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Abstract

Novel Class Discovery (NCD) is a learning paradigm,
where a machine learning model is tasked to semantically
group instances from unlabeled data, by utilizing labeled
instances from a disjoint set of classes. In this work,
we first characterize existing NCD approaches into single-
stage and two-stage methods based on whether they require
access to labeled and unlabeled data together while discov-
ering new classes. Next, we devise a simple yet powerful
loss function that enforces separability in the latent space
using cues from multi-dimensional scaling, which we refer
to as Spacing Loss. Our proposed formulation can either
operate as a standalone method or can be plugged into ex-
isting methods to enhance them. We validate the efficacy of
Spacing Loss with thorough experimental evaluation across
multiple settings on CIFAR-10 and CIFAR-100 datasets.

1. Introduction

Availability of large amount of annotated data has fueled
unprecedented success of deep learning in various machine
learning tasks [5, 9, 18, 30, 36, 37]. Though human learners
also require various levels of supervision throughout their
lifetime, we make use of the bulk of knowledge acquired so
far to make intelligent choices, which guides effective learn-
ing. Drawing a parallel to the machine learning problem of
image classification, it is natural to expect a model trained
on a huge number of labeled classes (e.g., 1000 classes in
ImageNet dataset [34]) to give meaningful representations
to identify and differentiate instances of novel categories.
This is the basis for the research efforts in Novel Class Dis-
covery (NCD) setting [10, 11, 13, 15, 16, 44, 45]. Given ac-
cess to labeled training data from a set of classes, an NCD
model identifies novel categories from an unlabeled pool
containing instances from a disjoint set of classes.

As the nascent field of Novel Class Discovery contin-
ues to evolve, we introduce a categorization of existing
NCD methods based on the data that is required to train
them. Single-stage NCD models can access labeled data
and unlabeled data together while discovering novel cate-

gories from the latter. Two-stage NCD models can access
labeled and unlabeled data only in stages. Each of these
settings has a wide practical applicability. Consider a ma-
rine biologist who studies about various kinds of organisms
in the ocean, from images captured by under-water vehi-
cles [19, 20]. While analysing these images for novel cat-
egories in their lab, it would be ideal to make use of any
annotated data that they might have already collected over-
time. Hence, a single-stage NCD methods would be ideal
for their setting. Contrastingly, consider an autonomous
robot that can assist the visually impaired [24, 25]. While
being operational, it would be great for the robot to dis-
cover and identify instances of novel categories in the envi-
ronment, so that it can alert its users. In this scenario, it is
not practical to reuse all labeled instances that the robot was
trained on in its factory, while discovering novel categories.
A two-stage NCD method is more desired in this setting.

A common theme in most NCD methodologies is to
learn a feature extractor using the labeled data and use clus-
tering [13, 15, 16], psuedo-labelling based learning [10, 11]
or contrastive learning [17, 45] to identify classes in the
unlabeled pool. In contrast, we propose a novel Spacing
Loss which ensures separability in the latent space of fea-
ture extractor, for the labeled and unlabeled classes. This is
achieved by transporting semantically dissimilar instances
to equidistant areas in the latent space, identified via multi-
dimensional scaling [40]. We note that our proposed loss
formulation is orthogonal to the existing methodologies,
and can easily complement these methods. Our experi-
mental evaluation on CIFAR-10 [23] and CIFAR-100 [23]
datasets suggests that the models trained with the proposed
Spacing Loss achieve state-of-the-art performance when
compared to two-stage NCD methods. Further, when com-
bined with single-stage methodologies, our loss formulation
improves each of them consistently.

The standard strategy to evaluate NCD methods is to
train the model on a subset of classes from a classifica-
tion dataset and evaluate its performance on the remaining
classes. Complementing existing protocols, we introduce a
new split where the number of classes in the labeled pool
is significantly lower than the number of classes in the un-
labeled pool. Such a protocol aligns more closely with the



real-world scenarios, where the number of classes in the la-
beled and unlabeled pool might be heavily imbalanced.
To summarize, the key contributions of our work are:
• We propose Spacing Loss, which enforces separability

in the latent space, for the challenging problem of novel
category discovery.

• We evaluate our proposed approach on benchmark
datasets for novel category discovery, under both single-
and two-stage settings, consistently outperforming exist-
ing methods.

2. Novel Class Discovery Methods
Two-stage Methods Early methods in Novel Class Dis-
covery [13, 15, 16] operate in a phased setting. In the first
phase, the model learns from the labeled data, and in the
subsequent phase, it discover novel categories from the un-
labeled pool. MCL [16] and KCL [15] learn a binary sim-
ilarity function using meta-learning in the first phase, and
use this in the category discovery phase. DTC [13] first
learns a feature extractor on the labeled data. In the next
stage, these features are used to initialise a clustering al-
gorithm [42], which further fine-tunes these representations
using the unlabeled data, thereby improving class discovery.
Single-stage Methods More recent efforts in NCD [10,
11, 45] use labeled and the unlabeled data together to dis-
cover novel categories. RS [11, 12], NCL [45] and Open-
Mix [46] first use RotNet [22] to self-supervise on the la-
beled and unlabeled data. Then, RS [11] uses pseudo-labels
from ranking-statistics method to learn an unlabeled head.
NCL [45] and Jia et al. [17] find that contrastive learn-
ing improves class discovery and OpenMix [46] uses mix-
up [43] to generate more training data to guide class discov-
ery. UNO [10] finds that a unified loss function enhances
the synergy between the learnings from labeled and the un-
labeled data. Zhao and Han [44] proposes to focus on fine-
grained local cues in images to enhance discrimination1.

3. Spacing Loss
Learning to adapt the latent representations of a model,

such that semantically identical samples would share nearby
locations in the latent manifold, while semantically dissim-
ilar samples are spaced apart, would be ideal for discover-
ing novel classes. Such a subspace shaping should evolve
as latent representations mature. Two characteristics would
be ideal in such a setting: 1) the ability to transport sim-
ilar samples to locations equidistant from other dissimilar
samples in the latent manifold, 2) the datapoints having the
ability to refresh their associativity to a group as the learning
progresses. We propose a simple yet effective methodology

1As NCD is a nascent field, we will maintain an updated list of methods
here: https://github.com/JosephKJ/Awesome-Novel-Class-Discovery.
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Figure 1. The figure illustrates how latent space is adapted by
the proposed Spacing Loss. Latent representations from differ-
ent classes are shown in different shapes. As the model is boot-
strapped with labeled data, the latent representations from the un-
labeled data will have reasonable semantic grouping. We further
enhance the separability in the latent space by identifying equidis-
tant points (shown in red) and then moving the latent represen-
tations to these identified locations, effectively ensuring spacing
between the classes of interest.

that accommodates both aspects. Fig. 1 illustrates how the
latent space is adapted using the proposed Spacing Loss.
While learning to discover classes, we identify locations in
latent space (in red), which are equidistant from each other.
Next, we enforce the latent representations from unlabeled
data to be transported to nearest of such points. Each latent
representation can change their membership to a specific
group as the learning progresses. This flexibility along with
the weak regularization enables us to learn a well-separated
latent representation. A simple non-parametric inference in
this space can help us to discover categories. We summarize
how equidistant locations is identified in Sec. 3.1, followed
by how latent space is adapted in Sec. 3.2, concluding with
the overall objective in Sec. 3.3.

3.1. Finding Equidistant Points in the Latent Space

Let us consider a feature extractor Φ : Rw×h×3 →
Rz , which takes an input image and generates a z dimen-
sional latent representation. We identify c prototypes, P =
{p1, · · · ,pc}, from these latent representations, where c
is the total number of classes under consideration. These
prototypes can be initialised using a simple centroid based
strategy. We identify equidistant points, P e = {pe1 · · ·pec},
in this latent space which are guaranteed to be far apart at-
least by the largest pair-wise distance between these proto-
types. These equidistant points serve as anchors to which
the corresponding centroids and its associated data would
be progressively shifted to while the learning progresses.

Let pdist be the largest pair-wise distance between the
prototypes. We first construct a c × c dissimilarity matrix
∆ as follows: all entries but for the diagonals are set to
δij = α × pdist, where α > 1. The diagonal elements δij ,
of ∆ are set to 0. Hence, ∆ is symmetric, non-negative and
hollow by construction. Given a dataset D, we seek to find
P e = {pe1 · · ·pec} where each pei ∈ Rz , such that distance
between any pei and pej is approximately δ: ie. dij(P e) ≈

https://github.com/JosephKJ/Awesome-Novel-Class-Discovery


δij . dij(P e) corresponds to the distance between pei and pej
in euclidean space. We can formulate the objective to learn
P e as follows:

σ(P e) =
∑
i<j≤c

wij(dij(P
e)− δij)2, (1)

where W is a symmetric, non-negative and hollow matrix
of weights wij , which captures the relative importance. For
simplicity, we weigh each P e

i equally. As finding an analyt-
ical solution to minimize Eq. (1) is intractable, an iterative
majorization algorithm [4, 7, 40] is used. We seek to find a
manageable surrogate function τ(P e,Y ), which majorizes
σ(P e), i.e., τ(P e,Y ) > σ(P e), with the initial supporting
points Y . We can rewrite Eq. (1) as follows:

σ(P e) =
∑
i<j

d2ij(P
e) +

∑
i<j

δ2ij − 2
∑
i<j

δijdij(P
e). (2)

The first term is a quadratic in P e and can be expressed as
TrP eTV P e, where V has vij = −wij and vii =

∑
wij

[7]. The second term is a constant, say k, and the third term
can be bounded as follows:∑

i<j

δijdij(P
e) = TrP eTB(P e)P e

≥ TrP eTB(Y )Y , (3)

where B(Y ) has

bij =

{
δij

dij(Y ) , for dij(Y ) 6= 0, i 6= j

0, for dij(Y ) = 0, i 6= j
and

bii = −
c∑

j=1,j 6=i

bij . (4)

The proof of this inequality follows [4, 7]. Hence, the sur-
rogate function that majorizes σ(P e) is as follows:

τ(P e,Y ) = TrP eTV P e + k − 2 TrP eTB(Y )Y . (5)

Algorithm 1 GETEQUIDISTANTPOINTS

Input: Prototype vectors: P = {p0 · · ·pc}, Small constant ε.
Output: Equidistant points: P e

1: pdist ← maximum distance between all prototypes in P .
2: Compute ∆ from pdist.
3: Initialize P e randomly.
4: do
5: Y ← P e

6: P e ← arg minP e τ(P e,Y ) . Defined in Eq. (5)
7: while (Y − P e) > ε
8: return P e

Algorithm 1 summarizes how P e are computed by opti-
mizing Eq. (5). In Line 2, we compute the dissimilarity ma-
trix ∆ by using the maximum distance between the proto-
type vectors P . First P e is randomly initialised. Until there

is negligible change ε in P e, we update P e to optimize the
surrogate function τ(P e,Y ). The resulting vectors in P e

are guaranteed to be equidistant from each other [4].

3.2. Learning Separable Latent Space

Once the equidistant locations in the latent space P e are
identified, they can be used to enforce separation in the la-
tent representations of images from different classes. As
each latent representation matures with training, it might
need to change its associativity with its initial group. We
propose a novel formulation in Algorithm 2 that would al-
low for this flexibility during learning. The training es-
sentially alternates between learning with pseudo-labels de-
rived from class prototypes (Lines 6 - 8) and modifying the
class prototypes themselves (Lines 11 - 15). In Line 1, we
initialize the class prototypes P as the centroids of latents
from Φθ using k-means [29]. Based on the closeness to
these prototypes, the class associativity of each image in a
mini-batch is determined in Line 7. The feature extractor
is updated to make the latent representations closer to these
prototypes in Line 8. Using these newer features, the as-
signment is recomputed and the prototypes themselves are
updated in Line 15. For each data-point zi, its correspond-
ing prototype pczi

is moved closer to the equidistant point
peczi

and its current representation, controlled by a momen-
tum parameter η. The parameter η dampens with more in-
stances of the specific class seen during training.

Algorithm 2 LEARNINGWITHSPACING

Input: Feature extractor: Φθ , Data: D = {Xi}, # of epochs: e.
1: Initialize class prototypes P = {p0 · · ·pc}.
2: Identify equidistant points P e = {pe

0 · · ·pe
c} using Algo. 1.

3: Initialize assignment frequency v ← 0; |v| = c.
4: for each epoch e do
5: for each minibatchX ⊂D do
6: Z ← Φθ(X)
7: A← assign the nearest prototype from P for eachZ.
8: Update θ with MeanSquaredError(Z,A).
9: Z ← Φθ(X) . Recompute Z with updated θ

10: A← recompute prototype assign. for each new Z.
11: for zi in Z do
12: czi ← retrieve assignment index of zi fromA.
13: v[czi ]← v[czi ] + 1
14: η ← 1

v[czi
]

15: pczi
← (1− η)pczi

+ η(zi + pe
czi

)

3.3. Overall Objective
So far, we have explained how the feature extractor

Φθ is adapted by Spacing Loss. Our complete model ex-
tends this backbone with one head for the labeled data
FLab = ΦLab ◦ Φθ and another for the unlabeled data
FUlab = ΦUlab ◦ Φθ. FLab is learned with the labeled ex-
amples. FUlab is learned with pairwise pseudo labels de-
rived from cosine-similarity [45] between its latent repre-



Setting→ Imbalanced Class Split Balanced Class Split

Dataset Splits→ CIFAR-100-80-20 CIFAR-100-20-80 CIFAR-10-5-5 CIFAR-100-50-50

Method CA NMI CA NMI CA NMI CA NMI

RS [11] 69.39 0.6934 16.63 0.4493 89.72 0.7724 47.72 0.5666
RS + Spacing loss 73.16 0.7252 26.37 0.4562 89.90 0.7764 48.20 0.5712
NCL [45] 81.01 0.7883 19.82 0.4570 92.70 0.8233 56.71 0.6355
NCL + Spacing loss 85.11 0.7896 35.60 0.5064 93.32 0.8364 57.36 0.6432

Table 1. We study the class discovery performance of single-stage NCD models across multiple
settings in this table. Our proposed loss formulation can act as an add-on to existing methods,
effectively enhancing their class discovery capability, even for severely skewed class distributions.

Figure 2. Latent space of novel
categories from CIFAR-10-5-5,
trained using NCL + Spacing Loss.

sentations. We also enforce consistency in prediction with
an augmented view of each image [11,13,44,45] to enhance
learning. While learning a two-stage model, we first learn
FLab using cross entropy loss with labeled data and then
learn FUlab with these auxiliary losses and Spacing Loss
operating in the latent space. Labeled and unlabeled data,
along with all the losses are used to learn the single-stage
model. During inference, we do a k-means [29] on the la-
tent representations from the backbone network, to discover
novel categories.

4. Experiments and Results
Following existing NCD methods [10, 11, 13, 15, 16, 44,

45], we define splits on CIFAR-10 and CIFAR-100 to eval-
uate the efficacy of our method. Clustering Accuracy [11]
and NMI [39] are used as the evaluation criteria. We use
ResNet-18 [14] backbone and closely follow the hyper-
parameter settings from Zhong et al. [45].

4.1. Two-stage Results

Datasets→ CIFAR-10 CIFAR-100

Method CA NMI CA NMI

K-means [29] 65.5 0.422 66.2 0.555
KCL [15] 66.5 0.438 27.4 0.151
MCL [16] 64.2 0.398 32.7 0.202
DTC [13] 87.5 0.735 72.8 0.634
RS* [11] 84.6 0.658 69.5 0.581
NCL* [45] 60.5 0.479 59.5 0.428
Spacing Loss 90.5 0.787 80.62 0.719

Table 2. Regularization induced by Spac-
ing Loss has better class discovery ability
compared to baseline two-stage methods.

In the first
phase, we train
the model on
the labeled data
from the first 5
and 80 classes
from CIFAR-10
and CIFAR-
100 datasets
respectively for
200 epochs. In
the next phase,
classes are identified from the unlabeled data guided by
the Spacing Loss. Tab. 2 showcases the results. Our
method consistently outperforms existing methods by a
large margin, showing the efficacy of the proposed Spacing
Loss. RS [11] and NCL [45] are adapted to the two-stage
setting for fair comparison (denoted by ∗).

4.2. Single-stage Results
A key characteristic of our proposed Spacing Loss is

that the latent space regularization that it offers can ef-

fectively act as an add-on to existing methodologies. We
showcase this capability while evaluating in single-stage
setting. In Tab. 1, we organise different dataset splits based
on the balance between the number of classes in labeled
and unlabeled pool. The concise notation in Row 2 can be
expanded as: dataset−total class count−labeled classes−
unlabeled classes. The latent space separation induced by
Spacing Loss helps to improve the class discovery capa-
bility on all settings. It is interesting to note that the im-
provement is more pronounced in the more pragmatic set-
ting, where the split of classes between the labeled and unla-
beled pool is skewed. t-SNE [38] visualization of backbone
features in Fig. 2 shows good separation in these latent rep-
resentations of novel categories in CIFAR-10-5-5 setting.

5. Enhancing Continual Learning with NCD
Continual learning setting aims to learn a single model

which can incrementally accumulate knowledge across
multiple tasks, without forgetting. Main-stream efforts in
Continual Leaning [1,2,6,8,21,26–28,28,31–33,33,35,41]
assume that the data which is introduced in each incremen-
tal task is fully annotated. Efforts in Novel Class Discovery
can help to relax this requirement, where the model could
be tasked to identify classes from the instances of a new
task automatically, based on the learnings that it already
had. Then, these identified novel categories may be incre-
mentally learned. We hope that the unification of these two
streams of research would lead to a more pragmatic problem
setting by building on their complementary characteristics.

6. Conclusion
We characterise research efforts in the nascent Novel

Class Discovery setting into single-stage and two-stage
methods, based on their data requirement during training.
We further propose a simple yet effective method which en-
hances both these settings by enforcing separability in the
latent representations. Our experimental analysis on mul-
tiple settings on two benchmark datasets corroborates with
our assertions. Advancements in NCD can help continual
learning models to operate in an open-world [3,18], where it
can automatically identify novel categories and then incre-
mentally learn them. We hope this pragmatic setting would
be extensively explored in follow-up works.
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