each sentence. For LAIT, we

prefix each sentence by the specified word and treat
the newly-prefixed sentences as our text segments.
We then predict “true” or “false”, corresponding to
whether the word has the same in-context meaning
in both sentences. Evaluation is by accuracy.
FEVER (Thorne et al., 2018): A dataset for fact
verification with claims and corresponding evi-
dence. Each claim-evidence pair is labeled as “sup-
ported," “refuted," or “NotEnoughInfo." For LAIT,
we treat the claim and the evidence as our separate
text segments, and aim to predict the correct label.
Evaluation is done by accuracy.
VitaminC (Schuster et al., 2021): A challenging
dataset for fact verification which includes “con-
trastive evidence", i.e., claim-evidence pairs that
differ only slightly (in either the text of the claim or
that of the evidence) from another claim-evidence
pair, but have a different label. We treat the claim
and evidence as independent text segments, and
evaluate by accuracy.
MultiRC (Khashabi et al., 2018): The Multi-
Sentence Reading Comprehension dataset is a ques-
tion answering dataset, where each example con-
tains a passage, a question, and an answer1. For
LAIT, we use the passage, the question, and the
answer as the segments. The label is either “True”
or “False” meaning whether the answer is correct
or not. Evaluation is done by computing the F1
score over all answers.

4.3 Baselines

We compare LAIT against two groups of baselines:
Dual Encoder models and Fully self-attentive mod-
els. For the Dual Encoder, we use the SentenceT5-
base (Ni et al., 2022) shared-parameter Dual En-
coder which outputs the concatenation of the av-
erage of the per-token output representations from
the two encoders, together with their difference
and dot product, followed by a classifier. We ex-
periment with two depths of classifier: One with a
single non-linear layer, and one with 2 additional
hidden layers (d = 768 for all layers). As fully
self-attentive baselines, we consider T5-base and
T5-small (Raffel et al., 2020).

5 Results

To study the performance-efficiency tradeoff, we
consider multiple configurations of LAIT to fully
interpolate between a Dual Encoder and a fully self-

1The original examples have a list of possible answers to
each question, but they are split into one example per answer.

5

MNLI RTE QQP STSB WiC BoolQ FEVER VitaminC
Model Accuracy Accuracy Accuracy Spearman Accuracy Accuracy Accuracy Accuracy

DE + 1×MLP 75.40 51.26 90.06 24.88 61.75 69.39 86.16 56.03
DE + 3×MLP 77.22 56.32 89.69 62.16 60.66 69.36 87.09 65.03

T5-small (60M) 83.42 72.92 91.14 88.67 65.83 77.92 96.57 85.35
T5-base (220M) 86.98 84.84 91.94 90.43 72.41 83.12 97.54 88.38

LAIT-0 87.14 80.87 91.80 90.31 70.53 82.45 97.33 88.07
LAIT-1 87.14 79.78 91.94 90.36 68.65 82.54 97.25 87.88
LAIT-2 86.81 81.59 91.87 90.19 70.22 82.39 97.25 87.89
LAIT-3 86.81 79.78 91.96 89.94 69.44 82.35 97.31 87.96
LAIT-4 86.84 81.59 91.84 90.38 69.59 82.32 97.26 87.95
LAIT-5 86.80 79.78 91.85 89.91 70.38 80.86 97.17 87.77
LAIT-6 86.23 80.14 91.79 89.63 71.16 80.86 97.10 87.46
LAIT-7 86.29 78.70 91.79 89.72 69.44 80.43 97.07 86.31
LAIT-8 86.08 77.98 91.55 89.47 71.79 80.37 97.05 86.49
LAIT-9 85.70 78.34 91.55 89.39 70.85 80.40 96.82 86.26
LAIT-10 84.42 61.01 91.07 82.26 67.40 71.62 95.35 84.27
LAIT-11 83.00 59.57 90.87 53.39 65.05 72.11 92.13 82.75
LAIT-12 73.21 60.29 86.85 22.68 59.56 71.50 88.35 57.00

Table 2: Results comparing LAIT configurations with Dual Encoder and Transformer baselines across a variety
of sentence-level reasoning tasks. To make comparison easier with other works, we report the best score on the
validation set. See Table 9 for a synthetic test-set comparison of LAIT configurations. Most efficient LAIT model
within a 99% performance of LAIT-0 in bold, most efficient LAIT model within 95% performance of LAIT-0
is underlined, most efficient LAIT model where the validation score is within the bootstrapped 95% confidence
interval of LAIT-0 is boxed .

Figure 4: Relative performance of LAIT vs. T5 Fully
self-attentive baseline on a variety of multi-segment
natural language processing tasks. For all tasks, we
report performance on the validation set. Performance
only degrades after 8-10 layers of independent segment
processing. 95% confidence interval via bootstrapping
on the evaluation data.

attentive Transformer. As T5-base has a 12-layer
encoder, we consider all LAIT-p, for p ∈ [0, 12],
where p is the number of layers of independent
segment processing before the fully self-attentive
component. Note that LAIT-0 is roughly equivalent
to T5-base, though it uses a 1-layer decoder vs.
the 12-layer decoder of T5-base.

As can be seen in Tables 2 and 3, which com-
pare best validation-set performance across models,
LAIT either matches, nearly-matches, or outper-
forms the T5-base baseline for every task. This
holds even in configurations where cross-segment
interaction is delayed to the last few layers of the
encoder. As long as there are a few cross-segment
interactions later in the model, performance re-
mains relatively stable even as the architecture be-
comes increasingly efficient; crucially, LAIT can
delay cross-segment interaction by 8-10 layers
without a notable decrease in performance. We
specifically focus on the most efficient LAIT mod-
els that: (1) achieve within 99% of LAIT-0 per-
formance, which we call LAIT-99%; (2) achieve
within 95% of LAIT-0 perfomrance, called LAIT-
95%; and (3) achieve within the 95% confidence
interval within LAIT-0 performance, called LAIT?.
To select these models with higher validity, we per-
form a synthetic dev/test split of the validation sets
and report the held-out validation performance of
the LAIT models with the highest performance on
the synthetic dev set, reported in Appendix B.

These results also suggest differences in the pro-
portion of cross-segment processing necessary for

6

AnswerEq BoolQ-split MultiRC
Model Accuracy Accuracy F1

T5-small 89.65 77.92 73.25
T5-base 91.09 83.12 80.07

LAIT-0 91.25 81.71 78.12
LAIT-1 91.36 82.35 77.86
LAIT-2 90.46 81.93 77.82
LAIT-3 90.89 81.53 77.69
LAIT-4 90.85 82.11 77.18
LAIT-5 90.78 80.43 77.41
LAIT-6 90.62 80.76 75.60
LAIT-7 90.60 79.94 73.56
LAIT-8 90.06 79.82 71.88
LAIT-9 90.98 79.85 71.43
LAIT-10 87.00 72.20 59.50
LAIT-11 61.16 71.13 61.07
LAIT-12 61.02 71.41 59.60

Table 3: Results for tasks with more than two segments.
Bold, underline, and box indicate model performance
as in Table 2.

different tasks. Sentence and word representation
tasks (i.e., Answer Equivalence, STSB, and WiC)
have much better LAIT? models than reasoning-
intensive tasks, such as MNLI, BoolQ, and Vita-
minC. We note that FEVER appears to be easier
for LAIT than other “reasoning" tasks, which we
explore further in Section 5.3. We also note that
some degree of cross-segment processing is neces-
sary for all tasks, evidenced by the steep drop in
performance as p approaches 12 (see Figure 4).

5.1 Scalability

By deferring the expensive cross-segment attention
to later stages of the model, LAIT both reduces the
attention complexity of the model, and enables the
caching and reuse of partial representations com-
puted before the cross-segment attention layers.

Table 4 shows improvements in attention FLOPs
for LAIT, both with and without caching of the
intermediate representations, when using the LAIT-
95% model. Table 10 contains results for LAIT?.
As we would expect from Equation 1, datasets with
text segments of similar size benefit the most in
the typical setting. Howevever, to fully realize this
benefit for single forward passes would require a
custom kernel, such as those implemented in work
on sparse transformers.

Task Full Encoding ↓ with Caching ↓

MNLI 66.66% 39.71%
STSB 63.07% 62.78%
AnswerEq 49.94% 29.73%
BoolQ 89.72% 83.53%
BoolQ-S 42.28% 40.51%
WiC 63.45% 63.45%
FEVER 72.74% 34.68%
VitaminC 67.37% 41.34%
MultiRC 93.91% 50.83%
RTE 92.22% 92.02%
QQP 56.06% 53.37%

Potential practical settings:
ContractNLI 98.92% 21.50%
WikiClusters 63.02% 16.94%

Table 4: Percent of encoder attention FLOPs (com-
pared to T5-base) when using LAIT-95% model for
each task to process the entire validation set (lower is
better). LAIT-95% selection is based on results in ta-
bles 9 and 11 in the Appendix.

5.2 Caching and Reusing Representations

A key advantage of the delayed cross-segment inter-
action in LAIT is the ability to cache and reuse in-
termediate representations of text segments. Unlike
in benchmarks, real-world settings almost never
process a set of segments in isolation; it is much
more likely that the processing of a set of text seg-
ments occurs as part of a larger task such as doc-
ument comparison, document analysis, or claim
verification.

Recently, a number of datasets (Schuster et al.,
2022a; Koreeda and Manning, 2021; Petroni et al.,
2022b) have suggested the usefulness of natural lan-
guage inference in large-scale real-world reasoning
tasks. In one such dataset, ContractNLI (Koreeda
and Manning, 2021), a fixed set of 17 claims are
evaluated against different legal contracts. In other
scenarios (Schuster et al., 2022a; Gu et al., 2020),
the contents of multiple documents within a cluster
of related documents must be compared.

In both scenarios, a typical approach would re-
quire comparing each sentence within a document
with each other sentence, leading to a complex-
ity that scales quadratically with the size of the
document cluster, the size of the documents, and
the length of the sentences. But with LAIT, the
bulk of the work will be performed only once. Be-
cause each document or claim can be encoded in-
dependently for most of the layers of the model,
the latency improvement offered by LAIT in these

7

Dataset FSA Sparse LAIT-12 LAIT-95%

MNLI - Full 167.9 (1.3) 275.3 (0.96) 111.3 (1.4) 116.02 + ε
BoolQ-S - Full 54.40 (0.43) 87.72 (0.38) 37.51 (0.21) 41.73 + ε
ContractNLI - Single 0.0071 (0.0012) 0.0094 (0.0005) 0.0004 (0.0000) -
ContractNLI - Full 25.03 (0.58) 34.28 (0.46) 0.0593 (0.0008) -
WikiClusters - Single 1390. (6.0) 1871. (7.1) 1.086 (0.03) -
WikiClusters - Full 4805. (32.) 5451. (15.) 87.79 (0.78) -

Table 5: Encoding latency (and standard deviation) comparison in seconds between fully self-attentive T5 (FSA),
LongT5 with local attention (Sparse), and LAIT. ε represents system-dependent processing of a LAIT cache. Mea-
surements were performed with a 2080Ti GPU, using the Hugging Face (Wolf et al., 2019) implementation of T5
and LongT5.

settings is related to the overall redundancy and
duplication of text segments within the task.

Table 5 demonstrates the savings possible for
both popular academic tasks, and two realistic set-
tings: ContractNLI (Koreeda and Manning, 2021),
and WikiClusters (Schuster et al., 2022a). For
MNLI and BoolQ, we measure the time to en-
code the entire dataset. For WikiClusters and Con-
tractNLI, we both measure the time to encode the
entire dataset and the time to encode a single docu-
ment (in the case of ContractNLI) or cluster (in the
case of WikiClusters). We compare a standard fully
self-attentive model (T5), a sparse model (LongT5
with local attention), and LAIT. For MNLI and
BoolQ, we estimate the latency of the LAIT-95%
model for that task, as a weighted average of FSA
and LAIT layers.

Even without a custom kernel, LAIT’s indepen-
dent processing of input segments enables signif-
icant speedups for processing real-world data. In-
terestingly, the sparse transformer demonstrates
slightly increased latency, likely because the the in-
put sizes are relatively short. However, even when
enabled by a sparse transformer, processing larger
chunks of data – such as an entire ContractNLI
contract alongside each of the 17 claims – will not
fully alleviate the problem, as the contracts must
still be processed 17 times, rather than just once
as in LAIT. In these situations, LAIT may be able
to complement a sparse transformer; this would
require further study.

5.3 Robustness
A potential concern with an approach like LAIT is
that it may be more susceptible to reported biases in
sentence-level models (Poliak et al., 2018; Schuster
et al., 2021). We test LAIT’s effect on the model’s
robustness to domain shifts, and to biases in the
training data such as over-relying on clues in one of

Model FEVER VitaminC MNLI

Training Data: FEVER-train
LAIT-0 97.33 65.12 47.93
LAIT-3 97.31 64.73 45.85
LAIT-6 97.10 63.62 35.15
LAIT-9 96.82 62.97 33.82
LAIT-12 88.35 49.91 34.29

Training Data: VitaminC-train
LAIT-0 78.54 88.07 80.37
LAIT-3 78.96 87.96 80.01
LAIT-6 78.72 87.46 78.74
LAIT-9 77.70 86.26 76.74
LAIT-12 54.04 57.00 43.38

Table 6: Accuracy of FEVER- and VitaminC-trained
LAIT models on FEVER, VitaminC, and MNLI.

the segments instead of performing cross-segment
reasoning.

Schuster et al. (2021) found that in FEVER,
when evidence text in a claim-evidence pair was
revised in a way that would reverse the semantic
relationship (e.g., frevision(Claim, Evidence, RE-
FUTES)→ (Claim, Evidence′, SUPPORTS), models
trained on FEVER would only make the correct
prediction 56% of the time. Table 6 summarizes
our robustness experiments using zero-shot transfer
from FEVER and VitaminC.

We find that when LAIT is trained on on FEVER,
the transfer performance drops faster than the in-
domain performance as independence is increased.
However, when training on VitaminC, the decrease
in accuracy as a function of P is more correlated
with the in-domain trend. This suggests that LAIT
models can be robust against domain shifts and
contrastive adversarial examples when trained with
appropriate data.

8

6 Related Work

Sentence encoders. Modern representation learn-
ing systems at the sentence level have rapidly risen
in popularity, starting with InferSent (Conneau
et al., 2017), ESIM (Cer et al., 2018), and USE
(Chen et al., 2017). Following the inception of
Transformer (Vaswani et al., 2017), new sentence
encoders (see e.g., Gao et al., 2021; Ni et al., 2022;
Reimers and Gurevych, 2019) demonstrated im-
proved performance on many sentence-pair bench-
marks. Other work extended this approach to doc-
ument encoders by hierarchically encoding sen-
tences independently before combining them into
a pooled document embedding (Wu et al., 2021;
Yang et al., 2020). Yet, unlike previous work, LAIT
effectively breaks a pretrained Transformer into a
hybrid of multiple parallel segment encoders and
powerful fully-attentive layers to match state-of-
the-art performance across many NLP tasks.
Efficient text classifiers Dual encoder architec-
tures, originally dating back to the Siamese archi-
tecture of (Bromley et al., 1993), were proposed
for efficient retrieval in (Gillick et al., 2018). (Ni
et al., 2021) and (Menon et al., 2022) significantly
broaden the range of tasks efficiently served by
dual encoders.

Building on the Transformer architecture, LAIT
can also readily leverage many other known effi-
ciency solutions (Tay et al., 2022) such as distilla-
tion (Sanh et al., 2019; Jiao et al., 2020), quantiza-
tion (Shen et al., 2020; Zafrir et al., 2019), and early
exiting (Schuster et al., 2022b; Xin et al., 2020).
Sparse attention. Sparse attention architectures
have demonstrated that not all attention connec-
tions within a Transformer are necessary, and that
impressive performance can be achieved even when
removing a large number of the cross-token atten-
tion. Examples such as BigBird, Longformer, and
LongT5 (Zaheer et al., 2020; Beltagy et al., 2020;
Guo et al., 2021) use local attention windows and
some form of global attention to reduce the atten-
tion complexity. Other approaches dynamically
skip certain computations (Tay et al., 2020). Un-
like these approaches, here we impose the sparsity
on top of known input segments, which preserves
segment-level semantics and supports parallel com-
puting and caching of segments. Despite their bene-
fits, sparse transformers still include cross-segment
attention at every layer of the model, and as such
they cannot encode segments independently.
Late interaction. Some recent work has consid-

ered precomputing full-token representations of
some, but not all, text segments, as well as late in-
teraction between queries and documents (Lu et al.,
2020; Xiong et al., 2017). ColBERT (Khattab and
Zaharia, 2020; Santhanam et al., 2022) uses pre-
computed token representations as part of a DE
retrieval framework. These architectures, however,
are tailored for retrieval tasks that use embedding
similarity scores, and generally under-perform in
classification tasks like NLI. The fully-attentive
layers in LAIT allow bridging this performance
gap while still providing efficiency gains. Our
caching variant also relates to other recent paral-
lel work on precomputing and reusing representa-
tions of repeated passages to speed up computation
(Saad-Falcon et al., 2023; de Jong et al., 2023; Li
et al., 2022). Hui et al. (2022) develop a fully par-
allel encoder for documents and queries, where
both encodings are fed to a joint decoder for re-
ranking. Most similar to our work is MacAvaney
et al. (2020) that study a hybrid Transformer ar-
chitecture for ranking. In this work, we focus on
general NLP tasks with an arbitrary number of seg-
ments, and unconstrained output space.

7 Conclusion

We present Layer-Adjustable Interactions in Trans-
formers (LAIT) to allow simple-but-effective ef-
ficiency gains over a wide range of NLP tasks.
The LAIT framework leverages existing pretrained
Transformers such as T5, and converts them during
finetuning into a hybrid model that combines par-
allel independent encoding of multiple segments,
followed by fully-attentive layers to allow cross-
segment reasoning.

We evaluate LAIT on a large set of 10 well-
known datasets, involving different examined ca-
pabilities, number of segments, input lengths, out-
put spaces, and difficulty levels. We find LAIT
to consistently provide significant reduction in en-
coder attention complexity while preserving high
accuracy. Furthermore, we show that the parallel
independent segment encoding of LAIT enables ad-
ditional inference-time compute savings by caching
representations of repeated segments in large scale
real-world settings.

LAIT demonstrates that transformers can
achieve high performance even without cross-
segment interaction at every layer; essentially, that
sentences can be just as effectively encoded if first
processed separately, and then processed jointly.

9

Limitations

While the LAIT framework can significantly reduce
the computation required for large-scale sentence-
level reasoning and classification tasks, we do
foresee some limitations in its use. Caching per-
token representations for large numbers of text
segments leads to a dramatic increase in memory
requirements, which could be prohibitive for ex-
tremely low-compute end users. We also note that
LAIT can further exacerbate segment-level bias in
datasets. While we believe that careful data cura-
tion approaches ameliorate this issue, the risk of
bias is not always known to downstream users and
as such corrective datasets may not always be avail-
able. Finally, LAIT can increase the cost of train-
ing because the optimal degree of independence
is not known until all LAIT-p models are evalu-
ated, though in practical settings (1) it is possible
to perform a binary search of LAIT configurations
because performance generally decreases mono-
tonically as p increases; (2) even a naive rule of
setting p to a quarter of the model’s depth seems
to provide some immediate gains while preserv-
ing 99% of the accuracy in all our evaluated tasks;
and (3) inference-time cost improvements will far
outweigh training costs.

References
Roy Bar-Haim, Ido Dagan, Bill Dolan, Lisa Ferro,

Danilo Giampiccolo, Bernardo Magnini, and Idan
Szpektor. 2006. The second pascal recognising tex-
tual entailment challenge. In Proceedings of the sec-
ond PASCAL challenges workshop on recognising
textual entailment, volume 6, pages 6–4. Venice.

Iz Beltagy, Matthew E Peters, and Arman Cohan.
2020. Longformer: The long-document transformer.
arXiv preprint arXiv:2004.05150.

Luisa Bentivogli, Peter Clark, Ido Dagan, and Danilo
Giampiccolo. 2009. The fifth pascal recognizing tex-
tual entailment challenge. In TAC.

Jane Bromley, Isabelle Guyon, Yann LeCun, Eduard
Säckinger, and Roopak Shah. 1993. Signature ver-
ification using a "siamese" time delay neural net-
work. In Proceedings of the 6th International Con-
ference on Neural Information Processing Systems,
NIPS’93, page 737–744, San Francisco, CA, USA.
Morgan Kaufmann Publishers Inc.

Jannis Bulian, Christian Buck, Wojciech Gajew-
ski, Benjamin Boerschinger, and Tal Schuster.
2022. Tomayto, tomahto. beyond token-level an-
swer equivalence for question answering evaluation.
arXiv preprint arXiv:2202.07654.

Iñigo Casanueva, Tadas Temcinas, Daniela Gerz,
Matthew Henderson, and Ivan Vulić. 2020. Efficient
intent detection with dual sentence encoders. pages
38–45.

Daniel Cer, Mona Diab, Eneko Agirre, Iñigo Lopez-
Gazpio, and Lucia Specia. 2017. Semeval-2017
task 1: Semantic textual similarity multilingual and
crosslingual focused evaluation. In Proceedings of
the 11th International Workshop on Semantic Evalu-
ation (SemEval-2017), pages 1–14.

Daniel Cer, Yinfei Yang, Sheng-yi Kong, Nan Hua,
Nicole Limtiaco, Rhomni St. John, Noah Constant,
Mario Guajardo-Cespedes, Steve Yuan, Chris Tar,
Brian Strope, and Ray Kurzweil. 2018. Universal
sentence encoder for English. In Proceedings of
the 2018 Conference on Empirical Methods in Nat-
ural Language Processing: System Demonstrations,
pages 169–174, Brussels, Belgium. Association for
Computational Linguistics.

Qian Chen, Xiaodan Zhu, Zhen-Hua Ling, Si Wei, Hui
Jiang, and Diana Inkpen. 2017. Enhanced LSTM
for natural language inference. In Proceedings of
the 55th Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers),
pages 1657–1668, Vancouver, Canada. Association
for Computational Linguistics.

Christopher Clark, Kenton Lee, Ming-Wei Chang,
Tom Kwiatkowski, Michael Collins, and Kristina
Toutanova. 2019. Boolq: Exploring the surprising
difficulty of natural yes/no questions. In Proceed-
ings of the 2019 Conference of the North Ameri-
can Chapter of the Association for Computational
Linguistics: Human Language Technologies, pages
2924–2936.

Alexis Conneau, Douwe Kiela, Holger Schwenk, Loïc
Barrault, and Antoine Bordes. 2017. Supervised
learning of universal sentence representations from
natural language inference data. In Proceedings of
the 2017 Conference on Empirical Methods in Nat-
ural Language Processing, pages 670–680, Copen-
hagen, Denmark. Association for Computational
Linguistics.

Ido Dagan, Oren Glickman, and Bernardo Magnini.
2005. The pascal recognising textual entailment
challenge. In Machine Learning Challenges Work-
shop, pages 177–190. Springer.

Michiel de Jong, Yury Zemlyanskiy, Nicholas FitzGer-
ald, Joshua Ainslie, Sumit Sanghai, Fei Sha, and
William Cohen. 2023. Pre-computed memory or on-
the-fly encoding? a hybrid approach to retrieval aug-
mentation makes the most of your compute.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language

10

https://doi.org/10.18653/v1/2020.nlp4convai-1.5
https://doi.org/10.18653/v1/2020.nlp4convai-1.5
https://doi.org/10.18653/v1/D18-2029
https://doi.org/10.18653/v1/D18-2029
https://doi.org/10.18653/v1/P17-1152
https://doi.org/10.18653/v1/P17-1152
https://doi.org/10.18653/v1/D17-1070
https://doi.org/10.18653/v1/D17-1070
https://doi.org/10.18653/v1/D17-1070
http://arxiv.org/abs/2301.10448
http://arxiv.org/abs/2301.10448
http://arxiv.org/abs/2301.10448
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423

Technologies, Volume 1 (Long and Short Papers),
pages 4171–4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Tianyu Gao, Xingcheng Yao, and Danqi Chen. 2021.
SimCSE: Simple contrastive learning of sentence
embeddings. In Proceedings of the 2021 Conference
on Empirical Methods in Natural Language Process-
ing, pages 6894–6910, Online and Punta Cana, Do-
minican Republic. Association for Computational
Linguistics.

Danilo Giampiccolo, Bernardo Magnini, Ido Dagan,
and Bill Dolan. 2007. The third pascal recognizing
textual entailment challenge. In Proceedings of the
ACL-PASCAL workshop on textual entailment and
paraphrasing, pages 1–9. Association for Computa-
tional Linguistics.

Daniel Gillick, Alessandro Presta, and Gaurav Singh
Tomar. 2018. End-to-end retrieval in continuous
space. arXiv preprint arXiv:1811.08008.

Xiaotao Gu, Yuning Mao, Jiawei Han, Jialu Liu, You
Wu, Cong Yu, Daniel Finnie, Hongkun Yu, Jiaqi
Zhai, and Nicholas Zukoski. 2020. Generating rep-
resentative headlines for news stories. In Proceed-
ings of The Web Conference 2020, pages 1773–
1784.

Mandy Guo, Joshua Ainslie, David Uthus, Santiago
Ontanon, Jianmo Ni, Yun-Hsuan Sung, and Yin-
fei Yang. 2021. Longt5: Efficient text-to-text
transformer for long sequences. arXiv preprint
arXiv:2112.07916.

Kai Hui, Honglei Zhuang, Tao Chen, Zhen Qin,
Jing Lu, Dara Bahri, Ji Ma, Jai Gupta, Cicero
Nogueira dos Santos, Yi Tay, and Donald Metzler.
2022. ED2LM: Encoder-decoder to language model
for faster document re-ranking inference. In Find-
ings of the Association for Computational Linguis-
tics: ACL 2022, pages 3747–3758, Dublin, Ireland.
Association for Computational Linguistics.

Shankar Iyer, Nikhil Dandekar, and Kornel Csernai.
2017. First quora dataset release: Question pairs.

Xiaoqi Jiao, Yichun Yin, Lifeng Shang, Xin Jiang,
Xiao Chen, Linlin Li, Fang Wang, and Qun Liu.
2020. Tinybert: Distilling bert for natural language
understanding. In Findings of the Association for
Computational Linguistics: EMNLP 2020, pages
4163–4174.

Daniel Khashabi, Snigdha Chaturvedi, Michael Roth,
Shyam Upadhyay, and Dan Roth. 2018. Looking
beyond the surface:a challenge set for reading com-
prehension over multiple sentences. In Proceedings
of North American Chapter of the Association for
Computational Linguistics (NAACL).

Omar Khattab and Matei Zaharia. 2020. Colbert: Ef-
ficient and effective passage search via contextual-
ized late interaction over bert. In Proceedings of
the 43rd International ACM SIGIR conference on

research and development in Information Retrieval,
pages 39–48.

Yuta Koreeda and Christopher Manning. 2021. Con-
tractNLI: A dataset for document-level natural lan-
guage inference for contracts. In Findings of the
Association for Computational Linguistics: EMNLP
2021, pages 1907–1919, Punta Cana, Dominican Re-
public. Association for Computational Linguistics.

Zonglin Li, Ruiqi Guo, and Sanjiv Kumar. 2022. De-
coupled context processing for context augmented
language modeling. In Advances in Neural Informa-
tion Processing Systems.

Wenhao Lu, Jian Jiao, and Ruofei Zhang. 2020. Twin-
bert: Distilling knowledge to twin-structured bert
models for efficient retrieval.

Sean MacAvaney, Franco Maria Nardini, Raffaele
Perego, Nicola Tonellotto, Nazli Goharian, and
Ophir Frieder. 2020. Efficient document re-ranking
for transformers by precomputing term representa-
tions. In Proceedings of the 43rd International ACM
SIGIR Conference on Research and Development in
Information Retrieval. ACM.

Aditya Menon, Sadeep Jayasumana, Ankit Singh
Rawat, Seungyeon Kim, Sashank Reddi, and Sanjiv
Kumar. 2022. In defense of dual-encoders for neu-
ral ranking. In Proceedings of the 39th International
Conference on Machine Learning, volume 162 of
Proceedings of Machine Learning Research, pages
15376–15400. PMLR.

Jianmo Ni, Gustavo Hernandez Abrego, Noah Con-
stant, Ji Ma, Keith Hall, Daniel Cer, and Yinfei
Yang. 2022. Sentence-T5: Scalable sentence en-
coders from pre-trained text-to-text models. In Find-
ings of the Association for Computational Linguis-
tics: ACL 2022, pages 1864–1874, Dublin, Ireland.
Association for Computational Linguistics.

Jianmo Ni, Chen Qu, Jing Lu, Zhuyun Dai, Gus-
tavo Hernández Ábrego, Ji Ma, Vincent Y. Zhao,
Yi Luan, Keith B. Hall, Ming-Wei Chang, and Yinfei
Yang. 2021. Large dual encoders are generalizable
retrievers.

Fabio Petroni, Samuel Broscheit, Aleksandra Pik-
tus, Patrick Lewis, Gautier Izacard, Lucas Hos-
seini, Jane Dwivedi-Yu, Maria Lomeli, Timo Schick,
Pierre-Emmanuel Mazaré, et al. 2022a. Improv-
ing wikipedia verifiability with ai. arXiv preprint
arXiv:2207.06220.

Fabio Petroni, Samuel Broscheit, Aleksandra Pik-
tus, Patrick Lewis, Gautier Izacard, Lucas Hos-
seini, Jane Dwivedi-Yu, Maria Lomeli, Timo Schick,
Pierre-Emmanuel Mazaré, et al. 2022b. Improv-
ing wikipedia verifiability with ai. arXiv preprint
arXiv:2207.06220.

Mohammad Taher Pilehvar and Jose Camacho-
Collados. 2019. Wic: the word-in-context dataset

11

https://doi.org/10.18653/v1/2021.emnlp-main.552
https://doi.org/10.18653/v1/2021.emnlp-main.552
https://doi.org/10.18653/v1/2022.findings-acl.295
https://doi.org/10.18653/v1/2022.findings-acl.295
https://data.quora.com/First-Quora-Dataset-Release-Question-Pairs
https://aclanthology.org/2021.findings-emnlp.164
https://aclanthology.org/2021.findings-emnlp.164
https://aclanthology.org/2021.findings-emnlp.164
http://arxiv.org/abs/2002.06275
http://arxiv.org/abs/2002.06275
http://arxiv.org/abs/2002.06275
https://doi.org/10.1145/3397271.3401093
https://doi.org/10.1145/3397271.3401093
https://doi.org/10.1145/3397271.3401093
https://proceedings.mlr.press/v162/menon22a.html
https://proceedings.mlr.press/v162/menon22a.html
https://doi.org/10.18653/v1/2022.findings-acl.146
https://doi.org/10.18653/v1/2022.findings-acl.146
https://doi.org/10.48550/ARXIV.2112.07899
https://doi.org/10.48550/ARXIV.2112.07899

for evaluating context-sensitive meaning representa-
tions. In Proceedings of the 2019 Conference of the
North American Chapter of the Association for Com-
putational Linguistics: Human Language Technolo-
gies, pages 1267–1273.

Adam Poliak, Jason Naradowsky, Aparajita Haldar,
Rachel Rudinger, and Benjamin Van Durme. 2018.
Hypothesis only baselines in natural language in-
ference. In Proceedings of the Seventh Joint Con-
ference on Lexical and Computational Semantics,
pages 180–191, New Orleans, Louisiana. Associa-
tion for Computational Linguistics.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, Peter J Liu, et al. 2020. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. J. Mach. Learn. Res., 21(140):1–67.

Nils Reimers and Iryna Gurevych. 2019. Sentence-
BERT: Sentence embeddings using Siamese BERT-
networks. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing.
Association for Computational Linguistics.

Adam Roberts, Hyung Won Chung, Anselm Levskaya,
Gaurav Mishra, James Bradbury, Daniel Andor, Sha-
ran Narang, Brian Lester, Colin Gaffney, Afroz
Mohiuddin, Curtis Hawthorne, Aitor Lewkowycz,
Alex Salcianu, Marc van Zee, Jacob Austin, Sebas-
tian Goodman, Livio Baldini Soares, Haitang Hu,
Sasha Tsvyashchenko, Aakanksha Chowdhery, Jas-
mijn Bastings, Jannis Bulian, Xavier Garcia, Jianmo
Ni, Andrew Chen, Kathleen Kenealy, Jonathan H.
Clark, Stephan Lee, Dan Garrette, James Lee-
Thorp, Colin Raffel, Noam Shazeer, Marvin Ritter,
Maarten Bosma, Alexandre Passos, Jeremy Maitin-
Shepard, Noah Fiedel, Mark Omernick, Brennan
Saeta, Ryan Sepassi, Alexander Spiridonov, Joshua
Newlan, and Andrea Gesmundo. 2022. Scaling
up models and data with t5x and seqio. arXiv
preprint arXiv:2203.17189.

Jon Saad-Falcon, Amanpreet Singh, Luca Soldaini,
Mike D’Arcy, Arman Cohan, and Doug Downey.
2023. Embedding recycling for language models.

Victor Sanh, Lysandre Debut, Julien Chaumond, and
Thomas Wolf. 2019. Distilbert, a distilled version
of bert: smaller, faster, cheaper and lighter. arXiv
preprint arXiv:1910.01108.

Keshav Santhanam, Omar Khattab, Jon Saad-Falcon,
Christopher Potts, and Matei Zaharia. 2022. Col-
BERTv2: Effective and efficient retrieval via
lightweight late interaction. In Proceedings of the
2022 Conference of the North American Chapter
of the Association for Computational Linguistics:
Human Language Technologies, pages 3715–3734,
Seattle, United States. Association for Computa-
tional Linguistics.

Tal Schuster, Sihao Chen, Senaka Buthpitiya, Alex
Fabrikant, and Donald Metzler. 2022a. Stretch-
ing sentence-pair nli models to reason over

long documents and clusters. arXiv preprint
arXiv:2204.07447.

Tal Schuster, Adam Fisch, and Regina Barzilay. 2021.
Get your vitamin c! robust fact verification with con-
trastive evidence. In Proceedings of the 2021 Con-
ference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies, pages 624–643.

Tal Schuster, Adam Fisch, Jai Gupta, Mostafa De-
hghani, Dara Bahri, Vinh Q Tran, Yi Tay, and Don-
ald Metzler. 2022b. Confident adaptive language
modeling. In Advances in Neural Information Pro-
cessing Systems.

Sheng Shen, Zhen Dong, Jiayu Ye, Linjian Ma, Zhewei
Yao, Amir Gholami, Michael W Mahoney, and Kurt
Keutzer. 2020. Q-bert: Hessian based ultra low
precision quantization of bert. In Proceedings of
the AAAI Conference on Artificial Intelligence, vol-
ume 34, pages 8815–8821.

Yi Tay, Dara Bahri, Liu Yang, Donald Metzler, and Da-
Cheng Juan. 2020. Sparse sinkhorn attention.

Yi Tay, Mostafa Dehghani, Dara Bahri, and Donald
Metzler. 2022. Efficient transformers: A survey.
ACM Comput. Surv., 55(6).

James Thorne, Andreas Vlachos, Christos
Christodoulopoulos, and Arpit Mittal. 2018.
Fever: a large-scale dataset for fact extraction and
verification. In Proceedings of the 2018 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, pages 809–819.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems, volume 30. Curran Associates, Inc.

Alex Wang, Yada Pruksachatkun, Nikita Nangia,
Amanpreet Singh, Julian Michael, Felix Hill, Omer
Levy, and Samuel R Bowman. 2019a. Super-
glue: A stickier benchmark for general-purpose
language understanding systems. arXiv preprint
arXiv:1905.00537.

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel R. Bowman. 2019b.
GLUE: A multi-task benchmark and analysis plat-
form for natural language understanding. In the Pro-
ceedings of ICLR.

Adina Williams, Nikita Nangia, and Samuel R Bow-
man. 2018. A broad-coverage challenge corpus
for sentence understanding through inference. In
NAACL-HLT.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Fun-
towicz, et al. 2019. Huggingface’s transformers:

12

https://doi.org/10.18653/v1/S18-2023
https://doi.org/10.18653/v1/S18-2023
https://arxiv.org/abs/1908.10084
https://arxiv.org/abs/1908.10084
https://arxiv.org/abs/1908.10084
https://arxiv.org/abs/2203.17189
https://arxiv.org/abs/2203.17189
http://arxiv.org/abs/2207.04993
https://doi.org/10.18653/v1/2022.naacl-main.272
https://doi.org/10.18653/v1/2022.naacl-main.272
https://doi.org/10.18653/v1/2022.naacl-main.272
https://doi.org/10.48550/ARXIV.2002.11296
https://doi.org/10.1145/3530811
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf

State-of-the-art natural language processing. arXiv
preprint arXiv:1910.03771.

Chuhan Wu, Fangzhao Wu, Tao Qi, and Yongfeng
Huang. 2021. Hi-transformer: Hierarchical interac-
tive transformer for efficient and effective long doc-
ument modeling. In Proceedings of the 59th An-
nual Meeting of the Association for Computational
Linguistics and the 11th International Joint Confer-
ence on Natural Language Processing (Volume 2:
Short Papers), pages 848–853, Online. Association
for Computational Linguistics.

Ji Xin, Raphael Tang, Jaejun Lee, Yaoliang Yu, and
Jimmy Lin. 2020. Deebert: Dynamic early exiting
for accelerating bert inference. In Proceedings of
the 58th Annual Meeting of the Association for Com-
putational Linguistics, pages 2246–2251.

Caiming Xiong, Victor Zhong, and Richard Socher.
2017. Dynamic coattention networks for question
answering. In International Conference on Learn-
ing Representations.

Liu Yang, Mingyang Zhang, Cheng Li, Michael Ben-
dersky, and Marc Najork. 2020. Beyond 512 tokens:
Siamese multi-depth transformer-based hierarchical
encoder for long-form document matching. In Pro-
ceedings of the 29th ACM International Conference
on Information & Knowledge Management. ACM.

Ofir Zafrir, Guy Boudoukh, Peter Izsak, and Moshe
Wasserblat. 2019. Q8bert: Quantized 8bit bert. In
2019 Fifth Workshop on Energy Efficient Machine
Learning and Cognitive Computing-NeurIPS Edi-
tion (EMC2-NIPS), pages 36–39. IEEE.

Manzil Zaheer, Guru Guruganesh, Kumar Avinava
Dubey, Joshua Ainslie, Chris Alberti, Santiago On-
tanon, Philip Pham, Anirudh Ravula, Qifan Wang,
Li Yang, et al. 2020. Big bird: Transformers for
longer sequences. Advances in Neural Information
Processing Systems, 33:17283–17297.

A Segment Preprocessing

For each task, we must prepare the text segments
for processing by either the Dual Encoder, Fully
Self-attentive, or LAIT models. Here, we report the
preprocessing and concatenation strategy used. For
the FSA models, we concatenate each segment. For
the DE and LAIT models, we treat each segment
as a separate input.

MNLI

• hypothesis: <hypothesis text>

• premise: <premise text>

WiC

• <key word>: <sentence1>

• <key word>: <sentence2>

STSB

• sentence1: <sentence1>

• sentence2: <sentence2>

BoolQ

• question: <question>

• passage: <passage>

RTE

• hypothesis: <hypothesis>

• premise: <premise>

QQP

• question1: <question1>

• question2: <question2>

FEVER

• hypothesis: <claim>

• premise: <evidence>

VitaminC

• hypothesis: <claim>

• premise: <evidence>

Answer Equivalence

• question: <question>

• answer1: <answer1>

• answer2: <answer2>

13

https://doi.org/10.18653/v1/2021.acl-short.107
https://doi.org/10.18653/v1/2021.acl-short.107
https://doi.org/10.18653/v1/2021.acl-short.107
https://openreview.net/forum?id=rJeKjwvclx
https://openreview.net/forum?id=rJeKjwvclx
https://doi.org/10.1145/3340531.3411908
https://doi.org/10.1145/3340531.3411908
https://doi.org/10.1145/3340531.3411908

MultiRC

• question: <question>

• answer: <answer>

• paragraph: <paragraph>

BoolQ-Split

• question: <question>

• passage1: <passage1>

• passage2: <passage2>

• passage3: <passage3>

• passage4: <passage4>

• passage5: <passage5>

B Additional Results

B.1 Full Decoder and T5-Large Models
For our experiments in the main paper we used a
T5-base model with only a single decoder layer.
Using only one decoder layer is faster at inference
time enforces the model to more heavily rely on
the encoder stack, and therefore the strong results
of LAIT in that setting are even more encouraging.
We also experiment with a LAIT on top of a T5-
Base with all 12 decoder layers and with a larger
T5-Large that has 24 layers in both encoder and
decoder stacks.

Table 7 and Table 8 present the results for T5-
Base and T5-Large, respectively. LAIT shows sim-
ilar trends for these different configurations, indi-
cating that our approach is general and translates to
different model configurations. Also, as expected,
larger decoder allows LAIT to further postpone
the cross-segment interactions (larger P) without
loosing accuracy.

B.2 Generalization of LAIT configuration
Here, we report additional results using our split of
the existing validation sets into a synthetic valida-
tion set and a heldout test set.

Figure 5 reports the decrease in model perfor-
mance as the number of parallel encoder layers
increases. Table 9 reports the heldout test results
for the LAIT models with the best synthetic val-
idation performance. Table 11 includes the tasks
with more than two segments. Table 10 reports
the cost of both full encoding and partially-cached
encoding for LAIT? models identified from Tables
9 and 11.

14

P MNLI QQP WiC WiC MultiRC
Accuracy Relative Accuracy Relative Accuracy Relative Accuracy Relative F1 Relative

0 86.92 91.86 72.73 83.64 80.26
1 86.90 99.98% 91.89 100.03% 72.57 99.78% 83.46 99.78% 79.74 99.35%
2 87.05 100.15% 91.90 100.04% 72.88 100.21% 83.49 99.82% 79.95 99.61%
3 87.17 100.29% 91.93 100.08% 73.51 101.07% 83.49 99.82% 79.80 99.43%
4 86.93 100.01% 91.87 100.01% 72.88 100.21% 83.64 100.00% 79.69 99.29%
5 86.60 99.63% 91.94 100.09% 73.51 101.07% 83.15 99.41% 78.92 98.33%
6 86.61 99.64% 91.72 99.85% 73.67 101.29% 82.97 99.20% 78.37 97.65%
7 86.30 99.29% 91.66 99.78% 73.82 101.50% 82.45 98.58% 78.03 97.22%
8 86.15 99.11% 91.73 99.86% 73.67 101.29% 82.48 98.61% 78.13 97.35%
9 86.13 99.09% 91.61 99.73% 73.82 101.50% 82.35 98.46% 77.96 97.13%
10 84.97 97.76% 91.45 99.55% 71.32 98.06% 77.13 92.22% 67.07 83.57%
11 84.17 96.84% 90.98 99.04% 67.87 93.32% 74.74 89.36% 59.06 73.59%
12 83.22 95.74% 89.55 97.49% 64.89 89.22% 73.73 88.15% 58.18 72.49%

Table 7: Results for different number of parallel layers P of LAIT using the same setting as Table 2, but with 12
decoder layers instead of a single decoder layer. Hence, P = 0 is similar to T5-base setting from Table 2 (numbers
are not identical due to different training runs). The extra decoding layers allows further increasing P compared to
single decoder-layer while maintaining similar performance. The relative column shows the accuracy or F1 change
compared to P = 0.

Figure 5: Relative performance of LAIT vs. T5 Fully
self-attentive baseline on a variety of multi-segment
natural language processing tasks. For all tasks, we
report performance on a held-out portion of the valida-
tion set. Performance only degrades after 8-10 layers
of independent segment processing. 95% confidence
interval via bootstrapping on the evaluation data.

15

P MNLI WiC BoolQ MultiRC
Accuracy Relative Accuracy Relative Accuracy Relative F1 Relative

0 90.19 73.82 86.88 84.16
1 90.01 99.80% 73.35 99.36% 86.88 100.00% 84.03 99.85%
2 90.16 99.97% 73.82 100.00% 86.76 99.86% 83.76 99.52%
3 90.10 99.90% 73.35 99.36% 86.85 99.97% 84.04 99.86%
4 89.97 99.76% 73.51 99.58% 87.25 100.43% 84.20 100.05%
5 90.09 99.89% 74.14 100.43% 87.19 100.36% 84.26 100.12%
6 89.97 99.76% 74.29 100.64% 87.09 100.24% 84.19 100.04%
7 90.39 100.22% 74.14 100.43% 87.22 100.39% 83.75 99.51%
8 90.15 99.96% 74.45 100.85% 86.88 100.00% 84.04 99.86%
9 90.07 99.87% 73.98 100.22% 87.22 100.39% 83.86 99.64%
10 89.87 99.65% 74.29 100.64% 86.94 100.07% 84.00 99.81%
11 89.84 99.61% 74.45 100.85% 87.03 100.17% 83.82 99.60%
12 90.13 99.93% 74.92 101.49% 87.06 100.21% 83.97 99.77%
13 89.75 99.51% 74.29 100.64% 86.88 100.00% 83.54 99.26%
14 89.59 99.33% 73.82 100.00% 86.45 99.51% 83.11 98.75%
15 89.86 99.63% 72.73 98.52% 86.94 100.07% 82.80 98.38%
16 89.81 99.58% 73.04 98.94% 86.70 99.79% 82.44 97.96%
17 89.50 99.23% 73.98 100.22% 86.09 99.09% 81.85 97.26%
18 89.37 99.09% 73.51 99.58% 86.02 99.01% 81.57 96.92%
19 88.66 98.30% 74.14 100.43% 84.89 97.71% 78.99 93.86%
20 88.50 98.13% 72.88 98.73% 83.33 95.91% 76.66 91.09%
21 88.39 98.00% 73.82 100.00% 82.45 94.90% 74.67 88.72%
22 88.16 97.75% 72.26 97.89% 81.83 94.19% 73.02 86.76%
23 86.93 96.39% 71.16 96.40% 79.24 91.21% 61.11 72.61%
24 85.83 95.17% 68.03 92.16% 76.88 88.49% 59.34 70.51%

Table 8: Results for different number of parallel layers P of LAIT with a T5-Large backbone model, using all 24
decoder layers. The relative column shows the accuracy or F1 change compared to P = 0.

MNLI RTE QQP STSB WiC BoolQ FEVER VitaminC
Model Accuracy Accuracy Accuracy Spearman Accuracy Accuracy Accuracy Accuracy

LAIT-0 86.86± 0.93 78.42 ± 6.47 91.57 ± 0.37 89.75± 1.64 68.97± 5.17 81.65± 1.87 97.01± 0.44 87.95± 0.36
LAIT-1 86.86± 0.94 71.94 ± 7.19 91.61 ± 0.39 89.53± 1.68 67.08± 5.17 81.96± 1.81 96.90± 0.46 87.80± 0.37
LAIT-2 86.37± 0.94 76.26 ± 6.51 91.43 ± 0.37 89.24± 1.82 68.34± 5.02 81.59± 1.87 96.92± 0.45 87.83± 0.37
LAIT-3 86.29± 0.93 74.1 ± 7.19 91.87 ± 0.35 88.91± 1.85 66.77± 5.49 81.41± 1.93 96.94± 0.44 87.87± 0.34
LAIT-4 86.43± 0.93 76.98 ± 6.47 91.64 ± 0.37 89.67± 1.63 68.03± 5.49 81.59± 1.81 97.01± 0.44 87.92± 0.34
LAIT-5 86.51± 0.93 74.1 ± 7.19 91.65 ± 0.38 88.99± 1.88 68.65± 5.18 79.82± 1.87 96.71± 0.45 87.73± 0.36
LAIT-6 85.84± 1.01 70.5 ± 7.23 91.53 ± 0.4 88.73± 1.79 68.34± 5.02 80.49± 1.93 96.68± 0.45 87.41± 0.34
LAIT-7 85.94± 0.91 74.1 ± 7.19 91.37 ± 0.4 88.82± 1.82 66.46± 5.02 80.06± 1.87 96.68± 0.47 86.21± 0.39
LAIT-8 85.80± 1.00 72.66 ± 7.19 91.4 ± 0.39 88.60± 1.85 70.53± 4.86 79.57± 1.99 96.70± 0.47 86.35± 0.39
LAIT-9 85.19± 0.99 72.66 ± 7.19 91.44 ± 0.38 88.38± 1.79 67.08± 5.17 80.37± 1.96 96.52± 0.48 86.18± 0.39
LAIT-10 83.80± 1.01 52.52 ± 7.91 90.89 ± 0.42 79.21± 2.90 64.26± 5.02 70.40± 2.23 94.80± 0.54 84.00± 0.42
LAIT-11 82.17± 1.10 53.24 ± 7.91 90.33 ± 0.41 51.49± 5.44 65.20± 4.86 70.89± 2.05 91.48± 0.70 82.60± 0.42
LAIT-12 72.19± 1.27 51.08 ± 7.91 86.81 ± 0.47 18.30± 6.94 58.93± 5.49 70.58± 2.08 88.14± 0.83 57.00± 0.54

Table 9: Results comparing LAIT configurations. We perform a split of the validation sets to form synthetic valida-
tion and test sets; we report the test-set score corresponding to the checkpoint with the best validation performance.

16

Task Full Encoding ↓ with Caching ↓

MNLI 83.33% 69.85%
STSB 63.07% 62.78%
AnswerEq 54.94% 41.21%
BoolQ 89.72% 83.53%
BoolQ-S 48.69% 47.12%
WiC 55.85% 55.85%
FEVER 78.19% 47.74%
VitaminC 80.42% 70.67%
MultiRC 94.93% 59.02%
RTE 82.49% 82.04%
QQP 64.05% 61.85%

Potential practical settings:

ContractNLI 99.46% 60.75%
WikiClusters 81.51% 58.47%

Table 10: Cost of encoder attention FLOPs (vs.
T5-base) when using LAIT? model for each task to
process the entire validation set. LAIT? selection is
based on results in tables 9 and 11.

AnswerEq BoolQ-split MultiRC
Model Accuracy Accuracy F1

LAIT-0 90.55± 1.21 81.22± 1.90 78.55 ± 1.94
LAIT-1 90.73± 1.17 81.77± 1.87 78.13 ± 1.91
LAIT-2 89.65± 1.19 81.16± 1.90 78.81 ± 1.89
LAIT-3 90.69± 1.19 81.04± 1.96 77.97 ± 1.9
LAIT-4 90.55± 1.22 81.65± 1.83 76.98 ± 2.15
LAIT-5 90.46± 1.21 79.27± 1.90 77.48 ± 1.97
LAIT-6 90.37± 1.19 80.31± 1.96 75.6 ± 2.12
LAIT-7 90.51± 1.22 79.45± 1.96 72.87 ± 1.99
LAIT-8 89.74± 1.26 79.76± 1.99 71.58 ± 1.97
LAIT-9 91.18± 1.15 79.02± 2.02 72.03 ± 2.04
LAIT-10 86.68± 1.44 71.62± 2.11 59.29 ± 2.46
LAIT-11 60.50± 1.91 70.15± 2.20 61.47 ± 2.13
LAIT-12 61.40± 2.02 70.09± 2.11 60.11 ± 2.34

Table 11: Results for tasks with more than two seg-
ments. Bold, underline, and box indicate model per-
formance as in Table 9.

17

	Introduction
	Background: Full Self-attention vs. Dual Encoders
	Layer-Adjustable Interactions
	Attention Complexity
	Training LAIT

	Experimental Setting
	Implementation details
	Tasks and metrics
	Baselines

	Results
	Scalability
	Caching and Reusing Representations
	Robustness

	Related Work
	Conclusion
	Segment Preprocessing
	Additional Results
	Full Decoder and T5-Large Models
	Generalization of LAIT configuration

