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ABSTRACT
BigQuery’s cloud-native disaggregated architecture has allowed
Google Cloud to evolve the system to meet several customer needs
across the analytics and AI/ML workload spectrum. A key cus-
tomer requirement for BigQuery centers around the unification
of data lake and enterprise data warehousing workloads. This ap-
proach combines: (1) the need for core data management primitives,
e.g., security, governance, common runtime metadata, performance
acceleration, ACID transactions, provided by an enterprise data
warehouses coupled with (2) harnessing the flexibility of the open
source format and analytics ecosystem along with new workload
types such as AI/ML over unstructured data on object storage. In
addition, there is a strong requirement to support BigQuery as a
multi-cloud offering given cloud customers are opting for a multi-
cloud footprint by default.

This paper describes BigLake, an evolution of BigQuery toward
a multi-cloud lakehouse to address these customer requirements
in novel ways. We describe three main innovations in this space.
We first present BigLake tables, making open-source table formats
(e.g., Apache Parquet, Iceberg) first class citizens, providing fine-
grained governance enforcement and performance acceleration
over these formats to BigQuery and other open-source analytics
engines. Next, we cover the design and implementation of BigLake
Object tables that allow BigQuery to integrate AI/ML for inferencing
and processing over unstructured data. Finally, we present Omni, a
platform for deploying BigQuery on non-GCP clouds, focusing on
the infrastructure and operational innovations we made to provide
an enterprise lakehouse product regardless of the cloud provider
hosting the data.

CCS CONCEPTS
• Information systems → Database management system en-
gines.
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1 INTRODUCTION
Google Cloud released BigQuery in 2010 as the first fully-managed
serverless multi-tenant cloud data warehouse on the market. Big-
Query’s architecture separates compute, storage and shuffle, allow-
ing each system component to evolve relatively independently [31].
Since its inception, this architecture has allowed BigQuery to evolve
in multiple dimensions to address core customer problems at scale,
including industry-first features like embedded ML (BQML) and
high-throughput stream ingestion [21]. This has allowed BigQuery
to continue to be one of the fastest growing services on the Google
Cloud Platform (GCP).

The large-scale analytics ecosystem has converged recently to-
ward a “lakehouse” architectural paradigm that merges traditional
data-warehousing – typically OLAP/BI dashboarding and business
reporting over structured relational data – with data lakes, bringing
about new workload types such as the combination of AI/ML and
large-scale analytics over unstructured data along with enterprise-
ready workloads over open-format table formats such as Apache
Iceberg [2]. In general, a modern cloud analytics architecture sepa-
rates compute from storage [11, 20], with key capabilities pushed
to the durable storage component to address enterprise customer
requirements, such as governance, security, metadata management,
and performance. BigQuery’s disaggregated architecture is well-
suited to provide these capabilities. BigQuery’s query processing
engine, Dremel, provides the ability to process data in-situ over var-
ious storage substrates [30, 31]. BigQuery’s managed storage tier
maintains a clean separation of compute and storage. This storage
tier provides Read and Write APIs to allow third-party analytics
engines (e.g., Spark [39], Presto/Trino [34]) to directly write to and
consume its managed data [21, 22].
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This paper provides an overview of how we evolved BigQuery
to solve key customer problems in the modern lakehouse era. We
describe how we extended the BigQuery architecture to support a
general purpose lakehouse platform across both Google Cloud and
non-GCP clouds through BigQuery Omni. We first describe BigLake
tables, an evolution of BigQuery that makes tables in open-source
storage formats (Parquet [3], Apache Iceberg) first class citizens
within BigQuery to provide several common data management
primitives that bridge the gap between data warehouses and open
data lakes and analytics engines. We then describe the functionality
behind BigQuery’s Read and Write APIs, and how we extended this
infrastructure to support open source data lakes on object storage
to provide key features like uniform governance enforcement like
column and row-level security across BigQuery and arbitrary open-
source data lake analytics engines like Spark and Presto/Trino. We
also describe how we achieved order-of-magnitude query process-
ing performance improvements over open source storage formats by
extending BigQuery’s scalable physical metadata management [22]
to BigLake tables. Last, we provide an overview of BigLake managed
tables that provide fully managed features like ACID transactions
and physical layout optimizations in Apache Iceberg format on
customer-owned object storage.

Next, we describe BigLake Object tables that extend BigQuery
to support unstructured data (e.g., documents, images, video, au-
dio) as a first class citizen. Coupled with modern AI/ML inference
techniques that BigQuery supports through our BQML inference
engine, Object tables provide a powerful primitive to work with
multi-modal data — spanning structured to unstructured data types
— within a cloud data warehouse, including the ability to extract
meaningful structure from objects and perform analysis alongside
structured tables. In addition to Object tables, we describe how we
extended Dremel to perform image inference completely within
a relational query engine, which to our knowledge is an industry
first. We also describe how we extend inference to remote models
hosted in GCP VertexAI1 through the BQML inference engine.

Last, we describe how we extended our lakehouse primitives
in BigQuery to other clouds through Omni. BigQuery Omni is a
pioneering Google Cloud technology that allows us to ship core ar-
chitectural components of BigQuery on non-GCP clouds (currently
AWS and Azure) as if they were running on Google core infrastruc-
ture such as Borg [37]. Specifically, we describe the core technology
behind Omni and how we ship and run Dremel, BigQuery’s query
processing engine, on foreign clouds to query customer data lakes
on Amazon S3 and Azure Blob Storage (or ADLS) in-situ. We also
describe how BigLake primitives including fine-grained governance
and performance acceleration work uniformly work on Omni as
they do on GCP.

The rest of this paper is organized as follows. Section 2 provides
an overview of BigQuery and the architecture and the core architec-
tural components we evolved to build a multi-cloud lakehouse. We
then provide an overview of BigLake tables in Section 3, focusing on
the delegated access model, the BigLake Storage Read/Write APIs
and common governance model, performance acceleration, and
BigLake managed tables that provide fully managed BigQuery ta-
bles in Apache Iceberg format on customer object storage. Section 4

1GCP VertexAI Platform: https://cloud.google.com/vertex-ai

Figure 1: High-Level BigQuery Architecture

covers BigLake Object tables and unstructured data management
in BigQuery, along with integration with BQML inference engine.
The architecture and implementation of Omni is covered in Sec-
tion 5. Section 6 provides a sample of interesting customer use case
patterns that we observe in production. Finally, Section 7 concludes
the paper.

2 BIGQUERY ARCHITECTURE
BigQuery is a fully-managed, serverless data warehouse that en-
ables scalable analytics over petabytes of data. The BigQuery archi-
tecture depicted in Figure 1 is based on the principle of separation of
storage and compute. A replicated, reliable and distributed storage
system holds the data, and elastic distributed compute nodes are re-
sponsible for data ingestion and processing. In addition, BigQuery
also features a separate shuffle service built on top of disaggre-
gated distributed memory that facilitates communication between
compute nodes and provides query checkpointing for dynamic re-
optimization. BigQuery also employs a set of “horizontal” services
such as a control plane and job management, metadata/catalog,
parser/frontend, and security/governance to name a few. These
services tie the system together to provide an enterprise data ware-
house offering.

A disaggregated architecture such as this provides flexibility to
evolve components relatively independently and is key to several of
the features we describe in this paper. As depicted in Figure 1, this
flexibility in architectural evolution allows for closer integration
with several other key Google Cloud infrastructure services in stor-
age, analytics, and AI/Ml to form a modern data and AI platform.
For instance, on the analytics side, the BigQuery lakehouse allows
close integration with open-source engines like Spark and Presto
hosted in Dataproc [5] that can write or read directly to/from Big-
Query storage. Similarly, close integration with Vertex AI — GCP’s
AI/ML platform — allows us to harness powerful primitives for AI
tasks like inference over multi-modal data managed by BigQuery,
whether it be structured tables or unstructured data such as im-
ages, documents, or video. Such an architecture also allowed us
to ship core pieces of BigQuery infrastructure such as Dremel on
non-GCP clouds. In the rest of this section, we provide an overview
of the main BigQuery components that we evolved to support the
customer need for a multi-cloud lakehouse.



BigLake: BigQuery’s Evolution toward a Multi-Cloud Lakehouse SIGMOD-Companion ’24, June 9–15, 2024, Santiago, AA, Chile

Figure 2: BigLake Architecture

2.1 Dremel and In-Situ Analytics
Dremel is BigQuery’s massively scalable parallel query process-
ing engine. The original release of Dremel in 2006 tightly coupled
storage with compute [30], but eventually evolved to separate com-
pute and storage to support in-situ data analysis. As described in
previous work [31], this led to the proliferation of a “data lake”
ecosystem within Google, with a self-describing columnar shared
storage format on common GFS [24] and later Colossus [27] storage
that interoperated with a number of workflow tools and analyt-
ics engines [17, 18, 25, 33]. To support a full suite of important
enterprise data warehousing features, BigQuery built support for
Managed Storage2

With the release of BigQuery, Dremel’s in-situ analytics capabil-
ities were extended to query open-source storage formats such as
Parquet, Avro, and ORC on Google Cloud Storage (GCS) through
external tables. In this model, BigQuery provided basic read-only ac-
cess to self-describing files on cloud object storage, without support
for basic query optimization, data modifications, nor core enterprise
features like security and governance. In Section 3, we describe how
we evolved BigQuery to eliminate this enterprise feature gap with
BigLake tables, and also allowed customers to use this functionality
through our Storage APIs to provide these important capabilities
to managed data lakes running third-party engines such as Apache
Spark.

2.2 Storage APIs
On release, the storage and compute components of BigQuery were
hermetic from a user perspective, even though they were techno-
logically distinct and architecturally separate. Data had to be loaded
into BigQuery managed storage before it could be queried and data
had to be exported to GCS in order to access it via other analyti-
cal engines. In order to meet the needs of evolving data analytics
pipelines, we added the Storage API to BigQuery to remove these
2https://cloud.google.com/bigquery/docs/reference/storage

constraints and allow external engines to access the BigQuery man-
aged storage layer in a manner similar to Dremel. This API contains
two services for ingress and egress: the Read API and Write API.

2.2.1 Read API. The BigQuery ReadAPI offers a high-performance,
scalable way of accessing BigQuery managed storage and BigLake
tables. The Read API is implemented as a gRPC-based protocol
that uses an efficient binary serialization format, with scalability
features such as support for multiple streams for reading disjoint
sets of rows in parallel (suitable for parallel clients such as external
analytics engines like Apache Spark or Presto/Trino). The Read
API also provides a feature-rich governance layer that enforces
the same coarse- and fine-grained access control and data visibil-
ity mechanisms as core BigQuery (column- and row-level access
control, data masking), and allows for efficient reads of a subset of
data through filter pushdown and column projection. We expand
on the details of how we leverage governance and filter pushdown
in Section 3. The Read API has two main methods:

• CreateReadSession: this allows the user to specify the pa-
rameters of the table read that they will be performing. A
given read session provides consistent point-in-time reads.
It requires specifying the table that will be read from, and
optionally allows for a variety of modifications to what data
is required and how the user will consume it. For instance,
what timestamp is used to read the data, what columns are
read, and query predicates. As output, this method returns a
list of stream objects.

• ReadRows: that is called using the stream objects provided by
CreateReadSession where each stream contains some subset
of the data. Multiple clients can be used to read data from
individual streams, and while the initial number of streams
is selected to provide enough parallelism for the amount
of data to be read, dynamic work rebalancing is possible
through further splitting individual streams.
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The Read API embeds Superluminal [17], a C++ library that does
high-performance vectorized execution of GoogleSQL expressions
and operators. Superluminal enables efficient columnar scans of
the data and enforcement of user predicates and security filters.
Superluminal applies the projections, user/security filters, data
masking and transcodes the result into Apache Arrow, allowing for
high-performance query execution from a variety of engines.

2.2.2 Write API. The Write API provides a mechanism for scal-
able, high-speed and high-volume streaming data ingestion into
BigQuery with support for multiple streams, “exactly once” deliv-
ery semantics, stream-level and cross-stream transactions, and an
efficient gRPC-based wire protocol. Similar to the Read API, a user
creates a session, and then uses a single or multiple write streams
to append rows to the destination table. Different writing modes
are available to provide the desired processing semantics (real-time
streaming or batch commit) and commit guarantees.

3 BIGLAKE TABLES
For many years, BigQuery supported enterprise-level data man-
agement capabilities (e.g., fine-grained security, ACID transactions,
physical metadata management) through its native storage layer.
Support for querying open-source data lakes on object storage was
implemented via basic read-only external tables. However, with
customers deploying more and more open-source data lakes, we
started hearing several key customer requirements that these data
lake deployments should have (1) the same level of enterprise data
management capabilities as BigQuery, no matter where the data is
stored, and (2) have many of these advanced features available to
other data lake analytics engines, such as Spark and Presto/Trino. In
other words, customers wanted a single core platform that solved
the difficult data management problems once, but have it work
across storage substrates (e.g., BigQuery storage or data lakes on
object storage) and analytics stacks.

Our solution to these customer requirements is BigLake tables
that evolve and extend pieces of BigQuery components to provide a
managed lakehouse. BigLake tables provide uniform enterprise data
management features across various analytics engines and storage
platforms. Figure 2 provides a high-level overview of BigLake tables
and how they interact with the extended analytics and storage
ecosystem. The key ideas behind BigLake tables are two-fold. First,
they extends external open-source data lake tables to be first-class
citizens in BigQuery, making table definitions in the BigQuery
catalog the source of truth (instead of through self-describing files)
to allow features like fine-grained security. Second, these tables
provide enterprise functionality to the broader analytics engine
ecosystem through the Read/Write APIs.

In this section, we provide a technical overview of BigLake tables.
First, we discuss the initial release that uses a delegated accessmodel
(Section 3.1) to data lakes on object store and with the ability to
provide fine-grained governance and security such as column/row-
level security and data masking through the Read API that works
uniformly across external analytics engines like Spark or Trino
(Section 3.2). We then discuss subsequent releases that provide per-
formance acceleration through physical metadata caching that has
allowed us to improve performance for certain data lakes workloads
by up to an order of magnitude through both Dremel and Spark

Figure 3: Performance acceleration for open-source data
lake tables

accessing data through the BigLake Read API (Section 3.3 and 3.4).
We then provide an overview of recent work on BigLake managed
tables (Section 3.5), that provide a fully managed read/write table
format in the Apache Iceberg format on cloud object storage.

3.1 Delegated Access Model
Typically, query engines accessing external storage forward the
querying user credentials to the object store, which in turn performs
its own data access authorization checks. This model does not
work for BigLake tables for two reasons: (1) credential forwarding
implies that the user has direct access to raw data files, which would
allow users to bypass fine-grained access controls such as data
masking or row-level security; and (2) BigLake tables need to access
storage outside of the context of a query to perform maintenance
operations, for example refreshing the metadata cache (Section 3.3),
or background data reclustering (Section 3.5).

BigLake tables rely on a delegated access model where users
associate a connection object with each table. The connection object
contains service account credentials that are granted read-only
access to the object store. The table uses the connection credentials
to process queries and perform backgroundmaintenance operations.
Users can reuse the same connection object for multiple tables:
typically, our customers use one connection per data lake.

3.2 Fine-Grained Security
BigLake tables provide consistent and unified fine-grained (row
and column-level) access controls independent of storage (data lake
or data warehouse) or analytics engine (BigQuery or open-source
query engines like Spark).

• For BigQuery users, the delegated access model enables Big-
Query to enforce column-security, data masking, and row-
level filtering using the same implementation for data in
object stores or in its native storage.

• The current status quo in open-source analytics places the
responsibility of enforcing the fine-grained access controls
with the query engines. This leads to two downsides: (1) se-
curity policies such as data masking and row-level filtering
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Figure 4: TPC-DS Speedup with Performance Acceleration

are tied to a SQL dialect, requiring duplication of governance
policies across multiple query engines (2) the model of en-
trusting the query engine to enforce filtering do not work
well on engines like Apache Spark that are designed to run
arbitrary procedural code directly within the query engine
worker processes.

BigLake tables offer a stronger security model where the Read
API establishes a security trust boundary and applies the same set
of fine-grained access controls before data is returned to the query
engine, with zero trust granted to the query engine itself. As a
result, BigLake tables are able to provide a uniform security model
that extends to external query engines with no expectation of trust
from the external query engines.

3.3 Performance Acceleration
Open source tables that are not backed by modern managed table
formats (e.g. Apache Iceberg [2], Apache Hudi [1], Delta Lake [10])
employ limited physical metadata: typically, only the file system
prefix of a table or a partition is stored in the metadata. As a result,
query engines need to perform listing operations on object storage
buckets to obtain the list of data files to operate on. Listing of large
cloud object store buckets with millions of files is inherently slow.
On partitions that query engines cannot prune, the engine needs
to peek at data file-level metadata, such as headers or footers, to
determine if it can skip data blocks, requiring several additional
object reads. These aspects can impose a significant overhead in
query planning and execution.

To accelerate query performance, BigLake tables support a fea-
ture calledmetadata caching. Figure 3 shows how BigLake automat-
ically collects and maintains physical metadata about files in object
storage. BigLake tables use the same scalable physical metadata
management system employed for BigQuery native tables, known
as BigMetadata [22]. The use of Big Metadata allows using the same
distributed query processing and data management techniques that
we employ for managing data to handle metadata.

Using BigMetadata, BigLake tables cache file names, partitioning
information, and physical metadata from data files, such as physical
size, row counts and per-file column-level statistics in a columnar
cache. The cache tracks metadata at a finer granularity than systems
like the Hive Metastore [35, 36], allowing BigQuery and storage

Figure 5: External analytics engine interaction with the
Read API

APIs to avoid listing files from object stores and achieve high-
performance partition and file pruning.

The statistics collected in the physical metadata management
layer enable both BigQuery and Apache Spark query engines to
build optimized high-performance query plans. To measure the
performance gains, we performed a power run of the TPC-DS 10T
benchmark where each query is executed sequentially, on a Big-
Query reservation with 2000 slots. Figure 4 shows the TPC-DS
query speedup for a subset of the queries and how the BigQuery
query execution time improved for queries through the statistics
collected by the BigLake metadata layer. Overall, the wall clock
execution time decreased by a factor of four with metadata caching.

3.4 Accelerating Spark Performance over
Storage APIs

A large subset of BigQuery customers use Apache Spark in addition
to BigQuery SQL. The BigQuery storage APIs provide Spark high
throughput read/write access to the data in BigQuery native and
BigLake tables. The open-source Spark BigQuery Connector [7]
provides an out-of-the-box integration of the storage APIs with
Spark DataFrames using Spark’s DataSourceV2 interface. During
query planning, the Spark driver creates the read API session, which
returns a list of read streams. During the execution, Spark executors
perform a parallel read of the streams. The read API returns the rows
in the Apache Arrow columnar data and Spark’s native support for
Apache Arrow minimizes the memory copies.

One of our goals was that customers using Spark against BigLake
tables should get a similar price-performance compared to the base-
line of Spark directly reading the Parquet data from GCS. This
would enable uniform data governance spanning Spark and Big-
Query, across data lake and warehouse data assets. Customers
would not need to choose between price-performance and security.
Accomplishing this goal required performance improvements that
spanned the stack.

Our initial prototype of Parquet scans in the read API reused
Dremel’s row-oriented Parquet reader. The rows are then translated
into the Superluminal columnar in-memory format. While this was
relatively simple to implement, it is inefficient due to the translation
from Parquet columns into rows and back into Arrow columnar
batches.
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Figure 6: Overview of BigLake Managed Tables

We implemented a vectorized Parquet reader that can directly
emit Superluminal columnar batches from Parquet. Superluminal
can operate directly on dictionary and run-length encoded data.
This allowed vectorized execution of the entire ReadRows pipeline,
doubling the read throughput and improved the server-side CPU
efficiency by an order of magnitude.

We extended the CreateReadSession API to return data statistics
collected in Big Metadata. The Spark connector uses these statistics
to improve query plans. This unlocked optimizations such as dy-
namic partition pruning on queries with snowflake joins, improved
join reordering and exchange operator reuse. The combined effect
of these optimizations led to a 5x improvement in the Spark query
performance observed on the TPC-DS benchmark. On the TPC-H
benchmark, Spark performance against BigLake tables now match
or exceed the baseline of Spark’s direct GCS reads. Future work in
this area will include:

• Efficiency of the ReadRows payload. Clients typically spend
a non-trivial amount of CPU cycles on the TLS decryption
of ReadRows payload. Dictionary and run-length encodings
on the Arrow columnar batches can significantly reduce the
amount of bytes that need to be sent over the wire.

• Reuse of read sessions. Dynamic partition pruning can gen-
erate new predicates during runtime and this results in the
recreation of Read API sessions. Creating a Read API session
is expensive on the server side since it requires enumerat-
ing/pruning files and persisting stream metadata to Spanner.
Dynamic partition pruning can be redesigned to reuse read
API sessions.

• Aggregate pushdown. DataSourceV2 supports pushing down
partial aggregates such as MIN/MAX/SUM. The Read API
can be extended to compute the partial aggregates using
Superluminal, returning a much smaller payload to Spark.

SELECT uri , predictions FROM
ML.PREDICT(

MODEL dataset1.resnet50 ,
(

SELECT ML.DECODE_IMAGE(data) AS image
FROM dataset1.files
WHERE content_type = 'image/jpeg'
AND create_time > TIMESTAMP('23-11-1')

)
);

Listing 1: In-engine inference on images

3.5 BigLake Managed Tables
BigLake managed tables (BLMTs) offer the fully managed experi-
ence of BigQuery managed tables while storing data in customer-
owned cloud storage buckets using open file formats. BLMTs sup-
port DML, high-throughput streaming through the Write API, and
background storage optimizations (adaptive file sizing, file reclus-
tering and coalescing, and garbage collection). Data is stored in
Parquet, while metadata is stored and managed using Big Metadata.
Users can export an Iceberg snapshot of the metadata into cloud
storage, allowing any engine capable of understanding Iceberg to
query the data directly. Iceberg snapshots are currently triggered
using a SQL statement. In the future, the Iceberg snapshots will be
automatically generated asynchronously as part of table commits.

BLMT is different from open table formats such as Iceberg and
Delta Lake in a couple of aspects:

• BLMTs are not constrained by the need to atomically commit
metadata to an object store. Object stores can update/replace
an object only a handful of times per second, thus placing
a limit on the number of mutations per second that can be
performed with pure object store tables.

• Open table formats store the transaction log along with the
data. A malicious writer can potentially tamper with the
transaction log and rewrite table history.

Using Big Metadata as the metadata source-of-truth provide the
following benefits:

• Write throughput. Big Metadata is backed by a stateful ser-
vice that caches the tail of the transaction log in memory. Big
Metadata periodically converts the transaction log to colum-
nar baselines for read efficiency. During queries, Dremel
reads the columnar baselines and reconciles it with the tail.
The combination of in-memory state and columnar baselines
allows table mutations at a rate much higher than what is
possible with open table formats without sacrificing read
performance.

• Multi-table transactions. Reusing BigMetadata enables BLMT
to support features such as multi-table transactions that are
currently unsupported in open table formats.

• Strong security model. Since writers cannot directly mutate
the transaction log, the table metadata is tamper-proof with
reliable audit history. Writers do not need to be trusted for
security nor for correctness and integrity.
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CREATE OR REPLACE MODEL
mydataset.invoice_parser

REMOTE WITH CONNECTION
us.myconnection

OPTIONS (
remote_service_type = 'cloud_ai_document ',
document_processor = 'proj/my_processor ');

SELECT *
FROM ML.PROCESS_DOCUMENT(

MODEL mydataset.invoice_parser ,
TABLE mydataset.documents

);

Listing 2: External inference using Document AI

4 SUPPORTING UNSTRUCTURED DATA
The vast majority of the world’s data is unstructured such as docu-
ments, audio, and images. Unstructured data is harder to analyze
than structured or semi-structured data: it is siloed from tradi-
tional data warehousing, requiring engineers to build custom data
pipelines to integrate structured and unstructured data insights.
BigQuery Object tables provide a SQL interface to object store
metadata. With Object tables, BigLake enables users to analyze
unstructured data using local and remote AI services using familiar
SQL commands.

4.1 Object Tables
Object tables are system-maintained tables where each row repre-
sents an object, and columns contain object attributes such as URI,
object size, MIME type, creation time. The output of SELECT * on
an object table is equivalent to ls or dir on a filesystem. BigLake
features extend naturally to unstructured data:

• Fine-grained Security. Object tables take advantage of the
delegate access model (Section 3.1) to maintain the following
invariant: access to a row implies access to the content of
the corresponding object. For example, a row-access policy
can limit access to objects uploaded in the last 30 days.
Object tables can generate signed URLs for each object they
have access to. Signed URLs provide a mechanism to extend
the BigLake governance umbrella outside BigQuery. For ex-
ample, users can call out to a Cloud Function (registered
in BigQuery as a remote user-defined function) which uses
signed URLs to access and process objects directly from the
object store.

• Scalability. Working with a large number of unstructured
files is challenging because it runs into the same object store
limitations outlined in Section 3.3. When listing billions of
objects can take hours, a simple task such as maintaining an
up-to-date list of assets for training or validation is difficult.
Object tables store object store metadata as table data and
thus inherit the scalability of BigQuery.

Object tables reuse much of the metadata caching mechanism
described in Section 3.3. BigLake infrastructure automatically col-
lects object store metadata into a cache. For plain structured tables
the metadata cache is used to list and prune data files. For Object

tables, the metadata cache is used directly as a data source by the
SQL runtime. Each file in the metadata cache turns into an Object
table row.

Object tables enable users to wrangle billions of objects in sec-
onds. For example, creating a 1% random sample of a large dataset
of images can take hours with Python script calling object store
APIs. With Object tables, it takes two lines of SQL and executes in
seconds.

4.2 Inference and Integration with AI/ML
To process unstructured data, BigQuery ML3 supports both infer-
ence within the query engine and outside the query engine by
relying on external compute. In-engine inference utilizes the cus-
tomer’s Dremel compute footprint. As a result, in-engine inference
jobs benefit from Dremel’s ability to autoscale quickly and trans-
parently to react to bursty workloads. The downside is that the
maximum model size is constrained by Dremel worker memory;
models greater than 2GB cannot be loaded. In contrast, external
inference is not limited by Dremel memory and can leverage spe-
cialized hardware accelerators. However, external AI services tend
to be more limited in terms of auto scaling agility, and there is an
extra communication cost to ship data back and forth.

Listing 1 shows an example of in-engine inference and Listing 2
leverages an external service to extract entities from documents.
The query in Listing 1 applies the ResNet [26] image classification
model to JPEG files. The query (1) reads an object table named
dataset1.files and filters it down to JPEG images and that have
been uploaded since Nov 1, 2023; (2) generates inference directly
in BigQuery using a imported model named dataset1.resnet50;
and (3) returns the object URI and the inferred class.

Listing 2 shows a query that uses a proprietary Document AI
model to parse receipts. The Document AI model can be fine-tuned
by users, thus creating a “processor”. The query (1) registers a
Cloud Document AI processor endpoint as a remote model; (2) exe-
cutes inference remotely on all the files referenced by the object
table named mydataset.documents; and (3) returns all the fields
extracted from each document.

4.2.1 In-Engine Inference. BigQuery ML has the ability to load
and run TensorFlow [9], TensorFlow Lite, and ONNX [13] models
directly in the Dremel workers. Memory is a challenge Dremel
workers have a relatively small amount of workingmemory A “unit”
of unstructured data tends to be larger than a typical relational row
and thus consumes more memory. Compounding the problem, both
the model execution and parsing of complex unstructured data
formats (e.g., JPEG) must be sandboxed for security purposes. The
sandboxes add additional memory overhead.

Scheduling fairly and efficiently in a multi-tenant query engine
is a challenge. Introducing high-memory workers to process un-
structured data would have significantly increased the scheduling
complexity. Instead, we chose to lean on Dremel’s ability to scale
horizontally very quickly using the following observation: model
inputs are preprocessed into tensors (dense multi-dimensional ar-
rays) before inference. The tensor sizes are much smaller than the
initial input image and can be efficiently exchanged by workers.

3BigQuery ML: https://cloud.google.com/bigquery/docs/bqml-introduction
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Figure 7: Distributing prepossessing and inference across
workers

For example, preprocessing an image involves decoding the image
format (e.g., JPEG), resizing the image to match to expected input
size (e.g., 224*224), and converting color format appropriately.

Figure 7 provides an overview of distributed processing and in-
ference in Dremel. We insert extra distributed operations in the
query plan to schedule the preprocessing and the inference exe-
cution in different workers. This ensures that the raw images and
the model are never loaded together in the same worker, minimiz-
ing the amount of worker memory required at the cost of extra
communication between workers.

4.2.2 External Inference. BigQuery supports two forms of exter-
nal inference: (1) using customer-owned models hosted on Vertex
AI (Google Cloud model serving platform) and (2) inference us-
ing Google’s first-party models. First-party models are accessed
through a dedicated service and API such as Document AI, Vision
AI, or Speech-to-Text. Inference using customer-owned models
hosted on Vertex AI follows the same SQL script shown in Listing 1.
The key difference is that the model, dataset1.resnet50 in the
example has been declared as a remote model instead of local one.
In Dremel, external inference using customer-owned models relies
on the infrastructure to execute UDFs remotely. Dremel reads the
unstructured data files from the object store, preprocesses them into
tensors matching the model input signature, and triggers inference
against the model REST endpoint. The model outputs (predictions)
are returned as raw JSON blobs that can then be parsed with SQL.

For first-party models (Listing 2), we built dedicated table value
functions (TVFs) like ML.PROCESS_DOCUMENT to integrate with each
AI vertical. Using TVFs allows us to offer a simpler user experience:
we automatically post-process the model outputs to make them
easier to work with in SQL, for example by flattening multiple levels
of nested fields. This is only possible because the model output is
part of a fixed API. To perform inferences, Dremel passes URIs
and access tokens allowing the first-party model to read data from
the object store directly. In contrast with customer-owned models,
unstructured files are not read by Dremel at all when generating
inferences with first-party models, which reduces communication
across services.

5 OMNI
The rise of cloud computing has been one of the biggest trends
in the industry over the course of the last two decades. Within
that space, a major sub-trend has been the advent of multi-cloud.
While many cloud customers intend to use a single cloud platform
when starting out or migrating on-premise workloads, many end
up using multiple platforms as a result of mergers and acquisitions
(e.g., the acquired company uses another cloud). At the same time,
some customers strategically choose to use multiple cloud providers
from the beginning, for business, regulatory compliance, and risk
management reasons. The pace of innovation in the cloud com-
puting space is very high, and the choice of the best technology
offered by different cloud providers is a rapidly moving target. Cus-
tomers looking to use the best-of-breed technology may have a hard
time doing so within the confines of a single cloud platform. All of
these trends combine to drive up customer adoption of multi-cloud.
Most cloud providers focus on creating first-party solutions that
showcase their platforms, or help orchestrate migrations to their
platforms, and there are not many first-party solutions available
that embrace multi-cloud as a desirable permanent state.

BigQuery has long been the leading data analytics platform for
Google Cloud. Some of the core characteristics of the BigQuery ar-
chitecture are enabled by the Google internal technology stack that
provides essential building blocks (e.g., Borg [37], Colossus [27],
Spanner [12, 19]) for creating highly scalable services. These depen-
dencies — and the lack of suitable replacements outside of Google
— created a formidable barrier for making BigQuery available in
another cloud. However, the rise of multi-cloud as a prevailing
customer usage pattern creates a strong incentive to design a first-
party solution that allows customers to analyze data residing in
multiple clouds, without a need to replicate large datasets. The
advancements with BigLake described earlier provide the techno-
logical foundation that enabled BigQuery Omni: a novel approach
to cross-cloud data analytics. With Omni, customers can analyze
data residing in BigQuery managed storage, Google Cloud Storage
(GCS), Amazon S3, and Azure Blob Storage in-place, using a “single
pane of glass” paradigm.

Omni launched generally available on AWS in 2020 and on Azure
in early 2021. On the most fundamental level, Omni enables Big-
Query’s compute engine to run on all major cloud platforms (AWS,
Azure, GCP) by bringing Dremel to the data, instead of asking cus-
tomers to move or copy data across clouds to GCP to bring data to
Dremel. While conceptually simple, achieving this goal required
solving several technical challenges. As depicted in Figure 8, the
implementation approach of Omni is running key pieces of the
BigQuery data plane on foreign clouds using Kubernetes clusters,
close to the data residing in cloud-specific object stores (e.g., S3,
Azure Blob storage), while keeping the control plane on the GCP.
It supports several use cases including ad-hoc analytics on data
in-situ in other clouds, all the way to cross-cloud analytics that al-
low customers to query tables across different clouds in a seamless
manner. The rest of this section describes the architecture of Omni
and several of its novel features.
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Figure 8: Omni High-Level Architecture

5.1 Architecture and Deployment
Omni uses a hybrid cross-cloud architecture consisting of many
(20+) micro services connected via Stubby, Google’s internal RPC
framework that supports policy-based authorization [14]. Each
micro service has its own set of authorization rules that define
which other services can talk to it. These rules are defined statically,
and remain constant throughout a deployment’s lifetime.

Omni is a regional service with full regional isolation guarantees,
with all Omni data and metadata stored within a region. Omni’s
deployment consists of two components: (1) binary deployments of
pre-built binaries such as Dremel and (2) configuration deployments
that consist of serialized configuration files. All binaries and config
files are built from Google’s Piper [32] source system similar to the
rest of Google’s software, which has processes in place to ensure
every code submitted has appropriate reviewers and approval.

Omni follows a multi-phase rollout deployment model similar
to BigQuery on GCP, where the deployment of binaries/configs
progresses through one or more regions at a time. A set of valida-
tions are run and then the deployment proceeds to the next set of
regions in a predetermined order. Config deployments are separate
from binary deployment and usually follow a shorter time window
for the entire deployment phase.

Omni’s control plane consists of the same micro services that
are used in BigQuery on GCP. This includes services for handling
job management (the Job Server), query pre-processing, and other
metadata management APIs. Users interact with standard BigQuery
public APIs hosted by the control-plane. All query requests from
users are handled by the Job Server. The Job Server does various
preprocessing tasks, such as query validation, IAM-based autho-
rization, metadata lookup, and then forwards the query to the
data-plane on the foreign cloud.

Omni’s data plane components run in AWS or Azure inside a
Kubernetes cluster [15]. Data plane components include the Dremel
query engine [30] and caching layer [31], and a few required infras-
tructure dependencies. RPC communication between services in the
control and data-planes relies on Stubby, transported over a VPN
connection. The data-plane also runs a few Borg [37] dependencies,
such as Chubby [16], to provide a consistent runtime execution

environment across all clouds, and make the components cloud-
agnostic. Google also relies on various internal services, tools and
pipelines to satisfy privacy/security and compliance requirements.

5.2 VPN/Networking
Given Omni’s control and data plane split between GCP and foreign
clouds, secure communication between the two planes is critical.
Figure 9 provides an overview of howwe ensure this secure channel.
Omni uses a QUIC-based [28] zero-trust VPN. This VPN enables
network endpoints hosted outside of Google production data cen-
ters to transparently communicate with services within Google.
This VPN enables a Borg-like execution environment for services
running in Kubernetes pods with a Low Overhead Authentication
Service (or LOAS [23]), an internal Google framework that provides
security for client-server communications.

This VPN is built on existing Google infrastructure components,
such as Google Front Ends (GFEs) that provide services like public
IP hosting, denial-of-service protection, and TLS termination that
enable scale, ease of deployment and operations. A VPN client runs
in Kubernetes pods and connects to a VPN terminator inside the
Google network. The clients are load-balanced between a pool of
terminators for each hosted region, and are allocated production IP
addresses. Once the connection is established, all packets to/from
Google production are exchanged over the encrypted connection
that support both HTTP and Stubby protocols.

The VPN provides multiple layers of security. It enforces IP
access control that drops any packets that are not in an allow-listed
range. It is both a forward and a reverse network proxy, and verifies
that all session-traffic is conformant to the underlying protocol. A
policy engine is used to accept or deny inbound/outbound requests
to services based on authenticated user information.

5.3 Security
Omni is a multi-tenant system that is built to provide the same
level of security benefits as a single tenant architecture. Typically,
single tenant systems provide a greater level of isolation in terms
of security and privacy, at the cost of scaling flexibility for the
customers. With our stringent security practices we aim to achieve
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Figure 9: Omni VPN/Networking Infrastructure

the best of both worlds. To achieve this, we have built various
defense-in-depth security features into the Omni architecture.

5.3.1 Object access credentials scope (Per-Query Isolation). When a
query is run, it is sent to the BigQuery job server, which computes
a superset of the object paths that the query will need access to by
reading the table metadata. The Job Server obtains the necessary
credentials for bucket access and scopes down the credentials to
the exact paths that the query needs access to. These credentials
are sent to Dremel worker nodes as part of the query execution
pipeline. With these restrictions, the Dremel workers will only
have access to the buckets/paths that the query is accessing. This
provides isolation between the queries and limits the blast radius of
a potential data breach to the set of tables accessed by that query.

5.3.2 LOAS based addition authentication through untrusted proxy
(Per Query/Regional isolation). Dremel worker nodes running in
Kubernetes in foreign clouds communicate with the control plane
services running in Borg using LOAS protocol [23]. We built an
additional security layer that acts as an untrusted proxy that sits in
between Dremel and the Borg control plane. Each query uses a per-
query session token which limits the scope of resources the query
can access. The untrusted proxy terminates the LOAS protocol,
validates the per-query session token, validates additional RPC
parameters and allows the traffic only after all these checks are
passed. This allows us to provide per-session isolation between the
data plane nodes and the control plane components. If a Dremel
node is compromised for any reason, any attempts to reach borg
services outside the bounds of the query execution context will be
denied by the untrusted proxy.

5.3.3 Security Realms (Regional isolation). All Google production
services communicate with each other through Borg identity (aka
a LOAS user). Authorization in Borg services is done through RPC
security policy that allows explicit access to LOAS users/groups. For
example, to allow Borg user𝐴 to talk to Borg user 𝐵, the latter must
explicitly allow the former through RPC security policy (RPC-SP).
This RPC-SP configuration is loaded at the start of service initial-
ization and provides isolation between Borg services. We leverage
the RPC-SP infrastructure in Omni by having separate user space
for each Omni region. Each Omni region has a completely unique
set of LOAS users that are not shared with any other BigQuery
region. This provides geographic isolation for services running in
the Omni region by preventing any unauthorized communication
with other BigQuery regions (including other Omni regions).

5.3.4 Human Authentication. Google follows very stringent secu-
rity practices [6] when it comes to human access to the service
and user data stored in Google/Borg infrastructure. In Omni, we
have extended the best practices in Borg infrastructure to apply
to the foreign clouds. Omni has automated most tasks that access
the user or service data. However, all production systems require a
certain level of human access in order to diagnose and resolve issues
in production. Any human access to production systems is fully
audited and regulated through use of multi-factor authentication.
Each Googler refreshes their access daily with a credential for their
production identity and their corporate identity that is signed with
their physical security key [38]. Our VM infrastructure trusts the
Google-wide corporate SSH certificate authority for signing SSH
credentials and provisions a set of trusted users on the VMs based
on internally managed groups. This allows us to use an offline sys-
tem for user authentication which is important when responding to
an incident where services may be down. When a Googler escalates
privilege on a machine, we re-authenticate with the SSH certificate
through a Pluggable Authentication Module (PAM) to guard against
escalation in the event of a container escape. All human access to
production resources are logged to our internal Googler Internal
Logging system which can be independently audited and verified.

5.3.5 Binary Authorization. The industry is becoming increasingly
aware of supply chain [8] attacks, and the adoption of API driven
containerized management systems only increases the vulnerabil-
ity of launching arbitrary code. We take a layered approach to
ensure the auditability of all code that runs in Omni. The operating
system image is built within Google on the open source Container-
Optimized OS project [4]. This image incorporates the minimal
number of dependent open source software packages needed to
operate the cluster, along with proprietary extensions and their
checksum. We have pre-loaded a number of binaries to improve
startup speed and also reduce any potential attack vectors. The pri-
mary containerized workloads are built inside Google and stamped
with checksum and manifests which are verified at runtime through
a Google API. This API verifies that the binaries are built with the
verified, committed and reviewed source code. This allows us to en-
force that no unexpected binaries can be run by Kubernetes, while
avoiding the need to bake container images into the OS that would
be problematic for upgrades and emergency patches.

5.4 Dremel on Non-GCP Clouds
Dremel runs natively on Borg infrastructure within Google. To
move Dremel to a foreign cloud, a major challenge was bringing
enough dependencies to the foreign cloud to ensure full functional-
ity and performance guarantees. To achieve this, we built a min-
imal borg-like environment in AWS that consists of key services
used by Dremel. This environment consists of (1) Chubby [16],
Google’s distributed lock service (2) Stubby [14], Google’s internal
RPC framework that supports policy-based authorization, (3) Enve-
lope, a sidecar container equivalent to jobs running in Borg that
provides various services like authentication and RPC translation,
(4) Dremel’s in-memory shuffle tier [31] to provide a distributed
high performance file system for data exchange and checkpointing
for dynamic query optimization, and (5) Pony [29], a high perfor-
mance user-space host networking stack. We migrated all these
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SELECT o.order_id , o.order_total , ads.id
FROM local_dataset.ads_impressions AS ads
JOIN aws_dataset.customer_orders AS o
ON o.customer_id = ad.customer_id

Listing 3: Cross Cloud Query Example

services to AWS to make them run natively in AWS VPC. Most
of the listed dependencies here are very low level services. One
exception is Shuffle, which uses Spanner for metadata and state
management. Since Spanner is not available in foreign clouds, we
replaced it with databases that are natively available on the foreign
clouds, which worked for the relatively smaller state-tracking needs
of Shuffle (the larger scale transactions needed by the BigQuery
catalog remain on the control plane on GCP) . We also locked down
access to external networks through NAT gateways.

To achieve the maximum performance in foreign clouds, we run
both TPC-H and TPC-DS tests and compare with other systems
including BigQuery on GCP. We also have incorporated perfor-
mance monitoring as part of our engineering culture so any new
product release has to pass the performance runs to be release ready.
With this, we were able to bring in all capabilities of Dremel to the
foreign cloud without sacrificing its performance and flexibility.

5.5 Operating in a Multi-Cloud Environment
The services required to operate the query engine are managed by
a large number of teams within Google. They are constantly being
improved and require specialized knowledge to operate.We indexed
heavily on providing the same release and support experience for
these teams in order to reduce the cost of supporting Omni. This
required building integrations or adapters into Google’s release
system, monitoring, logging, crash analysis, distributed tracing,
internal DNS, and service discovery systems.

Creating bridges to these existing systems has proven to be very
beneficial to the operation of Omni. We initially provided very little
tooling to make the onboarding of new services smooth but found
the large knowledge gap challenging for external teams. Creating
teams tasked with cluster infrastructure and application manage-
ment encapsulated the knowledge of the differences between Borg
and Kubernetes which resulted in solutions that eased onboarding.

In building multi-cloud systems, there is no right answer on
how cloud agnostic to go. The design should share as much as
feasible, but have clear cutouts for cloud-specific configuration and
functionality. We started with individual VM management as a
lowest common denominator but quickly ran into reliability issues.
Different cloud platforms have their own strengths that you do not
want to lock yourself out of in the name of consistency. For example,
the AWS AutoScalingGroup is a powerful primitive for reducing
compute stock outs and optimizing cost for burstable workloads.

5.6 Cross Cloud Analytics
Data analytics users commonly have data in multiple clouds and re-
gions. There are tangible business needs to bring this data together,
but the fragmentation of this data across locales and storage sys-
tems makes it challenging. Traditional approaches to dealing with
multiple data silos typically involve running multiple ETL pipelines
to maintain multiple data copies, an approach that has several

downsides, including data staleness, egress and data storage cost,
complexity, and compliance (e.g. data wipeout) concerns. Many sys-
tems have tried to take a federated approach to data where a query is
dispatched from one system to another, with results streaming back
to a central point. Omni takes a different approach, with the same
query engine being colocated with the data and operating on the
primary data copy in situ, enabling optimizations that reduce egress
costs and increase performance and efficiency. We describe two
Omni innovations in this space through both cross-cloud queries
and cross-cloud materialized views.

5.6.1 Cross Cloud Queries. Most databases and data analytics en-
gines do not allow a direct join between tables residing in different
regions (or clouds), for several reasons. Some of the more serious
complications are the need for a bandwidth-intensive and expen-
sive cross-region data transfer in the general case, and the difficulty
of accessing table metadata and data in other locations. The Omni
architecture provides a way to overcome such complications by
leveraging the availability of a fully managed query engine in mul-
tiple clouds. BigQuery users can execute a query that joins data
from a GCP region with one or more Omni regions in a single
SQL statement as shown in Listing 3. This functionality is one of
the first commercially available offerings that break the regional
and cloud barriers and enable easy cross-cloud analytics in public
clouds. We leverage subquery pushdown, BigQuery cross-region
metadata availability, and the high throughput streaming service
along with secure VPN for the data movement between regions.

When a query reaches the server, we parse the query and identify
if there are any tables that are located in remote regions. If all the
referenced tables are in the same region, the query proceeds to
execute like a normal query. However, if we find table references
to one or more regions that allow cross cloud queries, then we
retrieve the remote table metadata, and split the query into regional
subqueries with appropriate filter push down. We then submit new
queries as cross-region Create Table As Select queries that
run in the remote regions and push the data back into the local
tables. The BigQuery query engine running locally in each region
executes the corresponding query and pushes the results to the
primary region using BigQuery’s high throughput streaming APIs.
This provides fast transfer of subquery results (typically a fraction
of the total local table size thanks to filters pushed down to each
region) back to the primary region. Once the remote queries are
complete, all the remote data is available in temporary tables in the
same region. The query is then rewritten to perform a regular join
between local and temp tables.

5.6.2 Cross Cloud Materialized Views. A core use cases for Omni is
supporting incremental cross cloud data transfer. Cross Cloud Mate-
rialized Views (CCMV), depicted in Figure 10, provide incremental
replication of data from Omni region to GCP region by maintaining
the replication state. CCMVs enable various ETL and dashboard use
cases, along with seamlessly integrating a customer’s foreign-cloud
data with GCP-based services such as Vertex AI.

Omni CCMVs replicate incrementally to reduce egress costs. We
first create a local materialized view in the foreign-cloud regionwith
object storage as the storage medium. This local materialized view
is periodically refreshed. If there are any new changes to the source,
the new data is read and the materialized view is updated/appended
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Figure 10: Cross-Cloud Materialized View Architecture

incrementally. For any upsert/delete in the source, we recreate the
local materialized view partition that the source belonged to, avoid-
ing re-replication of the entire materialized view. The materialized
view replication process relies on stateful file based replication that
copies the files from AWS S3 to Google’s Colossus file system [27].
Network throughput is controlled through Google Cloud project
quotas. Customers are charged based on the physical bytes copied.

Through the architecture of local and replica MV, we provide a
single pane of glass with seamless access through the familiar Big-
Query user interface for defining, querying and managing local and
replica MVs across clouds. This reduces complexity of managing
complex ETL pipelines especially when data is changing periodi-
cally. It significantly reduces egress costs of transferring data across
clouds by only shipping incremental updates. It works out of the
box, automatically refreshing and updating the cross-cloud MV
based on the refresh interval specified by the user. Finally, it pro-
vides secured governed access to materialized view across clouds
both for local analytics and cross-cloud analytics needs.

6 PRODUCTION USE CASES
BigQuery’s evolution as a multi-cloud lakehouse has unlocked
new possibilities for data management and has empowered our
customers to handle previously challenging or impossible tasks.
The following outlines several notable and repeatable customer
usage patterns that we see in production:

Seamless Analytics on a Single Data Copy. Prior to BigQuery’s
transformation into a multi-cloud lakehouse, customer data re-
mained isolated across data lakes and warehouses. While BigQuery
could query data stored in cloud storage through external tables,
performance limitations imposed by object store APIs and access
restrictions to underlying buckets hindered its capabilities. BigLake
introduced unified storage management across Cloud Storage and
BigQuery storage, bringing enhanced performance and granular
access control to open-format data stored in customer buckets. This
breakthrough enables customers to store a single copy of data in
either Cloud Storage or BigQuery storage while still running perfor-
mant and secure analytics using BigQuery and open-source engines
like Spark. Open-source engines can access BigLake tables using
the BigQuery Storage API, leveraging fine-grained access control
and query acceleration through metadata caching.

Cross-Cloud Query and Analysis. Before BigQuery’s evolution as
a multi-cloud lakehouse, performing cross-cloud analytics required
physically moving data across clouds, a cumbersome and time-
consuming process. BigQuery Omni now empowers customers to
query data across clouds seamlessly using cross-cloud joins and
maintains fine-grained access control through a unified BigQuery
experience. Additionally, cross-cloud materialized views provide
enhanced control and flexibility, facilitating efficient data querying.

Multi-modal Data Analysis with SQL Simplicity for Machine Learn-
ing. BigQuery’s initial data format support was limited to struc-
tured and semi-structured data. With the introduction of BigLake
Object tables, customers can now analyze unstructured data within
BigQuery using the same governance framework employed for
structured data. Customers can import vision models or call re-
motely hosted models in Vertex AI to perform document, speech,
and vision analytics using the power and simplicity of SQL. Cus-
tomers utilize these capabilities in a diverse array of applications,
with prominent examples including:

• Metadata Extraction. Leveraging machine learning models
to extract valuable metadata from unstructured data sources,
enabling its seamless integration with structured data for
comprehensive analytics.

• Training Corpus Definition. Effectively defining training cor-
pus for large models by filtering for sensitive data or imple-
menting sampling techniques. This ensures the protection
of sensitive information while maintaining the integrity of
the training dataset.

• Granular Security Enforcement. Implementing fine-grained
security controls to govern access and sharing of unstruc-
tured data stored in the cloud. This safeguards sensitive
information while facilitating authorized collaboration.

7 CONCLUSION
In summary, we presented the three key innovations that have
evolved BigQuery toward a multi-cloud lakehouse. BigLake tables
evolve pieces of core BigQuery storage and metadata infrastructure
to unify managed warehouse data with open-source data lakes, pro-
viding uniform fine-grained governance, significant performance
improvements to data lake tables, and ultimately fully managed
BigLake tables that provide ACID transactions and other valuable
features over data in customer-owned storage. BigQuery’s support
for unstructured data through BigLake Object tables is a novel ap-
proach to integrating data types like documents, images, and audio
into an enterprise data warehouse. Our approach of implementing
both in-engine and external inference techniques enable several
novel data management use-cases spanning analytics and AI/ML.
Omni allows our lakehouse features to enable multi-cloud use cases
by seamlessly shipping Dremel and other key dependencies on non-
GCP clouds with enterprise grade security. To provide customers
with a seamless cross-cloud analytics experience, Omni implements
cross-cloud queries and cross-cloud materialized views that mini-
mizing cloud egress costs while still processing data in-situ. These
innovations ultimately enable new workloads for customers that
we hope will lead to even more innovation in the large-scale data
analytics space.
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