
This paper is included in the Proceedings of the
14th USENIX Symposium on Operating Systems

Design and Implementation
November 4–6, 2020

978-1-939133-19-9

Open access to the Proceedings of the
14th USENIX Symposium on Operating
Systems Design and Implementation

is sponsored by USENIX

Thunderbolt: Throughput-Optimized,
Quality-of-Service-Aware Power Capping at Scale

Shaohong Li, Xi Wang, Xiao Zhang, Vasileios Kontorinis, Sreekumar Kodakara,
David Lo, and Parthasarathy Ranganathan, Google LLC

https://www.usenix.org/conference/osdi20/presentation/li-shaohong

Thunderbolt: Throughput-Optimized,
Quality-of-Service-Aware Power Capping at Scale

Shaohong Li
Google LLC

Xi Wang
Google LLC

Xiao Zhang
Google LLC

Vasileios Kontorinis
Google LLC

Sreekumar Kodakara
Google LLC

David Lo
Google LLC

Parthasarathy Ranganathan
Google LLC

Abstract
As the demand for data center capacity continues to grow,

hyperscale providers have used power oversubscription to
increase efficiency and reduce costs. Power oversubscription
requires power capping systems to smooth out the spikes that
risk overloading power equipment by throttling workloads.
Modern compute clusters run latency-sensitive serving and
throughput-oriented batch workloads on the same servers,
provisioning resources to ensure low latency for the former
while using the latter to achieve high server utilization. When
power capping occurs, it is desirable to maintain low latency
for serving tasks and throttle the throughput of batch tasks.
To achieve this, we seek a system that can gracefully throttle
batch workloads and has task-level quality-of-service (QoS)
differentiation.

In this paper we present Thunderbolt, a hardware-agnostic
power capping system that ensures safe power oversub-
scription while minimizing impact on both long-running
throughput-oriented tasks and latency-sensitive tasks. It uses
a two-threshold, randomized unthrottling/multiplicative de-
crease control policy to ensure power safety with minimized
performance degradation. It leverages the Linux kernel’s CPU
bandwidth control feature to achieve task-level QoS-aware
throttling. It is robust even in the face of power telemetry un-
availability. Evaluation results at the node and cluster levels
demonstrate the system’s responsiveness, effectiveness for
reducing power, capability of QoS differentiation, and mini-
mal impact on latency and task health. We have deployed this
system at scale, in multiple production clusters. As a result,
we enabled power oversubscription gains of 9%–25%, where
none was previously possible.

1 Introduction

Data centers form the backbone of popular online services
such as search, streaming video, email, social networking,
online shopping, and cloud. The growing demand for on-
line services forces hyperscale providers to commit mas-
sive capital to continuously expand their data center fleet.

The overall capital expenditures for just the top 5 hyperscale
providers (Amazon, Google, Microsoft, Facebook, Apple) in
2019 reached $120B out of a total $210B for all data centers
worldwide [10, 11]. The majority of these investments are
allocated towards buying and building infrastructure, such as
buildings, power delivery, and cooling, to host the servers that
compose the warehouse-scale computer. Power oversubscrip-
tion is the practice of deploying more servers in a data center
than the data center’s power supply can nominally support if
all servers were 100% utilized. Power oversubscription allows
deploying more servers into a data center, and therefore re-
duces the number of data centers needed to be built. The cost
savings potential of power oversubscription amounts to bil-
lions of dollars per year and is therefore of great importance
to data center operators.

However, power oversubscription comes with a risk of over-
load during power peaks, and thus often comes with protec-
tive systems such as power capping. Power capping systems
enable safe power oversubscription by preventing overload
during power emergencies. Power capping actions include
suspending low-priority tasks [18], throttling CPU voltage
and frequency using techniques such as dynamic voltage and
frequency scaling (DVFS) and running average power limit
(RAPL) [8,13,25], or packing threads in a subset of available
cores [17]. The action needs to be compatible with the work-
loads and meet their service-level objectives (SLOs). This,
however, is challenging for clusters with throughput-oriented
workloads co-located with latency-sensitive workloads on the
same servers.

Throughput-oriented tasks represent an important class
of computation workloads. Examples are web indexing, log
processing, and machine learning model training. These work-
loads typically have deadlines on the order of hours for when
the computation needs to be completed, making them good
candidates for performance throttling when a cluster faces a
power emergency due to power oversubscription. Neverthe-
less, missing the deadline can result in serious consequences
such as lost revenue and diminished quality, thus making them
unamenable to interruption.

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 1241

Latency-sensitive workloads are a different class. They
need to complete the requested computation on the order of
milliseconds to seconds. A typical example is an applica-
tion that handles user requests. High latencies result in bad
user experience, eventually leading to loss of users and rev-
enue. Unlike throughput-oriented pipelines, such tasks are not
amenable to performance throttling. They often are consid-
ered high priority and need to be exempt from power capping.

In our data centers, throughput-oriented and latency-
sensitive tasks are co-located on the same server to increase
resource utilization [20]. This introduces a need for a fine-
grained power capping mechanism that throttles the perfor-
mance of throughput-oriented tasks to reduce server power
usage while exempting high-priority latency-sensitive tasks.

This paper describes a simple, robust, and hardware-
agnostic power capping system, Thunderbolt, to address these
challenges. It throttles the CPU shares of throughput-oriented
workloads to slow them down “just enough” to keep power
under specified budget, while leaving latency-sensitive tasks
unaffected. It has been deployed in large-scale production
data centers.

To our knowledge, Thunderbolt is the first industry system
that simultaneously achieves the following goals. All of these
are important to scale out mission critical systems.

• A system architecture that enables oversubscription
across large power domains. Power pooling and statisti-
cal multiplexing across machines in large power domains
maximizes the potential for power oversubscription.

• Quality-of-service-aware, hardware-agnostic power
throttling mechanism with wide applicability. Our
system relies only on established Linux kernel features,
and thus is hardware platform agnostic. This enables
the flexibility of introducing a variety of platforms into
data centers without compromising the effectiveness
of power capping. Our task-level mechanisms allow
differentiated quality-of-service (QoS). Specifically,
Thunderbolt does not affect serving, latency-sensitive
workloads co-located with throughput-oriented work-
loads on the same server, and has the ability to apply
different CPU caps on workloads with different SLOs.
The platform-agnostic and QoS-aware nature allows
the system to be tailored to the requirements of a
wide spectrum of hardware platforms and software
applications.

• Power safety with minimized performance degradation.
A two-threshold scheme with a randomized unthrot-
tling/multiplicative decrease algorithm enables minimal
performance impact while ensuring that a large amount
of power can be shed to avoid power overload during
emergencies.

• System availability in the face of power telemetry un-
availability. Power telemetry availability has not drawn

much attention in most previous power capping systems,
but we found it to be the availability bottleneck in our
system. Thunderbolt introduces a failover subsystem
to maintain power safety guarantees even when power
telemetry is unavailable.

We have deployed this system in multiple data centers over
a period of two years. We have verified proper operation at
scale and achieved oversubscription of 9–25% when none was
previously possible. At such an oversubscription level, data
centers run at high power efficiency and are close to the edge
of exceeding their power limits. Power capping is expected to
occur a few times a year. Section 7 has more details.

2 Background

Warehouse-sized data centers run very complex and diverse
workloads and need a flexible power actuator to handle com-
plicated application scenarios. Google recently published a
power capping system [18] that intentionally suspends low-
priority tasks which often results in task timeouts and failures.
Such interruption is appropriate in certain situations; for in-
stance, some tasks can tolerate occasional downtime but prefer
to have consistent performance when they run, and prefer to be
interrupted so they can be rescheduled somewhere else rather
than being slowed down. However, for throughput-oriented
workloads, this is not only wasteful of compute resources but
is also disruptive.

Popular software frameworks like Hadoop [19], Mill-
Wheel [3], and TensorFlow [1] provide checkpointing func-
tionality to allow tasks to handle failures gracefully. Check-
pointing itself, however, incurs non-negligible cost and com-
plexity. Users have to balance between the risk of failure and
the overhead of runtime checkpointing. Even with checkpoint-
ing, some amount of work is wasted when a task is killed and
restarted. For distributed computing that requires synchro-
nization among workers (e.g., synchronized machine learning
training), a killed task can easily become a straggler as others
have to wait for it to make forward progress. Our system aims
to provide a more graceful solution where traditional task
killing or suspension is too costly.

Most previous studies control CPU power to affect overall
machine power draw. Our system follows this practice, be-
cause CPU power draw is much higher than that of memory
or storage components (e.g., flash and disk) on the commodity
servers in our data centers.

Data center workloads also run at different priorities with
varying QoS. It is highly desirable to reflect differentiated
QoS even under power capping. Previous industry power cap-
ping systems, such as Dynamo [25] and CapMaestro [14],
differentiate priorities at the machine level. They assign prior-
ities to individual machines and build a global priority-aware
control policy for all machines involved. To provide QoS

1242 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

differentiation with Dynamo or CapMaestro, tasks with dif-
ferent capping priorities have to be scheduled on different
machines. This conflicts with our requirement to run mixed-
priority workloads on the same machine to improve resource
utilization. In contrast, our approach is designed to provide
QoS differentiation when workloads of different priorities run
on the same machine.

From a scheduling perspective, our problem may look sim-
ilar to the classic problem of scheduling latency-sensitive and
throughput-oriented tasks on the same machine and optimiz-
ing for latency and throughput. However, it is a different form
of the problem to which existing scheduling solutions do not
directly apply. The constraining resource is power, which nei-
ther cluster scheduler nor local node scheduler can directly
control or allocate. Instead we control power indirectly by
controlling CPU usage. We treat power as a system output,
measure it via power meters, and feed it back into the system
to build a control loop. We have to care about the availabil-
ity of power readings that are external signals. Violation of
the power budget results in not performance degradation but
high-stake physical failures (tripping circuit breakers) and
immediate power loss to thousands of machines. Therefore a
strong guarantee of power not exceeding the budget is the top
priority, requiring fast response and a wide dynamic range of
power control. Optimization for latency and throughput must
not compromise this guarantee.

3 Terminology

To facilitate the explanation of our system, we define a few
key terms summarized here for easy reference.

Thunderbolt. The power capping system as a whole, named
after the resulting power curves that look like a thunder-
bolt (see Figure 5). The overall architecture is described
in Section 4.

Load shaping. The “reactive capping” subsystem and
closed-loop control policy using power signals for fine-
grained power capping control. It is described in Sec-
tion 4.1.2. It uses CPU bandwidth control (described
below) as the node-level mechanism.

CPU bandwidth control. The node-level mechanism for
load shaping. It leverages the CPU bandwidth control
feature provided by Linux’s completely fair scheduler
to throttle the CPU usage of tasks. It is described in
Section 4.1.1.

CPU jailing. The “proactive capping” backup subsystem
that takes over when power signals are unavailable and
load shaping cannot function. It includes an open-loop
control policy of risk assessment and a node-level mech-
anism that makes use of Linux’s CPU affinity features
to limit machines’ CPU utilization. It is described in
Section 4.2.1.

Figure 1: Software architecture of Thunderbolt.

4 Architecture and Implementation

Thunderbolt is capable of performing two types of end-to-
end power capping actuation tailored to throughput-oriented
workloads: a primary mechanism called reactive capping,
and a failover mechanism called proactive capping. Reactive
capping monitors real-time power signals read from power
meters and reacts to high power measurements by throttling
workloads. When power signals become unavailable, e.g.,
due to meter downtime, proactive capping takes over and
assesses the risk of breaker trips. The assessment is based on
factors such as power in the recent past and for how long the
signals have been unavailable. If the risk is deemed high, it
proactively throttles tasks.

The reactive capping system depends on power signals pro-
vided by power meters installed close to the protected power
equipment, like circuit breakers. Meters are installed at ev-
ery power “choke point” whose limit will be first reached as
power draw increases. In our data centers the choke points
are typically power distribution units (PDUs) or medium volt-
age power planes (MVPPs) [18]. This differs from the more
widely adopted approach of collecting power measurements
from individual compute nodes and aggregating at upper lev-
els. Our approach has several advantages. It is simple. It
avoids aggregation and the associated data quality issues such
as time unalignment and partial collection failures. It also
avoids the need to estimate power drawn by non-compute
equipment, such as data center cooling, that does not provide
power measurements.

Figure 1 illustrates the software architecture of Thunder-
bolt. The meter watcher module polls power readings from
meters at a rate of one reading per second. It passes the read-
ings to the power notifier module and also stores a copy in a
power history datastore. The power notifier is a central mod-
ule that implements the control logic of reactive and proactive
capping. When power readings are available, it uses the read-
ings for the reactive capping logic. When the readings are
unavailable, it queries the risk assessor module for the proac-
tive capping logic. The risk assessor uses the historical power
information from the power history datastore to assess the
risk of breaker trips. If either logic decides to cap, the power
notifier will pass appropriate capping parameters to the ma-

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 1243

chine manager module, which then sends remote procedure
call (RPC) requests to the node controller of individual ma-
chines concurrently to reduce power. Important data about the
power delivery topology, such as the protected power limits
and the machines to be throttled under the power domain, are
obtained from a power topology datastore.

The scale of a power domain can vary from a few
megawatts, such as a PDU, to tens of megawatts, such as
a MVPP. One instance of Thunderbolt is deployed for each
protected power domain. The instance is replicated for fault
tolerance. There are 4 replicas in a 2-leader, 2-follower con-
figuration. Only the leader replicas can read power meters
and issue power shedding RPCs. The node controller’s power
shedding RPC services are designed to be idempotent and
can handle duplicate RPCs from different leader replicas. We
require two identical leader replicas to ensure power shedding
is available even during leader election periods. Followers
take over when leaders become unavailable.

The architecture allows Thunderbolt to scale easily. When
a new power domain is turned up, a new Thunderbolt instance
can be deployed without affecting existing instances for other
domains. When machines are added to or removed from a
power domain, only the power topology data needs to be
updated to include an up-to-date list of machines.

4.1 Primary subsystem: reactive capping

4.1.1 Node-level mechanism: CPU bandwidth control

CPU usage is a good indicator for the CPU power drawn by a
running task. We use the CPU bandwidth control feature of
the Linux completely fair scheduler (CFS) [21] to precisely
control the CPU usage of tasks running on a node, in order to
control the power drawn by the node.

Individual tasks run inside their own Linux control groups
(cgroups). The Linux scheduler provides two parameters for a
cgroup, namely quota and period. Quota controls the amount
of CPU time the workload gets to run during a period and
is replenished every period. Quota is shared and enforced by
all logical CPUs in the system. The quota and period can
be set for each cgroup and are typically specified at millisec-
ond granularity. A separate (per cgroup and per logical CPU),
cumulative runtime_remaining variable is kept inside the ker-
nel. The cumulative (per logical CPU) runtime_remaining
is consumed when a thread is running on the CPU. When it
reaches zero, it attempts to draw from the per-cgroup quota
pool. When the quota pool is empty, the running thread is
descheduled and no thread in the same cgroup can run until
quota is replenished at the beginning of the next period.

We track the historical CPU usage of all workloads running
on the machine. During a capping event, every node in the
power domain will receive an RPC to throttle throughput-
oriented workloads. The RPC contains parameters describing
how much the CPU usage of the tasks should be reduced

(details in Section 4.1.2). The node controller that receives
the RPC uses the historical CPU usage of all throughput
oriented workloads to determine how much CPU time to
throttle. The new quota and period values are then calculated
and configured for each cgroup on the machine.

Different tasks have different cgroups, and we can achieve
task-level QoS differentiation by adjusting their cgroup pa-
rameters. The Thunderbolt framework is capable of assigning
different CPU throttling levels to different cgroups, with more
restrictive levels to lower priority cgroups. In our cluster re-
source management systems, throughput-oriented tasks are
typically assigned low priorities while latency-sensitive tasks
are assigned high priorities. CPU throttling is applied only
to cgroups of throughput-oriented tasks, exempting cgroups
of latency-sensitive tasks. This is appropriate for our pro-
duction environment, where a significant portion of total
CPU resources is consumed by throughput-oriented tasks
(also known as batch tasks [20]), and it is undesirable to
throttle business-critical latency-sensitive tasks. Exempting
all latency-sensitive tasks comes with a caution about non-
sheddable power, which is explained below. Kernel threads
are also exempt from throttling and their CPU usage is very
low compared to regular tasks.

Non-sheddable power, the lower bound of the power control
range, is an important consideration for power oversubscrip-
tion and capping. With our implementation of Thunderbolt,
non-sheddable power can be attributed to CPU usage by ex-
empt tasks, machine idle power, and other uncontrolled power
users such as cooling equipment. We deliberately set the
oversubscription level so that non-sheddable power does not
exceed the protected power limits. We run continuous moni-
toring and rigorous analysis to predict and alert on the portion
of non-sheddable power in our data centers. In an unlikely
event when high non-sheddable power is predicted in a cluster,
site operators can leverage global load balancing to redirect
traffic of latency-sensitive tasks elsewhere to offset the risk.

The relationship between throttling levels and power draw
is nonlinear and workload dependent, therefore we always use
CPU bandwidth control in conjunction with power metering
and negative feedback to ensure expected power reduction
is achieved. The feedback loop is described in detail in Sec-
tion 4.1.2.

Characteristics of CPU bandwidth control. CPU band-
width control has two important properties:

Platform-agnostic. CPU bandwidth control is a pure soft-
ware feature supported by the upstream Linux kernel. It
can be switched on for almost any new platform with
minimal additional effort.

Task-level control. CPU bandwidth control is at the task
(cgroup) level. Specifically, tasks of varying priorities
are co-located on the same server and can even run on
the same physical core. CPU bandwidth control has the

1244 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Table 1: Comparison between CPU bandwidth control, DVFS, and RAPL for power limiting.

CPU bandwidth control DVFS RAPL
Response time 1 ms 100 µs 100 µs

Spatial granularity cgroup Physical core Processor socket
Power feedback control Requires external Requires external Processor built-in

Mechanism Pure software Requires hardware support Requires hardware support

required fine-grained visibility and control to provide
the differentiated QoS.

These properties make CPU bandwidth control a good fit for
our needs. We have also considered other popular hardware-
based alternatives, in particular dynamic voltage and fre-
quency scaling (DVFS) and Intel’s running average power
limit (RAPL). Below we compare and discuss CPU band-
width control and the two alternatives, and explain why, de-
spite the merits of the two alternatives, we do not adopt them
for Thunderbolt.

We summarize several attributes of CPU bandwidth control,
DVFS, and RAPL in Table 1. Given their nature of hardware
control, DVFS and RAPL both have faster power response
times than bandwidth control. In practice, however, we find
that the longer response time of CPU bandwidth control is
still fast enough to be an effective load shedding mechanism
for safe power oversubscription (see Section 6).

CPU bandwidth control vs RAPL: RAPL is available only
on Intel platforms. More importantly, the power limit can
only be set on a per socket basis, which means it does not
provide task-level control granularity. Alternative approaches
are possible to achieve differentiated task QoS using RAPL
if additional support is added to the node controller. For in-
stance, tasks with different QoS may be scheduled on different
sockets. Apart from the extra complexity, such a scheduling
constraint has a disadvantage of limiting CPU resource over-
commitment opportunity, which is undesirable for our cluster
scheduler [22].

CPU bandwidth control vs DVFS: DVFS is available on
most modern high-performance platforms, bringing its com-
patibility close to CPU bandwidth control. However, it may
also have problems supporting task-level control. For exam-
ple, per-core DVFS is supported by Intel only for Haswell
and later generations, and it is not supported by some non-x86
vendors. In terms of power control and performance impact,
as we will show in Section 5, DVFS is incapable of throt-
tling down to very low power levels but it has better power
efficiency than bandwidth control.

Operational factors. The platform-agnostic nature of CPU
bandwidth control is vital to new platform introductions. Even
if a new microarchitecture supports fine-grained DVFS, driver
support for new platforms often have issues that require extra

work. More importantly, per-task DVFS setting is not sup-
ported by the upstream Linux kernel. It is also not rare to find
chip errata that require workarounds. Using CPU bandwidth
control as either the main throttling mechanism or as a fall-
back mechanism removes these uncertainties in the critical
path. It makes us more comfortable about scaling up our data
centers with heterogeneous processor microarchitectures.

Overall we consider CPU bandwidth control essential to
the success of Thunderbolt. In the future DVFS can be added
as a node-level optimization. When Thunderbolt was first
deployed, per-task DVFS setting was not available in our
Linux kernel. We have recently added per-task DVFS support
to the Linux kernel to enable additional trade-offs between
performance and efficiency on Intel servers. The same kernel
mechanism can be used for power throttling.

4.1.2 Control policy: load shaping

The load shaping control policy determines when and how
much the actuator (CPU bandwidth control) should throttle
CPU usage in order to control power.

Formally, the power draw of a power domain can be written
as

p(t) =
N

∑
i=1

fi(ci(t)+ui(t))+n(t) (1)

where t is (discrete) time, p is the total power draw, N is the
number of machines, fi is the power drawn by machine i as a
monotonic function of the normalized machine CPU utiliza-
tion (in the range of [0, 1]), ci is the CPU used by controllable
tasks, ui is the uncontrollable CPU used by exempt tasks and
the Linux kernel, and n is the power drawn by non-machine
equipment. Our goal is to cap ci so that p < l for a power
limit l. Preventing overload (p > l) is the top priority, while
keeping p close to l when p < l is also desirable for efficiency.

We use a randomized unthrottling/multiplicative decrease
(RUMD) algorithm. If p(t)> l, then we apply a cap for the
CPU usage of each controllable task. The cap is equal to the
task’s previous usage multiplied by a multiplier, m, in the

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 1245

range of (0, 1). Then the power draw at the next time step is

p(t +1) =
N

∑
i=1

fi(ci(t +1)+ui(t +1))+n(t +1)

≤
N

∑
i=1

fi(mci(t)+ui(t +1))+n(t +1)

(2)

This cap is updated every second, and ci decreases exponen-
tially with time, until p < l. Note that, because of the ui and n
terms, there is no guarantee that p(t+1)< p(t). Nevertheless,
as explained in Section 4.1.1, in practice we ensure with high
confidence that non-sheddable power is less than the power
limit, that is,

N

∑
i=1

fi(ui(t))+n(t)< l,∀t (3)

Therefore power will eventually be reduced below the limit.
The system works on a time scale of seconds: power mea-

surements are read once per second, and throttling parameters
are updated every second. This is because the typical end-to-
end response time is 1–2 seconds from a high power draw to
power being sufficiently reduced by throttling. This is mostly
attributed to metering delays. We conservatively budget 5
seconds to account for occasionally longer metering delays
and network tail latency.

Throttling stops when p decreases to be below l. To avoid
fast power surges, throttling should stop in a progressive man-
ner. We do this by removing the CPU cap on a random portion
of machines every second. For instance, if it is configured
to completely unthrottle all machines in 5 seconds, then a
random non-overlapping set of 20% of machines will be un-
throttled every second. Alternatively, one may progressively
lift the cap in an additive manner for each machine at the same
time, leading to an additive increase/multiplicative decrease
(AIMD) algorithm [5]. We choose a randomized unthrottling
scheme instead of AIMD because it is simpler (no need for an
additive increase parameter), and AIMD’s "fairness" property
(machines converging to having the same CPU utilization) is
not required for our system, as long as randomization avoids
any machine from being disproportionally impacted.

Similar to AIMD, our RUMD algorithm also has the de-
sirable partial distributedness property. The central policy
controller requires no detailed system states, such as the CPU
usage and task distribution of each machine, other than the
total power. The distributed node controllers can make inde-
pendent decisions based solely on a few parameters that the
policy controller sends to all node controllers.

The result of the RUMD algorithm is a power curve oscil-
lating around the capping limit in a sawtooth-like pattern, as
can be seen in Section 6.2.

Implementation details. Here we give some details about
our implementation of the RUMD algorithm. In particular,

we explain how we balance two competing properties, re-
sponsiveness for power safety and efficiency for minimizing
performance impact, by maintaining two capping thresholds,
one high and one low. The high threshold, placed close to
the protected power limit, is associated with a hard multiplier
close to 0 in order to quickly reduce power for safety. The
low threshold, placed with a larger margin from the protected
limit, is associated with a soft multiplier for gentle throttling.

We start by explaining the high threshold for power safety.
Our end-to-end response time budget is 5 seconds. In 5 sec-
onds, we have observed that power in a nearly full cluster
will increase by no more than 2% of the protected equipment
limit. Therefore we place the high threshold at 98% of the
limit. The hard multiplier associated with this threshold is
set to be close to 0 for a quick reduction of a large amount
of power. This is because the only strong power guarantee is
non-sheddable power being less than the limit (Equation 3),
and thus sheddable power has to be reduced to nearly zero
quickly to guarantee responsiveness and safety.

It is worth noting that most circuit breakers do not imme-
diately trip when their rated power limit is reached. They
may tolerate a few seconds to tens of minutes of power over-
load [9]. In theory we may make use of this time buffer and
set the capping threshold at the power limit. However, how
long a breaker can sustain a power overload depends on many
factors, such as the design of the breaker, the magnitude of
the overload, and ambient temperature [9], and is thus hard
to predict. Power overload also decreases the equipment’s
lifetime. Therefore we choose to place the high threshold
2% below the power limit to avoid tapping into the overload
region.

We do not reduce the CPU cap of a task below a mini-
mum value (0.01) because the quota value in CPU bandwidth
control has to be greater than zero. This has a production im-
plication: when continuous throttling is applied long enough,
affected tasks will eventually converge to the minimum CPU
share. In this case, while all affected tasks cannot make mean-
ingful progress and power will be low, some tasks can still
respond to health checks and survive. Because of this, task
failures due to continuous throttling are expected to be fewer
than failures caused by completely suspending tasks, as can
be seen in Section 6.2.

The hard multiplier close to zero, while being responsive
and safe, is not efficient for utilizing the power budget because
it leads to power oscillation with a large amplitude. Therefore
we introduce the low threshold associated with the soft multi-
plier. The soft multiplier is close to 1 to improve efficiency
at the cost of responsiveness, and the low threshold is placed
below the high threshold to allow the longer response time.

We further optimize our design by not activating the low
threshold until throttling is triggered, and deactivating it after
throttling has not been active for a while. This way power is
allowed to reach the range between the two thresholds without
throttling.

1246 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Figure 2: Load shaping power control.

Table 2: Load shaping parameters used in production.

Load shaping parameter Value
High threshold 98% of protected limit
Low threshold 96% of protected limit
Hard multiplier 0.01
Soft multiplier 0.75

Low threshold expiration 5 minutes
Throttling timeout 1–20 seconds

Randomized unthrottling is implemented by assigning to
each machine a random throttling timeout in a range. A ran-
dom timeout is included in the throttling RPCs and sent to
each machine every second to refresh its timeout. When power
is below the capping threshold, the machines will stop receiv-
ing the RPCs and will unthrottle after the last received timeout
has passed. We choose a repeatedly-refreshed timeout instead
of a stop-throttling RPC because stop-throttling RPCs may
be dropped or even never reach some machines if the network
becomes partitioned.

Figure 2 illustrates the power trace in a typical throttling
scenario. Table 2 lists the parameters we use in production.

4.2 Failover subsystem: proactive capping
The feedback control of reactive capping relies on power
meters. However, power meters and the facility network con-
necting the meters to the production network are not always
available. On average, individual meters and facility network
have about 99.9% availability in our data centers, and it varies
by location. Transient network issues can cause seconds to
minutes of power signal interruption, while meter downtime
can be days before the meter gets repaired.

Without power signals, it is not straightforward to use CPU
bandwidth control for an open-loop control. We have built
models to map machine power utilization to CPU utilization,

so we may distribute the power domain’s total power budget to
individual machines and translate a machine’s power budget
to a CPU budget. However, it would require a sophisticated al-
gorithm to allocate the machine’s CPU budget among individ-
ual tasks while respecting the tasks’ QoS difference. Instead
of introducing a complex algorithm, we implement a simple
mechanism, CPU jailing, that specifies a total CPU budget for
a machine and leverages the Linux CFS scheduler to provide
task QoS differentiation (although the differentiation is re-
laxed compared to when meter is available, which is explained
further below). In a nutshell, CPU jailing is coarser-grained
than CPU bandwidth control, but much easier to reason about
when power signals are unavailable.

DVFS or RAPL, where supported, may also be used for
proactive capping because we only need machine-level con-
trol. However, we favor the platform-independent CPU jailing
for the same reasons as we favor the platform independence
of CPU bandwidth control.

We have also considered collecting power signals from
secondary sources, such as the machines’ power supply units,
or from power models. However, we found that the data qual-
ity of the sensors and the accuracy of the models for some
hardware do not meet our production requirements.

4.2.1 Node-level mechanism: CPU jailing

CPU jailing masks out (“jails”) a certain number of logical
CPUs from tasks’ runnable CPU affinity [15] to cap total
machine power. We refer to the portion of jailed CPUs as
jailing fraction, denoted by J. CFS will maintain proportional
fairness among tasks on the remaining available logical CPUs.
Each jailing request comes with a timeout that can be re-
newed. Once jailing expires, previously masked CPUs will
immediately become available to all tasks.

CPU jailing immediately caps peak power draw as it effec-
tively limits maximum CPU utilization to (1− J) on every
single machine. It sets an upper bound for power draw, al-
lowing safe operation for an extended time without power
signals. Because of increased idleness, jailed CPUs have a
higher chance of entering deep sleep to further reduce ma-
chine power.

The jailing fraction is uniformly applied to individual ma-
chines, regardless of their CPU utilization. Consequently, ma-
chines with low utilization are less impacted than highly uti-
lized machines. As an extreme example, CPU jailing might
not affect tasks at all on machines with utilization well below
(1− J).

Certain privileged processes, such as critical system dae-
mons, are explicitly exempt (i.e., they can still run on jailed
CPUs). The rationale is that their CPU usage is very low com-
pared to regular tasks but the consequences of them being
CPU starved can be devastating (e.g., machine cannot func-
tion correctly). A side effect of exemption is that it puts some
sporadic usage on the jailed CPUs and occasionally prevents

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 1247

them from entering deep sleep state.
A main disadvantage of CPU jailing is the relaxed QoS

differentiation. For example, the latency of a serving task
can be severely affected when too many cores are jailed.
Although this effect is attenuated by the fact that latency-
sensitive tasks run at higher priorities and can preempt lower-
priority throughput-oriented tasks during CPU resource con-
tention, CPU jailing is less favorable than CPU bandwidth
control and is only employed where load shaping is not appli-
cable.

Technically, one may achieve strict QoS differentiation by
applying CPU jailing to only throughput-oriented tasks while
exempting latency-sensitive ones. However, doing so without
power signals is intangible in practice. If latency-sensitive
tasks are exempt from CPU jailing, the only strong guarantee
we have about power is that non-sheddable power does not ex-
ceed power limit (Equation 3). In this situation, guaranteeing
power safety would require not running throughput-oriented
tasks at all, which we cannot afford.

Determining jailing fraction J. A proper jailing fraction J
can be determined from two factors: the relation between CPU
utilization and power utilization, and power oversubscription
ratio.

For power safety, we need to ensure power is reduced to
a safe level after a certain fraction of CPUs are jailed. This
value of J can be calculated from the power oversubscription
ratio and the CPU utilization-power utilization relation of the
given collection of hardware in the power domain, as follows:

J = 1−Ucpu = 1−gpower→cpu(
1

1+ r
) (4)

In the formula, Ucpu is the highest allowed CPU utilization
(normalized to the total CPU capacity), gpower→cpu is a func-
tion to convert power utilization (normalized to the theoretical
total peak power) to CPU utilization, and r is the oversubscrip-
tion ratio defined by the extra oversubscribed power capacity
as a fraction of the nominal capacity. 1/(1+ r) gives the
maximum safe power utilization, which can be converted to
Ucpu given that the CPU utilization-power utilization relation
is monotonic. A greater r leads to smaller allowed power
utilization and smaller Ucpu, which in turn leads to greater J.

In production, we set J to 20%–50% depending on a clus-
ter’s workloads and risk profiles. This is a deliberate trade-off
between performance SLO and power oversubscription op-
portunity.

4.2.2 Control policy: risk assessment of power signal
unavailability

As a fallback approach, CPU jailing is triggered when we
lose power measurements from the meters and the risk of
power overloading is high. The risk is determined by two fac-
tors, predicted power draw and meter unavailability duration.
Higher predicted power draw and longer meter unavailability

Figure 3: CPU power response to bandwidth control, DVFS,
and RAPL.

means higher risk. The end-to-end delay from risk assess-
ment to power reduction is typically 1–2 seconds, similar to
load shaping. In our implementation, we use a simple and
conservative probabilistic model to estimate the probability
of power reaching the protected equipment limit during cer-
tain meter downtime given the power draw of the recent past.
CPU jailing is triggered if the probability is high due to high
recent power draw and long enough downtime. Our conser-
vative model favors low false negatives (i.e., CPU jailing is
triggered when overload would have happened without it) at
the cost of relatively high false positives (i.e., CPU jailing is
triggered even when it does not have to). This is appropriate
because power safety is our top priority and power reading
unavailability is infrequent. The probabilistic model is not
the focus of this paper, but one can freely use any model that
estimates the risk from any available data and plug it in here.

5 Evaluation Results at the Node Level

Before discussing data center-level aggregated data, we show
two examples of node-level data from experiments performed
on an Intel Skylake CPU.

CPU power and set point. To quantify the effectiveness of
CPU bandwidth control, DVFS, and RAPL to control power,
we measure total CPU power under various set points of
the three knobs. We ran Intel’s “power virus” workload [7]
that stresses the CPU and the memory to maximize power
draw. We then separately used CPU bandwidth control, DVFS,
and RAPL to limit CPU power and compared the results,
which are shown in Figure 3. CPU power is normalized to the
highest power observed when none of the power management
mechanisms are enabled.

Figure 3(a) shows that, with CPU bandwidth control, we
are able to reduce CPU power to 0.34 due to significant deep
sleep state residency from bandwidth control.

In comparison, Figure 3(b) shows that with DVFS, power
draw is still relatively high at 0.57 when the lowest frequency
limit is applied. The frequency limit is normalized to the base
frequency of the processor.

1248 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Figure 4: Throughput of a video transcoding task as a function
of CPU power under bandwidth control and DVFS.

Figure 3(c) shows RAPL has the widest power reduction
range among the three. It is able to reduce power to 0.22. How-
ever, we noticed system management tasks were sluggish to re-
spond when RAPL approached the lowest power limits, which
suggests higher machine timeout risks if these limits were
actually used in practice. By contrast, CPU bandwidth control
used in our system only throttles throughput-oriented tasks
and the system management tasks are not affected. Thanks to
its built-in feedback loop, RAPL is fairly accurate in achiev-
ing the provided power budget [26]. RAPL’s predictability is
an advantage over DVFS or CPU bandwidth control.

CPU power and throughput. In this experiment, we run a
throughput-oriented video transcoding task under various set
points of CPU bandwidth control and DVFS, and measure
CPU power and task throughput. This gives us information
about the throughput impact of the two mechanisms under a
power budget. Throughput is calculated as the reciprocal of
the wall clock time of completing the task, normalized to the
throughput where no power throttling is applied. CPU power
is normalized to the highest power observed when power virus
is run and no power throttling is applied (matching Figure 3).

Results are shown in Figure 4. Throughput is only mildly
affected when power is greater than 0.85 for both bandwidth
control and DVFS. Possibly memory bandwidth, rather than
CPU bandwidth, is the bottleneck in this region. Throughput
drops notably as power drops below 0.85 for both mecha-
nisms, but DVFS has higher throughput than bandwidth con-
trol under the same power. Therefore, DVFS is more power
efficient than bandwidth control. However, in terms of power
control dynamic range, DVFS can only reduce power by 40%
when the lowest frequency limit is applied, whereas band-
width control is capable of nearly 60% power reduction. This
is consistent with the power virus result in Figure 3. Load
shaping events happen infrequently in our data centers, thus
power efficiency is not a major factor for our use case.

6 Evaluation Results at Data Center Scale

To characterize the system at scale, we performed experiments
in clusters comprising tens of thousands of machines running

Figure 5: Typical load shaping patterns. (a1) and (a2) show the
normalized power and CPU utilization of a load-shaped power
domain, with 0.01 hard multiplier and 0.5 soft multiplier. (b1)
and (b2) show similar data for the same power domain but
with 0.01 hard multiplier and 0.95 soft multiplier. The blue
horizontal dashed lines are low power thresholds associated
with the soft multipliers. The red vertical lines mark the start
of load shaping. (The power and CPU readings are not exactly
time-aligned due to sampling delays.)

diverse production workloads in our data centers. Throttling
was manually triggered with various combinations of parame-
ters. Power data is collected from data center power meters,
which is the same data that Thunderbolt also uses. Power mea-
surement data is normalized to the power domain’s equipment
limit.

Other metrics are sampled from individual machines and
aggregated at the same power domain level corresponding
to the power readings. Machine metrics such as CPU usage
are normalized to the total capacity of all machines in the
power domain unless specified otherwise. Task failures are
normalized to the total number of affected tasks.

Latency data are collected from low-level storage services
that read and write Linux files and support Google’s dis-
tributed file system. They are critical services widely deployed
in our data centers, running at high priorities and thus exempt
from load shaping. They are not exempt from CPU jailing but
have high priority to access the remaining CPUs.

6.1 Load shaping in typical scenarios
In this experiment, we picked a production cluster that is dom-
inated by throughput-oriented workloads to test the typical
behavior of load shaping. Load shaping was triggered by man-
ually lowering the high power threshold to be just below the
ongoing power draw of a power domain.

Power and CPU usage patterns. Figure 5(a1) shows a typi-

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 1249

Table 3: Load shaping duration, task failure fraction, and 99%-
ile read latency of storage services under different scenarios.

Duration Failure fraction Latency
Baseline 25 min. 0.00002 79 ms

0.95 soft mult. 5 min. 0.00000 79 ms
0.75 soft mult. 10 min. 0.00003 80 ms
0.5 soft mult. 5 min. 0.00007 78 ms

cal load shaping pattern of power oscillating around the low
threshold. Seconds after throttling is triggered, power is re-
duced by a large margin because of the hard multiplier. Mean-
while the low threshold is activated. Throttling is gradually
lifted as power drops below the low threshold, and power
goes back up until it reaches the low threshold. Then power
is reduced again, but by a smaller margin because of the soft
multiplier. The process continues as throttling is turned on
and off repeatedly, resulting in power oscillating around the
low threshold. Figure 5(b1), as compared to (a1), shows a
soft multiplier closer to 1.0 leads to oscillations of a smaller
amplitude, as expected. The response time from load shaping
triggering to significant power reduction is about 2 seconds.

Figure 5(a2) and (b2) show the CPU utilization correspond-
ing to (a1) and (b1) respectively. At the shown CPU utilization
level, about 0.1 reduction of CPU utilization is needed to re-
duce 0.02 of power.

Task failures. While tasks are slowed down, we want to en-
sure that most of them do not fail because of CPU starvation
or unexpected side effects. Table 3 shows task failure frac-
tions (the number of failed tasks normalized to the total num-
ber of affected tasks) of the same power domain under load
shaping with various soft multipliers. “Baseline” indicates no
throttling and serves as the baseline for comparison. All load
shaping events have a hard multiplier of 0.01 (not shown in
the table) while the soft multiplier varies from 0.5 to 0.95.
Clearly load shaping does not cause noticeably more failures.
The failure fraction remains low compared to the baseline.

Latencies. To assess load shaping’s effect on the latencies
of latency-sensitive tasks, we inspect the tail 99%-ile read
latency of latency-sensitive storage services, shown in Ta-
ble 3. As expected, the latency is not affected by load shaping
because the tasks are exempt from the mechanism.

Differentiation of QoS. To test Thunderbolt’s ability to dif-
ferentiate QoS, we classified tasks into two groups based on
their priority, and load-shaped the low-priority group while
exempting the high-priority group. Figure 6 shows the total
power draw and CPU usage of the two groups of tasks, dur-
ing the event. The CPU usage of the shaped and the exempt
group is reduced by about 0.1 and 0.03, respectively. The
exempt group is indirectly affected because the tasks in the

Figure 6: Power and CPU utilization during a load shaping
event with multiplier 0.1 that directly affects a subset of tasks.
The red vertical line marks the start of the event. The CPU
reduction of the load-shaped tasks are more prominent than
that of the exempt tasks. The exempt tasks are indirectly
affected because of their interaction with the shaped tasks.
(The power and CPU readings are not exactly time-aligned
due to sampling delays.)

two groups are production tasks with complex interactions.
One of such interactions is that a high-priority controller task
in the exempt group coordinates low-priority workers in the
shaped group, and the controller task has less work to do and
consumes less CPU when the workers are throttled. Never-
theless, the ability of load shaping to differentiate tasks is
evident.

6.2 Load shaping pushed to the limit
In typical scenarios, as demonstrated in Section 6.1, load
shaping reduces power to a safe level just below the threshold
and allows power to oscillate around it. However, in extreme
cases where power stays above the threshold, the system will
need to continuously reduce tasks’ CPU usage, eventually to
the preset minimum value. The affected tasks will essentially
be stopped and make no forward progress. For example, power
may remain high after throttling is triggered because new
compute-intense tasks are continuously scheduled, or many
high-priority tasks exempt from the mechanism spike in their
CPU usage. In such cases it is the right trade-off to stop the
low-priority tasks in order to prevent power overloading.

To test the behavior of load shaping in such extreme
scenarios, we picked a cluster with some low-priority, non-
production, throughput-oriented workloads and applied a mul-
tiplier continuously to those tasks. (Most of the tasks in that
cluster are high-priority, which we exempt from this test
thanks to load shaping’s ability to differentiate tasks.) We com-

1250 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Figure 7: Power responsiveness of continuous throttling and
of SIGSTOP. (a) and (b) are throttling with a multiplier of
0.95 and 0.01, respectively. (c) is SIGSTOP. The red vertical
lines mark the start of throttling and SIGSTOP.

pared continuous throttling to explicitly stopping the tasks by
sending them a SIGSTOP signal followed by a SIGCONT
signal after 60–75 seconds.

Power responsiveness and range of control. Figure 7 shows
the power responsiveness of continuous throttling and of
SIGSTOP. Here power is reduced noticeably in 2 seconds.
This is true for all the tested multipliers as well as for
SIGSTOP. In 4 seconds, about 3% of power is shed by throt-
tling with a 0.01 multiplier and by SIGSTOP, and 0.5% by
throttling with a 0.95 multiplier, respectively.

If throttling is applied continuously, we expect tasks to
eventually have close-to-zero CPU shares and we achieve
similar power reduction as SIGSTOP. This is indeed true. Fig-
ure 8 compares the power reduction by continuous throttling
with two multipliers, and compares them to SIGSTOP. It plots
the same data as Figure 7 but on a larger time scale to show
the power reduction. (Note that the x axes of the sub-figures
are scaled differently because the power reduction happens at
different time scales.) Power is reduced at a slower pace with
a multiplier closer to 1, but given enough time it is eventu-
ally reduced by an amount similar to SIGSTOP (about 0.015)
regardless of multiplier. This is expected, because the cumula-
tive effect of applying any multiplier between 0 and 1 should
eventually converge to CPU shares that are close to zero. This
also implies that the selection of the multiplier does not affect
the effectiveness of power reduction in terms of sheddable
power. The selection of the multiplier does affect responsive-
ness, however, which is important when power spikes need to
be throttled quickly.

Task failures. Table 4 lists the task failure fractions during the
test periods of continuous throttling and SIGSTOP. “Baseline”

Figure 8: Power reduction by continuous throttling and by
SIGSTOP. (a) and (b) are throttling with a multiplier of 0.95
and 0.01, respectively. (c) is SIGSTOP. The red vertical lines
mark the start of throttling and SIGSTOP. The x axes of the
sub-figures are scaled differently because the power reduction
happens at different time scales.

Table 4: Power shedding duration, task failure fraction, and
99%-ile read latency of storage services under different sce-
narios.

Duration Failure fraction Latency
Baseline 15 min. 0.0007 126 ms

0.95 mult. 20 min. 0.0007 122 ms
0.01 mult. 2 min. 0.003 125 ms
SIGSTOP 2 min. 0.06 135 ms

indicates no throttling or SIGSTOP and serves as baseline
for comparison. Throttling with a 0.95 multiplier has mild
effect on failure fraction and can be continuously applied to
tasks for longer time (20 minutes here). Both throttling with a
0.01 multiplier and SIGSTOP were only performed for a short
period of time (2 minutes), but they caused skyrocketed failure
fraction by one to two orders of magnitude. The failures are
mostly attributed to tasks being terminated because they fail
to respond to health checks. The increased failure fraction of
continuous throttling with a 0.01 multiplier is contrasted with
the low failure fractions of load shaping in Table 3. Those
load shaping events in Table 3 had a 0.01 hard multiplier in
effect only for a few seconds, because the hard multiplier
was progressively lifted in seconds after power drops below
the high power threshold. The failure fraction of continuous
throttling with a 0.01 multiplier is one order of magnitude
lower than that of SIGSTOP because the throttled tasks still
have a minimum CPU share, and some of them can respond

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 1251

Figure 9: Responsiveness and power reduction of CPU jailing
with 20% jailing fraction. Power is reduced by 0.02 in 5
seconds when the power domain’s CPU utilization is about
60% (not shown in the figure).

Table 5: Effect of 20% CPU jailing on machine CPU utiliza-
tion.

Machine CPU utilization
Duration 50%ile 95%ile 99%ile

Baseline 60 min. 0.58 0.80 0.94
CPU jailing 55 min. 0.55 0.69 0.75

to health checks and survive.

Latencies. Table 4 shows the tail 99%-ile read latency of
latency-sensitive storage services. As expected, the latency is
not notably affected by either load shaping or SIGSTOP, both
of which are not applied to those services.

6.3 CPU jailing
For this experiment of CPU jailing, we picked the same pro-
duction cluster as in Section 6.1, which is dominated by
throughput-oriented workloads. We manually performed CPU
jailing with a 0.2 jailing fraction, denoted by “20% CPU jail-
ing”, and collected data for power, CPU usage, CPU cores in
deep sleep states, task failures, and latencies. The same types
of data were collected during a period before the CPU jailing
event; those data will serve as the baseline for comparison.

Power responsiveness. For the purpose of a failover mecha-
nism, response time is not a concern in most cases, except for
the corner case where meter signals are lost while load shap-
ing is, or very close to being, active. Nevertheless, Figure 9
shows that power utilization is reduced by 0.02 (from 0.72 to
0.70) in 5 seconds under 20% CPU jailing. The power reduc-
tion is relatively small, because most machines had lower than
80% CPU utilization even before 20% jailing was applied to
them. This can be seen in Table 5, discussed further below.

CPU usage. CPU jailing affects machines with high CPU
utilization more than those with low CPU utilization. This is
evident from Table 5. The median machine CPU utilization

Table 6: Task failure fraction and 99%-ile read latency of
storage services under 20% CPU jailing.

Duration Failure fraction Latency
Baseline 60 min. 0.00003 79 ms

CPU jailing 55 min. 0.00002 86 ms

without CPU jailing is 0.58, and it is only mildly affected
by 20% CPU jailing that limits available machine CPU ca-
pacity to 80%. In contrast, the 99%-ile and 95%-ile machine
CPU utilizations, which are close to or higher than 80%, are
reduced significantly during CPU jailing.

While CPU jailing is a pure software mechanism, it can get
extra benefits with hardware support that puts idle cores in
power-saving states. In our experiment with 20% CPU jailing,
5% of affected CPU cores entered deep sleep states (C6/C7
states) as compared to 1% of cores without jailing. Noticeably,
although 20% of cores are jailed, the portion of deep-sleep
cores is always less than 20% due to processes exempt or
unaffected by the mechanism.

Task failures and latencies. Table 6 shows the task failure
fraction and the 99%-ile read latency of storage services of
a power domain in a 20% CPU jailing event. There is no
notable difference in failure fraction and latency compared to
the baseline. Both latencies are far below our SLO. However,
in a separate experiment of 80% CPU jailing we observed an
order of magnitude higher latency (not shown in the table),
which is not surprising because severe CPU contention is
expected with such heavy jailing.

7 Deployment at Scale and Benefits

Thunderbolt has been deployed at scale in our logs processing
clusters and has enabled 9%–25% power oversubscription rel-
ative to the nominal capacity, depending on the power delivery
architecture. The oversubscription is determined by an SLO
with the clusters’ stakeholders about the expected occurrence
frequency of throttling events under realistic worst conditions.
Other throughput-oriented clusters, such as web indexing, are
also in scope of more aggressive power oversubscription with
Thunderbolt.

Logs processing workloads are mostly throughput-oriented
and continuously running. Resources are provisioned to ac-
commodate worst-case daily throughput demands, and any
disruptive power capping actuation on the worst day is a waste
of the resources and cancels the benefits of aggressive power
oversubscription. Thunderbolt, by gently throttling computa-
tion, distributes the actual work throughout the day, gracefully
allowing throughput to be conserved. Despite that most work-
loads are throughput-oriented, there are still critical latency-
sensitive workloads such as low-level storage services, and

1252 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

therefore QoS differentiation is important.
The reactive capping mechanism has been activated three

times by exceptionally high power draw in three production
clusters in the first 130 days of year 2020. The proactive
capping mechanism has been activated two times by power
telemetry unavailability in two high-power production clus-
ters in the same period of time. Such incidents could have
resulted in tripping data center breakers without the protection
from the power capping system. The activation events went
unnoticed by stakeholders, with negligible adverse effect on
production.

8 Challenges and Future Work

Thunderbolt, implemented as described in this paper, is suit-
able for our production clusters running a mix of throughput-
oriented and latency-sensitive workloads. Those clusters have
a sizable portion of power drawn by throughput-oriented tasks,
and a stable usage pattern of latency-sensitive workloads.
Therefore, we are able to set an appropriate oversubscrip-
tion level with high confidence that non-sheddable power will
not pose a risk, and that CPU jailing will not starve latency-
sensitive tasks. Nevertheless, the Thunderbolt framework is
flexible enough for extension and optimization to accommo-
date clusters of different workload patterns. Here we discuss
some directions and challenges.

Our implementation exempts all high-priority latency-
sensitive workloads from load shaping but this is not always
required. In clusters where latency-sensitive workloads may
use too much power, one could further break them down into
multiple priority buckets and throttle them as appropriate un-
der their SLOs. Doing so in practice is a challenge as latency-
sensitive tasks are generally not amenable to CPU throttling.
It will likely require a co-design of throttling policy, SLO,
and software infrastructure. For example, one could have an
SLO that permits affecting the latencies for a small fraction
of time, and design the workload and software infrastructure
to respond to high latency properly. For cloud data centers
where the infrastructure owner has limited control over the
workloads, cloud providers may carefully design service-level
agreements (SLAs) to allow throttling “abusive” behaviors,
and possibly use price incentives to encourage “good” behav-
iors.

Thunderbolt sheds power by controlling CPU usage. This
may not be effective if the majority of power is used by non-
CPU components, such as hardware accelerators. While hard-
ware support is needed to effectively throttle such components,
the Thunderbolt software architecture and control policies of
load shaping and proactive capping can be adapted to control
additional hardware throttling knobs. QoS differentiation will
depend on the control granularity of the hardware. For exam-
ple, if an accelerator supports per-chip throttling and a chip is
used by one task at a time, then task-level QoS differentiation
is possible.

While proactive capping addresses the availability bottle-
neck of power telemetry unavailability, it may become a lim-
iting factor for power oversubscription. We have to set the
jailing fraction conservatively (i.e., it may be set greater than
necessary) for the open-loop control to be safe. For clusters
with a high portion of latency-sensitive tasks, only a small
jailing fraction may be feasible, leading to a small oversub-
scription. To increase oversubscription for those clusters, it
may be worth investing in building a reliable secondary source
of power signals, either from rack- or machine-level power
sensors or from machine learning models that map resource
usage to power, so that closed-loop control is still functional
when the primary source, data center power meters, is unavail-
able. Proactive capping may be used as the last resort when
both the primary and the secondary sources are unavailable.

Thunderbolt is a reactive system (not to be confused with
"reactive capping" defined in this paper), in the sense that it
reacts to riskily high data center power that is present (in the
case of reactive capping) or expected (in the case of proactive
capping). A more proactive approach, such as power-aware
job scheduling and admission control, may actively balance
load to avoid riskily high data center power via scheduling
rather than throttling. Job scheduling and admission control
are largely orthogonal and complementary to Thunderbolt
and are valuable candidates for future work.

9 Related Work

This work has a similar architecture as Google’s power
capping for medium-voltage power planes (MVPPs) [18].
It shares many advantages of the MVPP power capping,
such as fast response, priority- and QoS-awareness, platform-
independence, and scalability, while making a critical im-
provement of not interrupting throughput-oriented workloads.
This is to be contrasted with the MVPP power capping design
that uses Linux SIGSTOP and SIGKILL signals. This work
also introduces the proactive capping sub-system to improve
system availability, which the MVPP capping system does
not have.

Our primary, reactive capping subsystem uses node-level
CPU bandwidth control provided by the Linux kernel’s CFS
scheduler. To our knowledge this is the first time this node-
level mechanism, applicable on a per-task basis, is used
for data center power management. There is literature [2]
that discusses using CPU bandwidth control for power man-
agement of mobile devices, but not for data centers. Other
node-level mechanisms used for power management include
DVFS [6,16,24], RAPL [25], Intel node manager [14], power
gating [16], and thread packing [6, 17].

Reactive capping also uses load shaping, a data center-level
closed-loop control, as the the power control policy. Load
shaping is implemented at one level of the power delivery
“choke point” that constrains the overall power capacity. It is

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 1253

simpler than multi-level controls in other large-scale imple-
mentations [14, 24, 25].

Our failover, proactive capping subsystem to mitigate the
risk of power signal unavailability, uses node-level CPU affin-
ity control. It is the same low-level mechanism as “thread
packing” [6, 17], but in this work we use it only as a failover
mechanism when power signals are unavailable because of
its limitations compared to CPU bandwidth control.

Other studies also use power-aware job scheduling and
admission control to limit power draw [4,12,23]. Compared to
node-level and hardware-level power throttling mechanisms
such as ours, these scheduler-level techniques can improve
availability and performance of running jobs. It is a valuable
direction for future work, as discussed in Section 8.

10 Summary

In this paper we present Thunderbolt, a throughput-optimized
and QoS-aware power capping system that is robust and scal-
able. We elaborate important design choices and present pro-
duction evaluation of its policy decisions. Thunderbolt has
been deployed in warehouse-sized data centers and saved us
millions of dollars on capital expenses by enabling otherwise
nonexistent additional power capacity in our data centers.

Acknowledgments

This work is the result of multi-year efforts contributed by
many engineers, managers, and supporting staff. We would
like to thank Strata Chalup, Greg Imwalle, Tom Kennedy,
Dave Landhuis, Mian Luo, Matthew Nuckolls, Pablo Perez,
Etienne Perot, Brad Strand, Jeff Swenson, Jikai Tang, Steve
Webster, Quincy Ye, Henry Zhao, and Steven Zhao for their
contributions and support for the Thunderbolt program. We
are also grateful to David Culler, Gernot Heiser, Jeff Mogul,
and the anonymous reviewers for their constructive feedback.

References

[1] Martin Abadi, Paul Barham, Jianmin Chen, Zhifeng
Chen, Andy Davis, Jeffrey Dean, Matthieu Devin, San-
jay Ghemawat, Geoffrey Irving, Michael Isard, Man-
junath Kudlur, Josh Levenberg, Rajat Monga, Sherry
Moore, Derek G. Murray, Benoit Steiner, Paul Tucker,
Vijay Vasudevan, Pete Warden, Martin Wicke, Yuan Yu,
and Xiaoqiang Zheng. Tensorflow: A system for large-
scale machine learning. In 12th USENIX Symposium on
Operating Systems Design and Implementation (OSDI
16), 2016.

[2] Y. Ahn and K. Chung. User-centric power manage-
ment for embedded CPUs using CPU bandwidth control.
IEEE Transactions on Mobile Computing, 15(9):2388–
2397, 2016.

[3] Tyler Akidau, Alex Balikov, Kaya Bekiroglu, Slava
Chernyak, Josh Haberman, Reuven Lax, Sam McVeety,
Daniel Mills, Paul Nordstrom, and Sam Whittle. Mill-
wheel: Fault-tolerant stream processing at internet scale.
In Very Large Data Bases, pages 734–746, 2013.

[4] Arka A. Bhattacharya, David Culler, Aman Kansal, Sri-
ram Govindan, and Sriram Sankar. The need for speed
and stability in data center power capping. Sustainable
Computing: Informatics and Systems, 2013.

[5] Dah-Ming Chiu and Raj Jain. Analysis of the increase
and decrease algorithms for congestion avoidance in
computer networks. Computer Networks and ISDN Sys-
tems, 17(1):1 – 14, 1989.

[6] Ryan Cochran, Can Hankendi, Ayse K. Coskun, and
Sherief Reda. Pack & cap: Adaptive DVFS and thread
packing under power caps. In 2011 44th Annual
IEEE/ACM International Symposium on Microarchitec-
ture (MICRO), pages 175–185, 2011.

[7] Intel Corporation. Power Stress and
Shaping Tool. https://01.org/
power-stress-and-shaping-tool. Accessed:
2020-04-15.

[8] Howard David, Eugene Gorbatov, Ulf R. Hanebutte,
Rahul Khanna, and Christian Le. RAPL: Memory power
estimation and capping. In 2010 ACM/IEEE Interna-
tional Symposium on Low-Power Electronics and De-
sign (ISLPED), pages 189–194, 2010.

[9] Xing Fu, Xiaorui Wang, and Charles Lefurgy. How
much power oversubscription is safe and allowed in data
centers? In Proceedings of the 8th ACM International
Conference on Autonomic Computing, ICAC ’11, pages
21–30, New York, NY, USA, 2011.

[10] Gartner, Inc. Gartner says global IT spending to decline
8% in 2020 due to impact of COVID-19. https://bit.
ly/gartner-2020-05-13. Accessed: 2020-05-19.

[11] Synergy Research Group. Hyperscale operator
spending on data centers up 11% in 2019 de-
spite only modest capex growth. https://bit.ly/
synergy-2020-03-24. Accessed: 2020-05-19.

[12] Chang-Hong Hsu, Qingyuan Deng, Jason Mars, and
Lingjia Tang. Smoothoperator: Reducing power frag-
mentation and improving power utilization in large-scale
datacenters. In Proceedings of the Twenty-Third Inter-
national Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, ASPLOS
2018, Williamsburg, VA, USA, March 24-28, 2018, pages
535–548. ACM, 2018.

1254 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://01.org/power-stress-and-shaping-tool
https://01.org/power-stress-and-shaping-tool
https://bit.ly/gartner-2020-05-13
https://bit.ly/gartner-2020-05-13
https://bit.ly/synergy-2020-03-24
https://bit.ly/synergy-2020-03-24

[13] Wonyoung Kim, Meeta Sharma Gupta, Gu-Yeon Wei,
and David Brooks. System level analysis of fast, per-
core DVFS using on-chip switching regulators. In
HPCA ’08: 14th International Conference on High-
Performance Computer Architecture, pages 123–134,
2008.

[14] Y. Li, C. R. Lefurgy, K. Rajamani, M. S. Allen-Ware,
G. J. Silva, D. D. Heimsoth, S. Ghose, and O. Mutlu.
A scalable priority-aware approach to managing data
center server power. In 2019 IEEE International Sym-
posium on High Performance Computer Architecture
(HPCA), pages 701–714, 2019.

[15] Robert Love. CPU Affinity. https://www.
linuxjournal.com/article/6799. Accessed: 2020-
04-15.

[16] Kai Ma and Xiaorui Wang. PGCapping: exploiting
power gating for power capping and core lifetime balanc-
ing in CMPs. In Proceedings of the 21st International
Conference on Parallel Architectures and Compilation
Techniques, 2012.

[17] Sherief Reda, Ryan Cochran, and Ayse K. Coskun.
Adaptive power capping for servers with multithreaded
workloads. IEEE Micro, 2012.

[18] Varun Sakalkar, Vasileios Kontorinis, David Landhuis,
Shaohong Li, Darren De Ronde, Thomas Blooming,
Anand Ramesh, James Kennedy, Christopher Malone,
Jimmy Clidaras, and Parthasarathy Ranganathan. Data
center power oversubscription with a medium voltage
power plane and priority-aware capping. In ASPLOS

’20: Architectural Support for Programming Languages
and Operating Systems, pages 497–511. ACM, 2020.

[19] Konstantin Shvachko, Hairong Kuang, Sanjay Radia,
and Robert Chansler. The Hadoop distributed file sys-
tem. In 2010 IEEE 26th Symposium on Mass Storage
Systems and Technologies (MSST), 2010.

[20] Muhammad Tirmazi, Adam Barker, Nan Deng, Md E.
Haque, Zhijing Gene Qin, Steven Hand, Mor Harchol-
Balter, and John Wilkes. Borg: The next generation. In
Proceedings of the Fifteenth European Conference on
Computer Systems, EuroSys ’20, New York, NY, USA,
2020. Association for Computing Machinery.

[21] Paul Turner, Bharata B Rao, and Nikhil Rao. CPU band-
width control for CFS. In Proceedings of the Linux
Symposium, pages 245–254, 2010.

[22] Abhishek Verma, Luis Pedrosa, Madhukar R. Korupolu,
David Oppenheimer, Eric Tune, and John Wilkes. Large-
scale cluster management at Google with Borg. In Pro-
ceedings of the European Conference on Computer Sys-
tems (EuroSys), Bordeaux, France, 2015.

[23] Guosai Wang, Shuhao Wang, Bing Luo, Weisong Shi,
Yinghang Zhu, Wenjun Yang, Dianming Hu, Longbo
Huang, Xin Jin, and Wei Xu. Increasing large-scale
data center capacity by statistical power control. In
Proceedings of the Eleventh European Conference on
Computer Systems, 2016.

[24] Xiaorui Wang, Ming Chen, Charles Lefurgy, and Tom W.
Keller. SHIP: A scalable hierarchical power control
architecture for large-scale data centers. IEEE Trans.
Parallel Distrib. Syst., 23(1):168–176, 2012.

[25] Qiang Wu, Qingyuan Deng, Lakshmi Ganesh, Chang-
Hong Hsu, Yun Jin, Sanjeev Kumar, Bin Li, Justin Meza,
and Yee Jiun Song. Dynamo: Facebook’s data center-
wide power management system. In Proceedings of the
43rd International Symposium on Computer Architec-
ture, ISCA ’16, pages 469–480, Piscataway, NJ, USA,
2016.

[26] Huazhe Zhang and Henry Hoffmann. A quantitative
evaluation of the RAPL power control system. Feedback
Computing, 2015.

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 1255

https://www.linuxjournal.com/article/6799
https://www.linuxjournal.com/article/6799

	Introduction
	Background
	Terminology
	Architecture and Implementation
	Primary subsystem: reactive capping
	Node-level mechanism: CPU bandwidth control
	Control policy: load shaping

	Failover subsystem: proactive capping
	Node-level mechanism: CPU jailing
	Control policy: risk assessment of power signal unavailability

	Evaluation Results at the Node Level
	Evaluation Results at Data Center Scale
	Load shaping in typical scenarios
	Load shaping pushed to the limit
	CPU jailing

	Deployment at Scale and Benefits
	Challenges and Future Work
	Related Work
	Summary

