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Abstract
Semi and self-supervised training techniques have the po-

tential to improve performance of speech recognition systems
without additional transcribed speech data. In this work, we
demonstrate the efficacy of two approaches to semi-supervision
for automated speech recognition. The two approaches leverage
vast amounts of available unspoken text and untranscribed au-
dio. First, we present factorized multilingual speech synthesis to
improve data augmentation on unspoken text. Next, we propose
the Sequential MixMatch algorithm with iterative learning to
learn from untranscribed speech. The algorithm is built on top
of our online implementation of Noisy Student Training. We
demonstrate the compatibility of these techniques yielding an
overall relative reduction of word error rate of up to 14.4% on
the voice search tasks on 4 Indic languages.
Index Terms: Speech Recognition, Speech Synthesis, Data
Augmentation, Noisy Student, MixMatch

1. Introduction
Semi and self-supervision allow for automated speech recogni-
tion (ASR) systems to be trained without additional transcribed
speech. Unspoken text can be challenging to incorporate into
state of the art, end-to-end speech recognition systems (Section
2). This can be attributed to a number of factors including
inconsistent text normalization arising from different sources
of text. Over the last few years, text-to-speech (TTS) synthesis-
based data augmentation has been shown to be a useful way to
train end-to-end models using unspoken text [1–4]. We build
on this work and investigate different speech synthesis training
approaches with the goal of improving ASR performance. In
addition, we propose to use factorized multilingual TTS which
further reduces the need for high quality speech normally re-
quired to train TTS but not available for many languages.

The traditional method of training on untranscribed speech
uses predictions from a model trained on supervised data to
generate pseudo labels for the untranscribed data [5, 6]. These
pseudo-labeled utterances are then added to the supervised data
and training proceeds in an iterative fashion. Noisy Student
Training (NST) [7] proposes to augment the student training
data with label preserving transformations, such as SpecAug-
ment [8]. This augmentation component is similar to FixMatch
[9], where the teacher model is “weakly” augmented, and the
student is augmented with a “strong” augmentation. Our work
is built on top of an online version of NST, which requires
no additional storage, as the pseudo labels are both generated
and used for training in memory (Section 4.3). Moreover, we
introduce consistency regularization on the data augmentation
by the proposed Sequential MixMatch. The proposed method
is motivated by MixMatch [10] in image classification, a semi-
supervised learning method to combine data augmentation and

consistent predictions. The two key components in that method,
prediction combination and MixUp, are designed for classifica-
tion tasks. To integrate a similar idea in speech recognition,
a sequence labeling task, we redesign the algorithm in Sec-
tion 4.2.

In this paper, we present a framework that leverages both
unspoken text and untranscribed speech to improve ASR per-
formance on four Indic languages. The contributions include:

1. Sequential MixMatch algorithm to improve semi-
supervised training from untranscribed speech.

2. Factorized multilingual TTS to disentangle speaker,
phoneme, prosody and language representations for ef-
ficient transfer learning

3. On-the-fly, in-memory implementation of NST.

4. Additive improvements (up to 14.4% relative) in ASR
performance from both unpaired text and speech.

We show improvements in ASR across all investigated lan-
guages, namely, Kannada (kn), Tamil (ta), Telugu (te) and Ben-
gali (bn) through both of these approaches with the aforemen-
tioned contributions. Moreover, we find these improvements to
be complementary.

2. Related Work
Semi-supervised and unsupervised training methods are used
extensively in ASR. Successful incorporation of unspoken text
was demonstrated in a variety of tasks by connecting ASR
and TTS via an end-to-end differentiable loss [1, 2, 4, 11].
It has also been shown that prosodically diverse synthesized
speech effectively improves ASR performance [12]. Leverag-
ing vast amounts of unpaired text through learned text represen-
tations have been explored using shared encoder representations
in [13–15]. These approaches have shown great promise in
ASR when combined with both transcribed speech (paired)
and untranscribed speech (unpaired) [3, 16]. The most popu-
lar framework for this combination is the Deep Chain frame-
work [1], with adversarial [17] and cycle consistency training
objectives [18] providing increased robustness for ASR.

In [19], TTS was used to augment the training data with
code switched material to improve overall ASR performance on
Hindi-English speech. Synthesis of out-of-vocabulary terms to
improve performance of rare words was exploited for Kannada
ASR in [20]. A multilingual TTS model, allowing knowl-
edge transfer across languages for training TTS systems, was
introduced in [21]. However, its use to improve ASR for low
resource languages has not been explored prior to this work.

More recently, self-supervision has gained considerable
attention in ASR to address the lack of data in low resource
languages [22,23]. Prediction combination methods [24], Noisy
Student Training (NST) [7, 25] and augmentation methods



such as FixMatch [9, 26] have continued to improve unsuper-
vised and semi-supervsed learning for ASR. MixMatch [10],
RealMix [27] and ReMixMatch [28] are image classification
algorithms that combine the benefits of all the data augmenta-
tion, consistency regularization and prediction combination. In
this paper, we novelly extend the MixMatch framework from
classification tasks to sequence labeling tasks such as ASR.

3. Factorized Multilingual TTS for ASR
Augmenting training data with hypotheses derived from speech
synthesis has two major benefits. First, synthesis can be used to
generate acoustic realizations of out-of-vocabulary (oov) tokens
and unseen sequences. We refer to this as improving the lexical
diversity of the training data. Second, synthesis with suffi-
cient control and variability can generate diverse realizations of
utterances, via prosodic (suprasegmental) changes or spectral
modification. The control of these parameters are dependent on
the TTS model itself. We refer to this as increasing acoustic
diversity of the training data.

3.1. TTS Model
We base our TTS model on Tacotron 2D [29], which takes
text sequences as input, conditioned on speaker or utterance
embeddings and outputs a sequence of mel spectrogram frames.
The decoder network takes the phoneme encoding from the en-
coder and speaker embedding from a separately trained speaker
encoder [29]. We never synthesize audio waveforms, thereby
eliminating the need for any vocoder. We directly generate
mel-filter bank features as input for training ASR models. To
model the prosody and increase its variability during inference,
we further augment the model with a variational auto encoder
(VAE) as in [30] and modify its global VAE to a hierarchical
version [2]. The motivation behind this is to capture the local
and global speaking styles separately and make TTS more
stable. The hierarchical VAE includes a local encoder which
encodes fixed two-second chunks with a one-second overlap
and a global encoder encodes the whole utterance.

3.2. Factorized Multilingual TTS
TTS augmentation for ASR requires a TTS model for each
language. It is challenging to scale this training across many
languages for two main reasons. First, collecting high quality
studio data with different speakers in many of these languages
is challenging and second the use of one TTS model per lan-
guage imposes large memory requirements in a joint training
framework. To alleviate these issues, we train one multilingual
TTS [21] model to synthesize speech in multiple languages.
Subsequently, we can use this to improve the performance of
multiple ASR models each recognizing speech in one language.

As shown in previous work [2, 15], speaker diversity is
crucial to reap benefits from TTS-based data augmentation.
Nevertheless, there are only a limited number of available
speakers with formal, constrained speaking styles in TTS cor-
pora for most languages [31]. The multilingual TTS framework
can transfer speaker knowledge across languages, for example,
from English to Indic languages with fewer speakers in TTS
training corpora.

Most Indic languages have very few professional speakers
for training TTS systems. In this work we have 2 speakers for
Kannada, Tamil and Telugu and 5 for Bengali. In contrast, for
US English, we have nearly three thousand speakers obtained
from a variety of speaking styles and recording conditions
available for TTS training (including e.g. [32]).

Text from each language is transliterated [33] to its native

script and used as input to the multilingual TTS model. The
phoneme tokenizer of each language is used to tokenize the
native script to a phoneme sequence. All languages share a
global, SAMPA-derived, phoneme set. To better control the
multilingual TTS data augmentation, we propose to disentangle
the following factors in the TTS model via adversarial classi-
fiers and conditional speaker, phoneme, language, and prosody
embeddings (cf. Figure 1).

• Speaker/Phoneme Factorization: We add adversarial loss
of speaker classification on encoder outputs to remove the
speaker information in the phoneme embedding [21]. To
alleviate the instability in traditional adversarial training, we
classify the top n high-resource TTS speakers separately and
merge the remaining low-resource TTS speakers into a single
class. In addition, we apply gradient clipping applied to
speaker adversarial loss in the TTS model.

• Speaker/Language Factorization: We train language embed-
dings jointly with the TTS model. Language embeddings
are added as input to the TTS encoder to improve phoneme
embedding extraction, while augmenting the input to the
decoder provides control over the accent of the TTS audio.

• Speaker/Prosody Factorization: We use a hierarchical VAE
encoder [2] to represent prosody. To disentangle prosody
from speaker information, we include adversarial loss of
TTS speaker classification on the VAE encoder outputs. To
discourage the synthesis of accented speech, we reduce the
weight of KL-loss term in VAE-training.

Figure 1: Factorized multilingual TTS architecture.

Data synthesized from multilingual TTS is augmented with
transcribed speech for ASR training in a fashion similar to how
monolingual synthesized data is used [2].

4. Sequential MixMatch for
Semi-supervised Learning

Semi-supervised training to leverage untranscribed speech is a
technique that has been used over several decades e.g. [5]. The
algorithm used in this paper follows a well-proven approach: A
base ASR model is trained on the available transcribed speech
and used to generate hypotheses for the untranscribed speech
data. Heuristic measures using confidence measures or ASR
WER are used to select utterances from the untranscribed set to
augment the ASR training data. This process is repeated itera-
tively. Central to this technique is the application of data aug-
mentation to perturb the unlabeled data when training the next
iteration of the ASR model (student model). In this work, we
introduce consistency regularization on the data augmentation
used in the proposed Sequential MixMatch. The method can be
combined with iterative training to get additional benefits.

4.1. MixMatch in Image Processing
The proposed method is motivated by MixMatch [10] in image
classification, a semi-supervised learning method to combine



data augmentation and consistent predictions. MixMatch gen-
erates pseudo labels from a combination of predictions from
diverse augmented examples. The resultant label precision can
be improved by introducing consistency between multiple pre-
dictions. The data and its pseudo labels are used to generate new
data pairs for model training using the MixUp [34] algorithm.

4.2. Sequential MixMatch
The two key components of MixMatch, prediction combination
and MixUp, were designed for static classification tasks. To
integrate a similar idea in a sequence labeling task such as ASR,
we redesign the algorithm as shown in Figure 2.

Prediction combination helps ensure that a classifier out-
puts the same class distribution for an unlabeled example even
after it has been augmented, we first generate N augmented
versions of a clean example, where the k-th version is denoted
as x(k) and the corresponding pseudo labels generated by the
teacher model is y(k). We introduce consistency regularization
by obtaining the average prediction q̄ from the N predicted
distributions as final labels for student training.

q̄ =
1

N

N∑
k=1

qx(k) =
1

N

N∑
k=1

p(y|x(k)) (1)

where qx(k) is the predicted distributions from x(k), one of the
N augmentations, which is modeled by the end-to-end ASR
model p(y|x(k)).

Notably, q̄ and qx(k) are both a sequence of distributions.
Hence the average is not viable if the N distributions qx(k) are
not time-aligned and label-aligned with each other. We firstly
propose to generate the above distributions from a LAS [35]
model, whose attention mechanism enables time-aligned label
predictions. A second requirement is to make each prediction
at the same label index l (where l ∈ [1, L]) given the same label
history, denoted by y<l. We propose to condition on a common
prefix from the beam search result of the teacher LAS model.
We can thus calculate the average predicted distribution of each
output label. We follow [10] to sharpen the average distribution
in order to encourage entropy minimization [36]. We sample
one label ỹl from each sharpened distribution to get the final
label ỹ. Thus, ỹ generated by a LAS teacher can be used by
either RNN-T [37] or LAS student training.

ỹl = Sample
(

Sharpen(q̄l)
)

(2)

= Sample

(
Sharpen

(
1

N

N∑
k=1

p(yl|x(k),y<l)

) )
(3)

To extend MixUp to sequence labeling, while avoiding the
requirement of aligning features and targets, one can replace
label MixUp by loss MixUp [38]. Our preliminary experiments
did not show the RNN-T loss in MixUp to be effective. Thus,
rather than using a MixUp variant, we use pseudo labels from
the above procedure as targets to a different but strongly aug-
mented version of the same data for student training, similar to
FixMatch [9]. Overall, we use (N + 1) different augmentations
in generating the final data. These designs form the Sequential
MixMatch algorithm.

4.3. Online Iterative Training
We integrate iterative training [7, 25] with the proposed Se-
quential MixMatch. We begin by iteratively training a LAS
student model using a LAS teacher model. Next, we use the

Figure 2: Sequential MixMatch framework.

best LAS student model as the teacher to train a RNN-T student
to convergence (referred to as one iteration).

Our approach has an additional improvement in that we
run the full algorithm in memory, without storing intermediate
hypotheses to disk (Online Noisy Student Training). In order
to do this, we perform a filtering process at a per-batch level
(our batch size is 4096). Within each training batch, we include
a portion of labeled and unlabeled speech. On the unlabeled
portion, we generate hypotheses using above Sequential Mix-
Match, filter out a portion of low confidence hypotheses, and
then use the filtered hypotheses as pseudo labels for training
along with the labeled data.

Previous iterative training uses a fixed model for generat-
ing pseudo labels of the full set of untranscribed speech. In
this “online” version, we keep both the teacher and student
in memory, and update the student against a predetermined
schedule. At one extreme, we can update the teacher after every
update, essentially using the same model as teacher and student.
However, we find that this has a tendency to reinforce errors
quickly. Instead, we update the teacher more slowly, after a
certain number of batches. For Kannada which is the most data-
scarce language among the four Indic languages, the teacher
update schedule was empirically determined to be as follows:
We sample 6 checkpoints randomly after 10k updates, evaluate
their performance on the development test set, and update the
trainer to the student with the best WER on a held out data
set. We find that it is sufficient to update the teacher two times
(iterations) before model convergence.

5. Experiment Setup
Experiments are conducted on 4 Indic languages. The ASR
training data for all languages are anonymized and hand-
transcribed, and are representative of Google’s voice search
traffic. The training set is created by artificially corrupting clean
utterances using a room simulator and addition of various noise
styles [39]. The development set is a small fraction of the
training set held out for validation. The test set also contains
anonymous transcribed utterances from the voice-search task.
The unspoken text material for TTS augmentation includes hun-
dred millions of anonymized websearch queries in each target
language. It’s larger than the transcribed speech corpus by
several orders of magnitude, which makes speech synthesis of
all the text data impractical. To improve efficiency of learning
from unspoken text, we use contrastive language model-based
data selection [15] and only keep 30 million queries for each
language. The untranscribed speech data used by Sequential
MixMatch is roughly 2 times that of the supervised data in
each language. As this data is without human transcriptions,
we cannot report WER on the training set as done in [7].

The multilingual TTS model uses a Tacotron2 TTS ar-
chitecture described in [4] with hierarchical VAE [30]. The
decoder is followed by a PostNet with five convolutional layers



of 512 filters with shape 5 x 1. The training data used for TTS
models uses two professional speakers per Indic language. For
English, we combine 80 professional TTS speakers with the
speakers in the publicly available LibriTTS corpus [32].

All ASR student models use the RNN-T architecture [37,
39] It consists of a 6-layer (2048-dim LSTM followed by a 640-
dim linear projection layer) encoder and a 2-layer (2048-dim
RNN followed by a 640-dim projection layer) decoder with a
single layer joint network. The input features consist of three
stacked 80-dim log-mel features at a 10ms frame-rate, leading
to a downsampled 30ms frame rate. The network is trained
with a 4096 sub-word unit, i.e., word-piece vocabulary derived
as described in [40]. The LAS model shares the same encoder
architecture as the RNN-T student model. The decoder network
is a 2-layer LSTM with 1024 hidden units per layer [35]. We use
two SpecAugment [8] augmentations to generate predictions for
Sequential MixMatch (N = 2). We design the augmentations
to use a weak SpecAugment with one frequency mask and
a strong SpecAugment with two time and frequency masks.
All models were trained in Lingvo [41] on Tensor Processing
Unit [42] slices with a batch size of 4096. The WER metric
we report is transliteration-optimized WER described in [33]
to accommodate mixed writing scripts frequently seen in Indic
languages.

6. Results and Discussion
6.1. Factorized Multilingual TTS Augmentation

We begin this section with the results from the TTS-based aug-
mentation approach from Section 3. The overall impact of TTS
augmentation is shown in Table 1. We find the incorporation

kn ta te bn
Baseline RNN-T 29.8 20.7 25.2 15.4

+TTS’d text 27.5 19.5 24.2 14.8
Table 1: WER Improvement from synthesized unspoken text.

of synthesized unspoken text consistently improves ASR per-
formance across all Indic languages, Kannada (kn), Tamil (ta),
Telugu (te), Bengali (bn). The improvement ranges between
7.7% and 3.9% relative with the largest improvement seen in
the most data-scarce language, Kannada.

To show the benefit of the proposed factorized multilin-
gual TTS for ASR, we investigate the effect of augmentation
using single and multilingual TTS models on Kannada in Ta-
ble 2. Our first observation is that multilingual TTS, trained

Systems Inference speakers WER
Baseline RNN-T - 29.8

+ kn/in TTS kn/in 28.7
+ multilingual TTS kn/in 28.0
+ multilingual TTS kn/in + top en/us 28.4
+ factorized kn/in + top en/us 27.9
+ factorized kn/in + all en/us 27.5

Table 2: Ablation study of multilingual TTS for ASR.

with other Indic and American English material provides better
ASR training data, even when inference is performed only on
Kannada speakers (Rows 2 and 3 of Table 2). The addition
of speakers from other Indic languages and en/us increases
the speaker diversity of the synthesized data which results in
WER improvement in Row 3 and 4. Second, we find that
factorization proposed in Section 3.2 can successfully improve
the multilingual TTS system which in turn helps ASR in the last

two rows. The factorized model can better control the speaker,
phoneme and prosody in the synthesized speech, which enables
the incorporation of large amount of foreign speakers. This not
only increases the WER reductions, but also supports the design
of one multilingual TTS to improve multiple ASR models.

6.2. Sequential MixMatch for Semi-supervised training

Table 3 presents results on untranscribed speech using Se-
quential MixMatch described in Section 4 across different lan-
guages. It can be seen that the improvements from untran-

kn ta te bn
Baseline RNN-T 29.8 20.7 25.2 15.4

+ Untranscribed speech 27.7 19.5 23.9 14.6
Table 3: WER Improvement from untranscribed speech.

scribed speech are similar to those obtained from TTS-based
data augmentation from unspoken text, ranging between 5.3%
and 7.0% relative. We conduct an ablation study in Table 4
on the proposed Sequential MixMatch algorithm, by compar-
ing it to the state-of-the-art Noisy Student Training (NST) at
different steps. Results from baseline online NST described in
Section 4.3 are presented in Row 1. This model is used as the
teacher model in online NST in Row 2 and is replaced with a
LAS in Row 3. As described in Section 4.3, we first do iterative
training on the LAS, followed by one iteration of the LAS
model as a teacher to train the RNN-T student. The proposed
Sequential MixMatch in the last row outperforms all above
systems and improves the most from untranscribed speech.

Teacher WER
Baseline RNN-T - 29.8
+ Online NST RNN-T 28.2
+ Online NST LAS 28.0
+ Seq. MixMatch LAS 27.7

Table 4: Ablation study of Sequential MixMatch.

In order to assess if these two approaches to semi-
supervision are complementary, we combine the use of
unspoken-text and untranscribed speech in training one ASR
model. Table 5 shows that the addition of synthesized data
reduces WER by 3.9–7.7% relative, and the combination with
Sequential MixMatch provides an additional reduction in WER
resulting in an overall reduction in WER of 5.3–14.4% relative.

kn ta te bn
Baseline RNN-T 29.8 20.7 25.2 15.4

+ Unspoken text 27.5 19.5 24.2 14.8
+ Untranscribed speech 25.5 19.3 23.9 14.6

Table 5: Overall results of semi-supervision from unspoken text
and untranscribed speech

7. Conclusion
We have demonstrated that using speech synthesis to train
speech recognition on unspoken text is effective on four Indic
languages. In describing this effort, we have presented the
factorized multilingual speech synthesis training and inference
to improve data augmentation of unspoken text for ASR. We
have also shown that Sequential MixMatch algorithm is a better
semi-supervised training technique on untranscribed speech.
Finally we demonstrated that these two approaches are highly
complementary resulting in an overall 14.4% WER reduction.
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