
Common Problems with Creating Machine Learning Pipelines
from Existing Code

Katie O’Leary, Makoto Uchida
Google, Inc.

Mountain View, CA, USA
{katieole, muchida} @google.com

ABSTRACT

We worked with over 100 participants in industry on developing
machine learning (ML) pipelines. Working alongside ML
platform owners, software engineers, DevOps engineers, and data
scientists across industries, we migrated existing ML projects into
ones with ML pipelines software systems, Kubeflow Pipelines
(KFP) and TensorFlow Extended (TFX). In this workshop paper,
we share common problems we observed when migrating existing
ML code to an ML pipeline system.

CCS CONCEPTS
• Human-centered computing~Empirical studies in HCI
• Software and its engineering~Software creation and
management • Computing methodologies~Machine learning

KEYWORDS
Machine learning, workflow orchestration

ACM Reference format:

Katie O’Leary, Makoto Uchida. 2020. Common Problems with Creating
Machine Learning Pipelines from Existing Code. In Workshop on MLOps
Systems, Third Conference on Machine Learning and Systems (MLSys).

1 Introduction
Machine learning pipelines are becoming essential for enterprise-
grade ML systems because they accomplish: 1) automated
orchestration of workflow steps for model training and predictions,
2) reproducibility and tracking of executions and produced outputs
of an ML workflow, and, 3) reusability of common workflow steps
across multiple ML application systems. Enterprises are adopting
pipelines products such as Apache Airflow1, TensorFlow Extended
(TFX)2, and Kubeflow Pipelines (KFP)3, to productionize their ML

1 https://airflow.apache.org/

2 https://www.tensorflow.org/tfx

models. However, we are still in the early days of production ML
and the challenges of implementing ML pipeline systems can be as
high as the rewards, as evidenced by Spotify’s recent blog post [1].
We contribute insights from observing ML teams migrate ML
coding projects to pipelines systems, specifically TFX and KFP
(both open-source projects), and some implications for design and
research.

2 Method

We engaged over 100 participants across several industries
transforming their business through machine learning. Our team of
software engineers and UX researchers met with enterprise ML
teams in a coding workshop setting, with the goal to implement ML
pipelines for their own business applications. We involved their
cross-functional ML teams of CEOs, DevOps, data scientists, VPs,
and engineers. To preserve confidentiality, this paper synthesizes
learnings without focusing on any single industry or team.

3 Common problems

3.1 The ML code ‘dead end’
Data scientists often develop ML models in an iterative manner,
typically in a local environment (such as notebook) with a snapshot
of an offline dataset. The goal is to define and achieve an optimal
model that satisfies business requirements. Due to the highly
iterative nature of model development, the code is typically not
authored in a robust software engineering program, nor does it have
to be at this point [2]. However, this model-centric workflow of
data scientists becomes problematic for software and DevOps
engineers who operate the model in production, but must uphold
the quality of the software being deployed. To deploy ML models
into production, it must be integrated with the data infrastructure
that would produce live training data, as well as with the serving

3 https://www.kubeflow.org/docs/pipelines/overview/pipelines-overview/

infrastructure for the end-user application, along with monitoring,
validation, data streams, etc., as described in [3]. In particular,
online serving (scoring) systems with ML models often pose their
own requirements that may not be obvious at modeling time, such
as latency and model freshness constraints. As a result, engineers
often need to re-implement the model from scratch into a
deployable software. During the re-implementation, many of the
implicit assumptions and nuances made by data scientists for
modeling can be lost, resulting in unexpected inconsistencies and
issues in production.

Such ‘dead end’ happens because data scientists compose models,
or at best a piece of code to produce models, but not pipelines.
Shifting to a pipeline-centric workflow is challenging for data
scientists, because it requires them to formalize the programs
before and after model training in ways that can be properly unit
tested and deployed. Even if they do, model development with a
formal pipeline program is slower than with an iterative
environment such as notebook, due to the overhead of added
software abstractions. We found that for enterprise ML teams, the
conceptual leap from an ML model—which in fact is a collection
of weights and variables rather than a piece of code—to a pipeline
system was difficult, and posed a major hurdle to adoption.

3.2 Monolithic program
Data scientists tend to develop models with a monolithic program,
i.e., it may not be factored into functions and constructs of logical
units as is a best practice in software engineering. A major value
proposition of ML orchestration systems is to provide a framework
to define individual workflow steps as components so that the data
produced by each step can be formalized, and steps can be reused
across different pipelines to reduce inefficiency. The concept of
components is therefore essential to successfully adopting ML
pipelines systems, and yet components are not necessarily intuitive
to design. To design components, teams must decide on how to
break down monolithic program code into canonical workflow
steps, and then define clear interfaces for data passing between
them. These challenges can be a barrier to migrating existing code
to pipeline systems, as evidenced by teams who built a single,
monolithic component “train,” as their first pipeline, which in fact
contains much more than model fitting code such as data loading,
data transformation, and evaluation. Enterprise teams expressed
difficulty in understanding how to design logical, canonical, and
reusable components for pipelines.

3.3 Leveraging premade components
Finally, once ML teams (1) understand producing pipelines as the
end deliverable of model development (versus a model); and (2)
break the code into logical workflow steps, i.e., components, they
want to (3) leverage and reuse premade ‘authoritative’ components
that implement best practices of production ML [4], as opposed to
reinventing the wheel from scratch. We observed that Kubeflow

Pipelines, a highly flexible ML pipelines system, accommodated
diverse ML topologies, yet imposed high user burden to design
technically sophisticated components for common ML steps.
Teams expressed interest in ready-made components, including
templates, that could help them to adopt and customize ML-specific
workflow steps for tasks such as automated model analysis and
validation. TensorFlow Extended provides such components for
best practices [5]. However, it also requires that other custom
components in the pipeline be implemented in particular ways to
match with out-of-box components. Given (1) and (2) are already
non-trivial, refactoring the code to implement custom components
to interoperate with out-of-box components implemented
elsewhere, poses a further challenge.

CONCLUSION
Many organizations have well established practices for developing
ML models, but we have observed a substantial—and as yet
unsupported—conceptual leap in migrating from monolithic ML
programs to componentized ML pipelines. This conceptual leap
makes it difficult to use and adopt ML pipelines systems and poses
barriers to productionizing machine learning at scale. To smooth
out the enterprise journey to production ML systems, we have
identified the following opportunities: 1) The environment for
prototyping ML models should be designed to prevent the need to
re-implement from scratch for production, 2) ML pipelines should
provide a framework of pre-defined canonical unit of operations as
components such that ML code can follow ML engineering best
practices [6], as opposed to free-form flexibility, 3) Interfaces
between components—both code and data—should be made
explicit and simple enough so that implementing such interface is
easy to use for ML code authors.

ACKNOWLEDGMENTS
For facilitating customer workshops, we thank: Jennifer Otitigbe,
Sina Chavoshi, Hongye Sun, Alexey Volkov, Julian Atkinson,
Hallie Crosby, Lucio Floretta, Erwin Huizenga, Khalid Salama,
Amy Unruh, Scott Fitzharris, and Alex Walker. For pioneering
discussions on emerging paradigm of ML Engineering, we thank:
Robert Crowe, Konstantinos Katsiapis, Anusha Ramesh, Ben
Mathes, Tris Warkentin, Salem Haykal, and Anand Iyer.

REFERENCES
[1] Josh Baer and Samuel Ngahane. 2019. The Winding Road to Better Machine

Learning Infrastructure Through Tensorflow Extended and Kubeflow. Spotify
Labs blog https://labs.spotify.com/2019/12/13/the-winding-road-to-better-
machine-learning-infrastructure-through-tensorflow-extended-and-kubeflow/

[2] Adam Rule, Aurélien Tabard, James Hollan. Exploration and Explanation in
Computational Notebooks. ACM CHI Conference on Human Factors in
Computing Systems, Apr 2018, Montréal, Canada. pp.1-12,
ff10.1145/3173574.3173606.

[3] D Sculley, Gary Holt, Daniel Golovin, et al. 2015. Hidden Technical Debt in
Machine Learning Systems. In C. Cortes, N.D. Lawrence, D.D. Lee, M.

Sugiyama, and R. Garnett, eds., Advances in Neural Information Processing
Systems 28. Curran Associates, Inc., 2503–2511.

 [4] Martin Zinkevich. 2018. Rules of Machine Learning: Best Practices for ML
Engineering. https://developers.google.com/machine-learning/guides/rules-of-
ml

[5] Denis Baylor, Eric Breck, Heng-Tze Cheng, et al. 2017. TFX: A TensorFlow-
Based Production-Scale Machine Learning Platform. In Proceedings of the 23rd
ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining (KDD ’17). ACM Press, New York, NY, 1387–1395.
DOI:https://doi.org/10.1145/3097983.3098021

[6] Konstantinos Katsiapis and Kevin Haas. 2019. Towards ML Engineering with
TensorFlow Extended (TFX). In Proceedings of the 25th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining (KDD ’19).
ACM, New York, NY, 3182. DOI:https://doi.org/10.1145/3292500.3340408.

