
Limoncello: Prefetchers for Scale
Akanksha Jain∗
avjain@google.com

Google, USA

Hannah Lin∗
hylin@google.com

Google, University of Washington,†
USA

Carlos Villavieja
villavieja@google.com

Google, USA

Baris Kasikci
kasikci@google.com

Google, University of Washington,†
USA

Chris Kennelly
ckennelly@google.com

Google, USA

Milad Hashemi
miladh@google.com

Google, USA

Parthasarathy Ranganathan
partha.ranganathan@google.com

Google, USA

Abstract
This paper presents Limoncello, a novel software system that
dynamically configures data prefetchers for high-utilization
systems. We demonstrate that in resource-constrained en-
vironments, such as large data centers, traditional methods
of hardware prefetching can increase memory latency and
decrease available memory bandwidth. To address this is-
sue, Limoncello disables hardware prefetchers when mem-
ory bandwidth utilization is high, and it leverages targeted
software prefetching to reduce cache misses when hard-
ware prefetchers are disabled. Limoncello is software-centric
and does not require any modifications to hardware. Our
evaluation of the deployment on Google’s fleet reveals that
Limoncello unlocks significant performance gains for high-
utilization systems: It improves application throughput by
10%, due to a 15% reduction in memory latency, while main-
tainingminimal change in cachemiss rate for targeted library
functions.

ACM Reference Format:
Akanksha Jain, Hannah Lin, Carlos Villavieja, Baris Kasikci, Chris
Kennelly, Milad Hashemi, and Parthasarathy Ranganathan. 2024.
Limoncello: Prefetchers for Scale. In 29th ACM International Con-
ference on Architectural Support for Programming Languages and
Operating Systems, Volume 3 (ASPLOS ’24), April 27-May 1, 2024,
La Jolla, CA, USA. ACM, New York, NY, USA, 14 pages. https:
//doi.org/10.1145/3620666.3651373

∗Akanksha Jain and Hannah Lin contributed equally to this work.

†This work was done entirely at Google.

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).
ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0386-7/24/04
https://doi.org/10.1145/3620666.3651373

1 Introduction
In today’s data-driven world, hyperscale fleets operate un-
der increasing pressure to maximize efficiency and resource
utilization. Memory stalls account for nearly 40% of cycles
in large data centers and are a major performance bottle-
neck [1, 2]. Hardware prefetchers [3] can mitigate memory
stalls by retrieving program data frommainmemory ahead of
time, but the effectiveness of hardware prefetchers is highly
dependent on workload characteristics. In fact, it is common
for CPU designers to design and tune hardware prefetchers
using benchmarking suites, such as SPEC [4–8].
This paper is motivated by the observation that this ap-

proach of designing hardware prefetchers does not workwell
for large data centers and hurts performance at scale. We
study the impact of disabling hardware prefetchers across
tens of thousands of machines in Google’s data center fleet,
and we find that while disabling hardware prefetchers in-
creases cache miss rates by 20%, it also reduces memory
latency—the time spent waiting for a last level cache miss
to return—by 15%. The increase in cache miss rates is not
surprising, but the memory latency penalty due to hardware
prefetching is a tremendous opportunity cost, especially con-
sidering that improvements to DRAM latency have essen-
tially stalled [9].
Figure 1 sheds more insight on the impact of hardware

prefetchers on memory latency. As Figure 1 shows, a state-
of-the-art server CPU observes a 2× increase in load-to-use
latency (y-axis) as memory bandwidth utilization increases
(x-axis). Hardware prefetchers further increase load-to-use
latency at high memory bandwidth utilization (blue line in
Figure 1). This happens due to longer queuing delays in the
memory system and inefficiencies introduced by inaccurate
prefetches. In the low memory bandwidth utilization regime
(left side of the graph in Figure 1), where hardware prefetch-
ers do not impact memory latency, it makes sense to optimize
for cache miss rates. But in the high memory bandwidth uti-
lization regime (right side of Figure 1), where large fleets

https://doi.org/10.1145/3620666.3651373
https://doi.org/10.1145/3620666.3651373
https://doi.org/10.1145/3620666.3651373


ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Jain & Lin et al.

Figure 1. Average load-to-use latency per DRAM request
reduces by 15% when hardware prefetchers are disabled.
Data is gathered using the Intel MLC tool [10].

typically operate during peak traffic, we need new prefetch-
ing solutions that provide a better tradeoff between cache
miss rates and memory latency.

Our key insight is that vertical integration between hard-
ware and software can provide amore favorable performance
tradeoff and is a better prefetching solution at scale. In partic-
ular, we make the observation that in bandwidth-constrained
regimes, inserting software prefetch instructions directly in
application code is much more judicious and targeted com-
pared to hardware prefetching. We also note that data center
operators have high visibility across the stack—they can ana-
lyze both the microarchitectural characteristics of hardware
and the applications running on that hardware—and thus,
they have the unique ability to dynamically modulate be-
tween hardware and software prefetching based on runtime
fleetwide telemetry.
More concretely, we present Limoncello, a software sys-

tem that achieves this vertical integration without any hard-
ware changes. At low memory bandwidth utilization, Limon-
cello relies on hardware prefetchers to minimize cache miss
rates. When memory bandwidth exceeds a certain threshold,
Limoncello disables hardware prefetchers to optimize for
memory latency. Finally, Limoncello uses fleetwide profil-
ing to guide software prefetch insertions into select library
functions and maintain a low cache miss rate even at high
memory bandwidth utilization.

One unique aspect of our solution is our methodology for
identifying software prefetching targets. Traditional profile-
guided methods to insert software prefetches [11–13] do not
work at scale because they rely heavily on the availability of
representative benchmarks and inputs for generating useful
performance profiles. This is challenging in a large fleet with
huge diversity in both workloads and inputs. Our methodol-
ogy instead uses large-scale hardware ablation studies, where
we turn off (and thus "ablate") hardware prefetchers on hun-
dreds of thousands of machines in the Google fleet, and we

employ fleetwide profiling tools [1, 2] to characterize the
impact of disabling hardware prefetchers. In particular, we
disable hardware prefetchers on our experimental machines
and monitor the impact of disabling hardware prefetchers
on the cache miss rates of different functions. Interestingly,
we find that data center tax operations, such as copying,
compression, and hashing, suffer the most when hardware
prefetchers are disabled and are the most profitable targets
for software prefetching. While these functions are named
after data centers, they are widely used as building blocks in
many distributed applications. We discuss the results of this
characterization in Section 4.1.

Limoncello can be easily deployed at scale because it does
not require new hardware support. We designed, imple-
mented, deployed, and evaluated Limoncello over a period
of several months in Google’s data center fleet running tens
of thousands of diverse workloads and with machines that
each run several hundred services. From our evaluation in
the Google fleet, we find that Limoncello improves memory
latency at peak utilization by 15% and application throughput
by 10%. More broadly, this paper highlights that traditional
prefetching (both software and hardware) face significant
challenges at scale, and it points to several new research
directions in an otherwise mature research area.

In summary, this paper makes the following contributions:

• Wedemonstrate that whenmemory bandwidth is scarce,
hardware prefetchers can hurt system performance by
increasing memory bandwidth usage and memory la-
tency.

• We show that fleetwide profiling along with a care-
fully-designed hardware ablation study can accu-
rately surface opportunities for precise and fine-grained
software prefetching. We find that data center tax func-
tions are highly prefetch-friendly and make good tar-
gets for software prefetching.

• We show that hardware-software collaboration can
provide a better prefetching solution than either hard-
ware prefetching or software prefetching alone.

• We design, implement, deploy, and evaluate Limon-
cello in Google’s fleet and show that it improves ap-
plication throughput by 10%.

The rest of this paper is organized as follows: We motivate
Limoncello by analyzing recent trends related to memory
bandwidth and hardware prefetching (Section 2). We then
describe Limoncello’s hardware component, which we call
Hard Limoncello in Section 3, and then Limoncello’s software
component, which we call Soft Limoncello in Section 4. We
present Limoncello’s evaluation in Section 6, discuss insights
and research directions in Section 8, and then conclude in
Section 9.



Limoncello: Prefetchers for Scale ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

Figure 2.Memory bandwidth per core has plateaued over
several generations of server CPUs.

2 Motivation
We now motivate Limoncello by discussing hardware trends
with respect to memory bandwidth and data prefetching.

2.1 Hardware Trends
Figure 2 shows that memory bandwidth per core has stag-
nated over the last decade. Although the number of cores on
servers has continued to increase, available memory band-
width has been fundamentally limited by the number of
pins [9]. DDR5 is likely to offer a one-time bump in memory
bandwidth, but this trend is not expected to continue due to
physical device limitations [9]. High-bandwidth memories
(HBMs) [14] offer an attractive alternative, but their price
point limits their widespread deployment in server CPUs.

At the same time, memory bandwidth usage of workloads
has increased at a steady pace, as workloads have become
more data-intensive. Figure 3 shows the average memory
bandwidth usage of all workloads in the Google fleet for the
last four years normalized by the amount of compute they
use. The compute unit is defined as an abstraction of phys-
ical CPU cores such that it represents the same amount of
computational power on any platform [15]. We see that since
2020 the average memory bandwidth usage has increased by
nearly 1.4×, with an average 10% year-on-year increase.

Impact of memory bandwidth on server efficiency. To
understand the impact of memory bandwidth on server ef-
ficiency and utilization, we study two state-of-the-art plat-
forms in the Google fleet. The achievable memory band-
width per core for these platforms is roughly 3 GB/s per
core. Figure 4 shows that for these platforms, server CPU
utilization—defined as the proportion of the total available
processor cycles that are spent doing useful work—is limited
by memory bandwidth. In particular, the figure shows the
average memory bandwidth consumption (y-axis) for the
servers in the fleet bucketed by their CPU utilization (x-axis).
For optimal server utilization, the target CPU utilization for

Figure 3. Average memory bandwidth usage of fleet work-
loads has increased over the last 4 years. Each point in the
graph shows memory bandwidth usage per compute unit
averaged across all workloads in the fleet.

Figure 4. Memory bandwidth can saturate with just 50%
CPU utilization in a bandwidth-bound platform. Sizes of the
markers are in proportion to the number of platform servers
in the CPU usage bucket.

the Google fleet is 70-80%. However, memory bandwidth
gets saturated at 40-60% CPU utilization. When a server
starts reaching memory bandwidth saturation, the cluster
scheduler avoids scheduling workloads on the machine to
prevent workloads from encountering performance cliffs due
to memory bandwidth contention. As a result, many servers
are unable to reach the target 70% CPU utilization, and CPU
resources on servers remain idle due to lack of sufficient
memory bandwidth.

Impact of hardware prefetchers on memory band-
width. Hardware prefetchers contribute significantly to the
memory bandwidth usage in the fleet. Table 1 shows that
across the entire fleet, disabling hardware prefetchers re-
duces average memory bandwidth by 11.2%–15.7%, and it
has a significant impact on the peak and P99 tail memory
bandwidth consumption as well.



ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Jain & Lin et al.

Memory Bandwidth
Reduction Platform 1 Platform 2

Average 15.7% 11.2%
P99 10.4% 2.8%
Peak 5.6% 5.5%

Table 1. Disabling hardware prefetchers reduces both aver-
age and tail memory bandwidth.

Figure 5.Memory bandwidth usage on SPEC with and with-
out hardware prefetching over 3 generations of a server
platform. We see a 30-40% increase in memory bandwidth
usage when hardware prefetching is enabled.

To better understand why hardware prefetchers increase
memory bandwidth usage, we profile thememory bandwidth
usage of SPEC workloads over three generations of a lead-
ing server platform in the Google fleet. Figure 5 shows that
the memory bandwidth usage of running SPEC increases by
30-40% when hardware prefetchers are turned on. Further-
more, the memory bandwidth overhead of prefetchers in the
latest generation has increased to 40% compared to the 30%
overhead in the previous generation.

One factor contributing to this growth is aggressive hard-
ware prefetching. The trend of increasing hardware prefetch
traffic reflects that hardware vendors optimize for prefetch
coverage to obtain high cache hit rates under conditions
that are not memory-bandwidth constrained (the left half
of the latency curve in Figure 1). Consequently, prefetching
algorithms have evolved to increase coverage at the expense
of memory traffic. Data centers, on the other hand, operate
under a different regime (the right half of the latency curve
in Figure 1). Prefetchers, especially aggressive ones, exacer-
bate the pressure on the memory controller. Furthermore,
prefetch requests from one workload can interfere with the
demand requests from other co-located workloads, adding
even more pressure on the memory system.

Figure 6. Limoncello disables hardware prefetchers when
memory bandwidth utilization is high to optimize for mem-
ory latency.

3 Hard Limoncello
Limoncello disables hardware prefetchers for a machine
socket when the machine load is high. In particular, when the
memory bandwidth utilization on the socket exceeds a pre-
defined upper threshold, we disable hardware prefetchers,
and when the memory bandwidth utilization falls below a
pre-defined lower threshold, we re-enable hardware prefetch-
ers. As show in Figure 6, this optimizes cache hit rate when
memory bandwidth utilization is low, and memory latency
when it is high. The thresholds for disabling and enabling
hardware prefetchers were determined through fleetwide
experimentation and analysis of last-level cache (LLC) miss
latency curves. Note that when hardware prefetchers are
off, not only is memory latency reduced, but the amount of
memory bandwidth that the socket supports before becom-
ing exponential is also higher.

Telemetry. Our solution is based on socket-level memory
bandwidth telemetry that is collected every 1 second. We
use the perf tool to profile memory bandwidth levels on
every socket every 1s and redirect the result to our software
controller.

Design. Figure 7 shows a time series of memory band-
width measurements taken every minute from a represen-
tative machine in the data center. As demonstrated in the
figure, memory bandwidth can be a volatile metric that is
difficult to predict. Reacting to short bursts in memory band-
width can be counterproductive as we would constantly be
toggling prefetchers on and off, which may lead to unstable
performance and poor prefetching behavior.

To allow for smoother transitions, we introduce hysteresis
in our software controller in two ways: First, we define sepa-
rate upper and lower thresholds. The upper threshold is used
to determine whether prefetchers should be disabled, and
the lower threshold is used to determine whether prefetchers
should be enabled again. Second, we define a time duration



Limoncello: Prefetchers for Scale ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

Figure 7. Memory bandwidth variability in a machine.

Figure 8. State diagram of Hard Limoncello controller for
modulating hardware prefetchers. Green (lighter) indicates
hardware prefetchers are off, blue (darker) that they are on.

during which memory bandwidth must stay above the upper
threshold or below the lower threshold before the controller
will change the state of the prefetchers. The overall flow is
encapsulated in the state machine in Figure 8.

As a concrete example, consider a socket with the memory
bandwidth utilization profile shown in Figure 9. Consider
the upper threshold to be 80% memory bandwidth utilization
and lower threshold to be 60% memory bandwidth utiliza-
tion. As the memory bandwidth crosses the upper threshold
for a sustained duration of time at t=0, we disable prefetch-
ers (denoted in red). Note that prefetchers are not turned
back on although memory bandwidth falls below the upper
threshold at t=7.5 because it does not fall below the lower
threshold. However, at time t=10, memory bandwidth falls
below the lower threshold for a sustained period of time, so
we enable the prefetchers. Before t=20, the prefetchers are
left on even though memory bandwidth exceeds the lower
threshold because it does not exceed the upper threshold.

Actuating PrefetcherControls. The controller in Limon-
cello enables and disables hardware prefetchers by writing to

Figure 9. Hardware prefetcher state over time. The green
lines in the figure show when hardware prefetchers are dis-
abled. When machine load exceeds an upper threshold, hard-
ware prefetchers are disabled and remain disabled until ma-
chine load returns below a lower threshold.

themodel-specific registers (MSRs) for prefetchers. The regis-
ter addresses and values vary for different vendors/platforms.
For a given platform, we disable all prefetchers in the plat-
form.

Thresholds. To identify the upper and lower thresholds
for Hard Limoncello, we run a hardware ablation study on
tens of thousands of machines in the data center. In particu-
lar, we create two sets of 10k experimental and 10k control
machines; the experimental group runs Hard Limoncello,
where the control group has all hardware prefetchers en-
abled and no software prefetchers added. The machines are
chosen such that they lie across several geographical zones
and a diverse set of workloads to ensure representative serv-
ing traffic. The experiment is run continuously over two
weeks, so as to capture variations during the day as well as
variations across days of the weeks.

We define the upper and lower thresholds as a percentage
of the platform’s memory bandwidth saturation threshold.
Memory bandwidth saturation is defined as follows: For each
machine socket, we define a memory bandwidth saturation
threshold as the maximum memory bandwidth capacity for
the machine and that we establish during a machine qual-
ification process. Running at higher bandwidth than this
threshold increases memory latency significantly.
As shown in Figure 10, we examined various lower and

upper memory bandwidth thresholds for Hard Limoncello
chosen with memory bandwidth saturation thresholds in
mind by analyzing application performance trends.

4 Soft Limoncello
When hardware prefetchers are disabled with Hard Limon-
cello, some functions are expected to increase in cachemisses.



ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Jain & Lin et al.

Figure 10. Application throughput based on different Hard
Limoncello configurations.𝑋/𝑌 indicates the lower (𝑋%) and
upper (𝑌%) memory bandwidth thresholds in the configura-
tion. Thresholds are expressed as a percentage of memory
bandwidth saturation.

Soft Limoncello addresses this by using careful insertion of
software prefetches. Inserting software prefetches every-
where is not feasible due to its lack of scalability for the large
range of applications running in a large data center fleet.
We instead target specific software prefetch-friendly func-
tions and we describe our process for identifying software
prefetching targets and inserting the prefetches below.

4.1 Software Prefetching Targets
To determine software prefetching targets for Limoncello,
we analyze function performance using the ablation study
described in Section 3. During the experiment, we leverage a
global profiling tool that continuously captures the program
counter, CPU usage, and LLC misses of all applications in
the fleet. The profiler samples a limited number of random
machines at any given time and it is activated only for small
time intervals to reduce profiling overhead. Although the
profiler only runs for brief periods, the fleet is large enough
such that aggregated samples can effectively capture the
impact of code changes over a long period of time.
Profiling the machines in the experiment group when

hardware prefetchers are disabled provides us with perfor-
mance data at a function granularity in the absence of hard-
ware prefetchers. Simultaneously profiling machines in the
control group provides us with data in the presence of hard-
ware prefetchers. This helps us generate a detailed snapshot
of code sections that experience an increase in CPU usage
and LLC misses from disabling hardware prefetchers. By
leveraging this profiling data, we identify where we should
introduce software prefetchers.
The results are mixed: For a few of our workloads, we

see significant performance improvements. For example, dis-
abling hardware prefetchers results in a >10% QPS gain in a
memory-bound search application, a >30% improvement of

Figure 11. Change in CPU cycles (%) from Hard Limon-
cello. Functions that regress in performance when hardware
prefetchers are disabled show an increase in CPU cycles
(green) and an increase in LLC MPKI (blue). Data center tax
functions in particular show performance regressions from
disabling hardware prefetchers while other functions tend
to improve in performance and decrease in cycles and MPKI.

QPS in an ML model server, and >1% throughput increase in
a database server. However, disabling hardware prefetchers
also hurt performance for other workloads and produces an
average 5% performance drop in our fleet.

We analyze these regressions more closely by examining
our profiling data at a function level and looking at LLC
misses per kilo instructions (MPKI). Figure 11 shows the im-
pact of disabling hardware prefetchers on several hot func-
tions in the data center. Profiling data reveals that when
hardware prefetchers are disabled, many functions regress
in performance (increase in CPU cycles) due to a significant
increase in LLC MPKI. We consider these functions to be
prefetch-friendly. Not surprisingly, several other functions
also gain performance (decrease in CPU cycles) due to lower
memory latency and less cache pollution. We consider these
functions to be prefetch-unfriendly: for these functions, the
hardware prefetcher may have difficulty accurately predict-
ing memory access patterns, leading to untimely or incorrect
prefetches and wasted memory bandwidth.
Our function-level profiling data indicates that many of

the prefetch-friendly functions are data center tax functions,
common leaf functions that can be attributed to data center
overhead. These operations account for 30-40% of the cycles
in large data centers [1, 2]. From the profiling data, we iden-
tify the following functions as hardware-prefetch friendly
and worthwhile targets for software prefetching:

1. Compression Many compression and decompression
libraries are optimized for speed and are extremely memory
latency sensitive. Prefetching can help hide this memory
latency. When operations in these libraries are done over
blocks, they access memory in contiguous patterns that are
prefetch-friendly.



Limoncello: Prefetchers for Scale ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

Figure 12. Aggregated change in CPU cycles (%) from Hard
Limoncello. Data center tax functions (green) increased in
CPU cycles under Hard Limoncello. In contrast, overall non-
data center tax functions (blue) decreased in cycles.

2. Data transmission Serializing and deserializing data
for RPCs are actions that often involve either copying from
or writing to addresses in a predictable manner. In certain
settings, the data may also be stored contiguously in memory.
This can lead to memory access patterns that are both easily
detectable by hardware prefetchers and possible to mimic
with software prefetchers.

3.Hashing Like compression, hashing commonly involves
data processing over block sizes. Hashing algorithms manip-
ulate data in predefined sequences. This leads to predictable
memory-access patterns that a hardware prefetcher can ef-
fectively prefetch.

4. Datamovement Functions performing datamovement
like memcpy and memmove involve actions over contiguous
sections of memory. These memory access patterns are easily
detected by a hardware prefetcher, especially when the data
movement is done over a large stream.

Figure 12 shows the overall changes in cycles comparing
compression, data transmission, hashing, and data move-
ment with other functions in the fleet. While each of the
data center tax categories highlighted show significant in-
creases in cycles with hardware prefetchers disabled, other
functions in the fleet together show a performance improve-
ment. Of course, some non-tax functions also regress with
hardware prefetchers disabled, but many of these functions
are not hot enough to warrant standalone optimizations.
Data center tax functions are particularly amenable to

software prefetching for several reasons. First, they are well-
contained in library functions and account for a dispropor-
tionately large number of fleet cycles. Second, their func-
tion definitions provide direct knowledge of what will be
accessed and how much data will be accessed. In particular,
each function performs computations over a stream of se-
quential data and reads data from a source, writes data to a
destination, or both. For such functions, hardware prefetch-
ers require a warm-up period to learn the access patterns and

Figure 13. Software prefetch instructions act on addresses
at a distance and can prefetch different degrees of data.

often lack knowledge about when to stop prefetching, which
is problematic when the streams are short. With software
prefetching, we can be much more precise as we know the
exact addresses we want to prefetch, and we also know how
much data should be prefetched.

4.2 Software Prefetcher Design Space
Many design parameters need to be carefully considered
when inserting software prefetches in a piece of code. In Soft
Limoncello, we focus on three key design parameters:

• Prefetch address: Determining the exact location to
software prefetch is an important design decision. If a
prefetch is inserted for data that is not actually used, it
can lead to wasted prefetches. Similarly, not all loads
provide enough context for effective prefetching and
adding in software prefetches for loads arbitrarily can
lead to untimely prefetching.

• Prefetch distance: Prefetch distance refers to how
far in advance data is fetched. Inserting the prefetch
too close to the actual load will result in an untimely
prefetch, whereas inserting the prefetch too far could
lead to a stale prefetch. For example, in Figure 13, ad-
dress 0x180 is prefetched when address 0x800 is loaded,
resulting in a prefetch distance of 4 cache lines. A short
prefetch distance has a higher chance of being accu-
rate but will be less timely, whereas a long prefetch
distance is more likely to be timely but has a higher
chance of being inaccurate.

• Finally, the third consideration is prefetch degree,
which refers to how much data is prefetched at once.
A small degree results in less prefetch traffic but could
lead to lower prefetch benefit, whereas a large degree
could lead to greater inaccuracy.

Since small, short data access spread over a region do not
benefit as much from hardware prefetching and are diffi-
cult to software prefetch, we target larger streams of data
access which we identify by observing trends in the size of
function call arguments. Using a fleetwide profiling tool, we
gather the call argument sizes for certain functions as well as
cache misses and CPU cycles at an instruction level. For func-
tions with multiple potential prefetch sites, we look at the
instruction-level metrics to identify prefetch addresses that



ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Jain & Lin et al.

Figure 14. memcpy argument size distribution. The chart
shows the probability density function (PDF) of the number
of times each copy size appears in the profiling data. Most
copy sizes are small.

have the highest potential for improved performance. When
prefetch-friendly addresses are function call arguments, we
examine function call argument distributions in the profiling
data to help determine prefetch distances and degrees.
Since the effectiveness of software prefetching is tied to

application memory access patterns, we carefully choose a
series of microbenchmarks and load tests for testing software
prefetches for Limoncello. Some of these benchmarks reflect
the memory access patterns of our fleet, like Fleetbench [16],
while others exercise a range of memory bandwidth usage
levels to ensure testing under load and capturing both con-
ditions where hardware prefetchers are enabled and where
they are disabled.
We first use these benchmarks to sweep a chosen set of

prefetching addresses, distances, and degrees. Then we select
the best performing parameters for load testing to determine
performance improvements. If either microbenchmarks or
load tests fail to return positive performance improvements,
we choose a different set of prefetching addresses, degrees, or
distances for testing. By iterating on software prefetch strate-
gies and testing, we are able to identify software prefetches
that allowed us to remove application regressions initially
seen in the ablation experiment of Limoncello. (See Section
6.)
Because we target data center tax functions with well-

understood memory access patterns, we expect our inserted
software prefetches to remain effective even as our data cen-
ter fleet evolves. Regardless, our system continually profiles
workloads and monitors CPU cycles and cache hit rate, and
our profiling and experimental harness for fleetwide perfor-
mance studies can be used to make adjustments to software
prefetches if necessary.

4.3 An Example for Clarity: memcpy
First, we note that memcpy was one of the data center tax
functions identified by fleetwide profiling during hardware
ablation as a prefetch-friendly function (Section 4.1). This is
not surprising, as memcpy copies data from a source to a desti-
nation, iterating over a contiguous piece of memory. memcpy
is also very suitable for software prefetching since we can
identify the locations that will be accessed by memcpy di-
rectly in software. This means that we can perform software
prefetching without over-prefetching and we only need to
determine proper prefetch degrees and distances to perform
timely prefetches.

From our profiling data, we also note that data movement
functions are on average done on short streams. Figure 14
shows that most copy calls are short, but there is a long tail of
large copies. Our profiling data shows that workloads experi-
encing a performance regression from hardware prefetchers
disabled have on average 26% larger memcpy sizes than non-
regressing workloads. Since hardware prefetchers require a
warmup period, it is likely easier for the hardware prefetcher
to recognize and issue timely prefetches for larger copies.

Following this data, we chose to focus on the larger memcpy
sizes for inserting software prefetchers. As Figure 15 shows,
the optimal prefetching distance and degree can vary based
on call size. Conditioning software prefetching on larger call
sizes for memcpy allowed us to ensure prefetches are timely
enough. We used a few microbenchmarks that exercise a
variety of different memcpy size distributions, such as the
LLVM libc microbenchmark suite [17], and we searched for
the optimal prefetching degree and distance by sweeping a
range of degrees and distances, fixing the prefetch degree
while varying the prefetch distance (Figure 15a) and fixing
the prefetch distance while varying the prefetch degree (Fig-
ure 15b). After running the microbenchmarks, we verified
results against multiple loadtests.

5 Methodology
We deployed Limoncello in Google’s production fleet. Each
machine in the fleet runs hundreds of services that are sched-
uled using a centralized scheduler, and Limoncello was eval-
uated on production traffic. Platform 1 and Platform 2 are
two different generations of large x86 out-of-order multi-
cores.

Hard Limoncello. Using the hardware ablation study re-
sults described in Section 3, we set upper and lower memory
bandwidth thresholds for Hard Limoncello as 80% and 60%
of the platform’s memory bandwidth saturation threshold.
We modulated our hardware prefetchers using a controller
as described in Section 3.

Soft Limoncello. We used profiling data from the ablation
study to identify software prefetching targets and inserted



Limoncello: Prefetchers for Scale ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

(a) Microbenchmark exercising different prefetch distances.
Prefetching is fixed at a degree of 256 bytes.

(b)Microbenchmark exercising different prefetch degrees. Prefetch-
ing is fixed at a distance of 512 bytes.

(c) LLVM-libc microbenchmarks. +HW/SW and -HW/SW indi-
cates benchmarks run with and without prefetchers, respectively.
Speedup is measured relative to +HW,-SW

Figure 15. Soft Limoncello memcpy microbenchmarking.

software prefetchers as described in Section 4. To map per-
formance metrics to code structures, we leveraged the global
profiling tool to capture the program counter, CPU usage,
IPC, LLC misses of all applications in the fleet.

Metrics. We report both machine level and workload-
level metrics. At the machine level, we report memory band-
width, DRAM latency reduction, and CPU utilization. CPU

utilization is a good proxy for server utilization as a higher
utilization indicates more useful work being done. At the
workload level, we report application throughput for all
workloads running in the fleet. Application throughput refers
to the number of requests served by each service per unit
of time. We report application throughput in different CPU
utilization bands for completeness.

6 Evaluation
Due to the size of the fleet, we rollout Limoncello to the entire
fleet over a period of a few weeks. Figures 16, 17, and 18 pro-
vide a comparison of average fleetwide performance metrics
before the rollout, when Limoncello had not been applied,
and after the rollout, when both Hard and Soft Limoncello
were in full effect.

Figure 16 shows application throughput over three differ-
ent CPU utilization bands (60%, 70%, 80%).We see that Limon-
cello significantly improves performance at high utilization—
the desired operating point. In particular, at peak utilization
(70% and 80% utilization), Limoncello improves throughput
by 10%. At moderate utilization (line with 60% usage), Limon-
cello does not degrade performance due to its dynamic mod-
ulation of hardware prefetching
To understand Limoncello’s performance improvements

at high utilization, realize that when utilization is high, appli-
cation performance is bottlenecked by memory bandwidth.
Applying Limoncello reduces the memory bandwidth and
lowers the latency to memory as shown in Figure 17. In par-
ticular, we saw a 13% reduction in median L3 latency and a
10% reduction in P99 L3 latency.

Figure 18 shows the impact in socket memory bandwidth
at different percentiles. We observe a clear 15% reduction in
memory bandwidth, with the number of saturated sockets
falling by nearly 8%.
In Section 2.1, Figure 4 showed how the data center hits

a CPU utilization ceiling when sockets are saturated. This
starts occurring at the 40% CPU utilization band. After de-
ploying Limoncello, CPU utilization increases as shown in
Figure 19 for the platforms evaluated. Memory bandwidth
usage increases at a slower rate and does not hit satura-
tion until the 70-80% CPU utilization band. This allows us
to increase machine utilization while still delivering good
application performance.

Through Soft Limoncello, workload regressions seen dur-
ing ablation experiments were effectively removed. Unlike
hardware prefetchers, software prefetchers do not need a
warm-up period. Software also offers greater foresight into
expected data patterns. As a result, software prefetching
can enable much more precise prefetching than hardware
prefetchers and make more judicious use of memory band-
width. These characteristics allowed our targeted insertions
of software prefetchers tomaintain a lowMPKI in data center
tax functions when hardware prefetchers were modulated.



ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Jain & Lin et al.

Figure 16. Limoncello application throughput gain. Appli-
cation throughput increases by 6-13% increase, dependent
on the CPU utilization level of the machines.

Figure 17. Limoncello memory latency reduction. Memory
latency reduces by 13% in the median and 10% in the P99.

Figure 18. Limoncello socket bandwidth usage reduction.
Average socket bandwidth reduces by 15%.

Figure 20 shows a breakdown of the improvement in CPU
cycles for the four type of data center tax functions we tar-
geted. The small increase in CPU cycles for the functions un-
der Hard Limoncello reflects how useful hardware prefetch-
ers are for these functions. However, the Soft Limoncello bars
indicate that software prefetchers are extremely beneficial
for the functions when operating in low memory bandwidth

Figure 19. Increase in CPU utilization due to Limoncello. Be-
fore Limoncello, memory bandwidth saturation was reached
in the 40-50% CPU utilization band (Figure 4), but with
Limoncello memory bandwidth saturation is not met un-
til the 70-80% band. Sizes of the markers are in proportion
to the fraction of platform servers in the CPU usage bucket.

Figure 20. Software prefetcher impact in Limoncello. The
y-axis shows the portion of fleetwide cycles spent in the
respective function categories. The center bar (green) shows
Hard Limoncello deployed without any software prefetchers.
Adding software prefetchers into Limoncello lowered CPU
cycles spent in targeted functions by 2% (yellow).

systems. If we look at an aggregated view of all targeted
data center tax functions in Figure 20 we observe that the
trend remains with an increase in cycles due to Hard Limon-
cello and a significant reduction when combined with Soft
Limoncello.
Together, Hard and Soft Limoncello led to a higher ca-

pacity in the fleet. Our results demonstrate that much of
the original data being prefetched by the hardware prefetch-
ers harmed more than it benefited our large data center
workloads. While the hardware prefetchers were designed
to decrease memory latency, the retrieval of data excessively



Limoncello: Prefetchers for Scale ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

congested memory traffic and lowered overall system per-
formance. Turning the hardware prefetchers off under high
memory bandwidth saturation reduced congestion, and in-
serting software prefetchers maintained lower MPKI for
prefetch-friendly functions. By combining hardware and
software techniques, Limoncello improved the performance
of our data center fleet.

7 Related Work
Prefetching is a well-studied research area rich in litera-
ture. Since this paper is about hardware-software collabora-
tion for more improving prefetch efficiency, we break down
prior work into three broad categories: (1) hardware throt-
tling, (2) software prefetching, and (3) hardware-software
co-design. We note that most prior work involving hardware-
software co-design requires changes to the hardware or the
ISA. Limoncello avoids this entirely by taking a software-
based approach to modulating hardware.

7.1 Hardware Prefetcher Throttling
Most hardware prefetch throttling mechanisms rely on band-
width contention and prefetch accuracy for modulating hard-
ware prefetcher aggressiveness [18–20]. These solutions tend
to be reactive and coarse-grained, as they enable or disable
prefetchers for all code irrespective of their relative impor-
tance. As a result, they are not effective for workloads where
prefetch-friendly and prefetch-unfriendly code is interleaved
at a fine granularity. In contrast, Limoncello leverages soft-
ware prefetching to prefetch for a few code segments that
are critical for overall performance, enabling proactive and
finer-grained prefetch control.
More recent work in the hardware literature has consid-

ered finer-grained solutions [6, 7]. For example, PPF uses
a perceptron filter and a range of program features to pre-
dict when to prefetch and when not to. CLIP predicts the
criticality of load addresses and throttles hardware prefetch-
ers for non-critical loads. Both solutions aim to eliminate
inaccurate prefetches, but they are reliant on the accuracy
of the underlying hardware prefetcher to decide whether to
prefetch the targeted code segment or not. If the hardware
had moderate accuracy for certain code segments, data for
those code sites would not be prefetched, leading to a loss
in coverage. Limoncello differs from these prior works as
it leverages software prefetching, which is inherently more
accurate, as software has knowledge about how much data
is going to be accessed. As a result, Limoncello is able to
achieve a superior coverage and accuracy tradeoff and is
not limited by the underlying hardware prefetching algo-
rithm’s effectiveness. Moreover, Limoncello is a completely
software-centric approach which does not require invasive
hardware changes.

7.2 Software Prefetching
Software prefetching [21] has commonly been approached
through the compiler. Static code analysis performed by com-
pilers is used to identify simple memory access patterns and
find targets for software prefetching [22–25]. A key chal-
lenge with software prefetching is to identify when and
where to insert a software prefetch instruction. Compiler-
based methods have been effective in identifying prefetch
locations and timing for simple memory access patterns [26–
29]. Further work has also been done to examine ways to
prefetch more complex data structures, such as linked data
structures [30–33]. However, static analysis based prefetch
methods are inherently limited due to lack of dynamic exe-
cution information.

Profiling-based methods instead use runtime information
to both identify prefetching candidates and improve prefetch
timeliness [11–13]. Limoncello builds on this line of work
but instead of using benchmarks to generate profiles, it uses
fleetwide profiling tools [1, 2] alongside hardware ablation
studies to determine prefetch locations and strides. Moreover,
unlike prior work, Limoncello combines software prefetch-
ing with hardware prefetching such that hardware prefetch-
ers are enabled in regimes they can provide the most benefit
in, and software prefetches can provide targeted coverage in
regimes where the hardware prefetcher is expensive.

7.3 Hardware-Software Codesign
Most priorwork in designing cross-stack solutions for prefetch-
ing involve building programmable prefetching engines for
specific data structures and require invasive hardware, com-
piler and/or ISA changes. For example, Ainsworth et al. de-
sign a programmable prefetch engine for graph applications
in particular [34, 35], and Lebeck et al. design prefetchers for
linked data structures [22, 36]. Limoncello offers a simpler
solution and can be more readily implemented and deployed
because it requires no hardware, ISA or compiler changes.
Furthermore, Limoncello is more general as it is not tied to
any particular data structure.

Another line of work looks at software-directed hardware
prefetching. Most of these solutions require ISA support and
compiler modifications. The work most closely related to our
work is by Wang et al., and it involves using compiler hints
to modulate the aggressiveness of a hardware prefetcher [37].
Other work leverages software to provide information about
strides and addresses to prefetch [38, 39]. Finally, Zhang
and Torrellas use the compiler to mark blocks in memory as
belonging to contiguous spatially local regions or containing
indirection pointers [40].

To the best of our knowledge, no current work effectively
combines hardware and software prefetchers without re-
quiring hardware modifications. Limoncello uniquely pairs
existing hardware and software interfaces together, dynami-
cally disabling hardware prefetchers and inserting software



ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Jain & Lin et al.

prefetchers to outperform hardware and software prefetch-
ers alone.

8 Discussion
Reflecting on our results, this work offers several insights
and suggests interesting avenues for future research.

8.1 Improving Hardware Prefetching
While hardware prefetchers have become increasingly so-
phisticated, they face unique challenges in the data center
environment. Recent literature in hardware prefetching has
embraced aggressive and complex prefetching designs, with
designers often prioritizing miss coverage over memory traf-
fic. This design philosophy is ill-suited for data center work-
loads, where prefetchers have to compete with other useful
work for memory bandwidth. For example, available memory
bandwidth could be used to prefetch for an existing work-
load, or it could be used to run another thread or application
that does useful work.

This suggests two avenues for improving hardware prefetch-
ers. First, designs that make accuracy a first-class concern
would be more efficient and well-suited for data center envi-
ronments. Second, designs that are more resilient to frequent
context switching and inter-core communication are also
likely to work better in the fleet.

8.2 Improving Software Prefetching
Software prefetching is a task that must be done with ex-
treme care. If prefetches are not inserted well, they will waste
instructions and memory bandwidth and hurt application
performance. Inserting prefetches for Soft Limoncello re-
quired many days of extensive testing and careful tuning.

The toil of inserting software prefetches is largely due to
two factors: (1) lack of visibility into application memory
access patterns, and (2) lack of production-representative
benchmarks for testing prefetches. Better visibility into mem-
ory layouts and memory access patterns can help with re-
moving some of the guesswork in software prefetching.
Testing the effectiveness of software prefetching is also

a difficult task. Some libraries today include microbench-
marks for assessing performance. However, few of these
microbenchmarks reflect deployments in a data center. Re-
search into developing microbenchmarks that can mimic
behavior at scale would allow for ease of development in
inserting software prefetches.

8.3 Better Hardware-Software Interfaces
Both hardware and software prefetching have unique strengths:
Software prefetching allows developers to carefully choose
what to prefetch, whereas hardware prefetchers are able
to issue prefetch requests much more quickly and timely.
Unfortunately, existing ISA interfaces do not allow for any

communication between hardware and software prefetch-
ing; prefetching must be done in either hardware or software
alone. Research into better hardware-software interfaces that
allow for ease of collaboration between the two will undoubt-
edly lead to much more powerful and efficient prefetching
systems.

9 Conclusion
In this paper, we have shown that at scale, memory band-
width is a scarce resource, and as a result, hardware prefetch-
ing can result in performance degradation at high utiliza-
tion. With Limoncello, we demonstrated that collaboration
between hardware and software prefetching can provide a
prefetching solution with much better tradeoffs than hard-
ware or software prefetching alone. We deployed Limoncello
in Google’s datacenter fleet and demonstrated that it can
improve application throughput by 10% for production work-
loads. More broadly, this paper highlighted that hardware-
software co-design is a promising avenue for improving the
performance of datacenter systems, where machine utiliza-
tion is high and where workloads are very diverse.

10 Acknowledgements
Limoncello builds on the engineering work of many teams
at Google, and we would like to especially thank Eric Zhang,
Ashish Naik, Gaurang Upasani, Bhuvan Sajja, Ilya Tokar,
Shiyu Hu, Srividhya Balaji, and Xiangling Kong for their
contributions. We would also like to thank Urs Hölzle, Tipp
Moseley, Rama Govindaraju, our anonymous reviewers, and
our shepherd for their valuable feedback.

References
[1] Svilen Kanev, Juan Pablo Darago, Kim Hazelwood, Parthasarathy Ran-

ganathan, Tipp Moseley, Gu-Yeon Wei, and David Brooks. Profiling a
warehouse-scale computer. In Proceedings of the 42nd Annual Interna-
tional Symposium on Computer Architecture, pages 158–169, 2015.

[2] Akshitha Sriraman and Abhishek Dhanotia. Accelerometer: Under-
standing acceleration opportunities for data center overheads at hy-
perscale. In Proceedings of the Twenty-Fifth International Conference
on Architectural Support for Programming Languages and Operating
Systems, pages 733–750, 2020.

[3] Babak Falsafi and Thomas F Wenisch. Data prefetching. In A Primer
on Hardware Prefetching, pages 15–37. Springer, 2014.

[4] Pierre Michaud. Best-offset hardware prefetching. In 2016 IEEE In-
ternational Symposium on High Performance Computer Architecture
(HPCA), pages 469–480. IEEE, 2016.

[5] Jinchun Kim, Seth H Pugsley, Paul V Gratz, AL Narasimha Reddy, Chris
Wilkerson, and Zeshan Chishti. Path confidence based lookahead
prefetching. In 2016 49th Annual IEEE/ACM International Symposium
on Microarchitecture (MICRO), pages 1–12. IEEE, 2016.

[6] Eshan Bhatia, Gino Chacon, Seth Pugsley, Elvira Teran, Paul V. Gratz,
and Daniel A. Jiménez. Perceptron-based prefetch filtering. In 2019
ACM/IEEE 46th Annual International Symposium on Computer Archi-
tecture (ISCA), pages 1–13, 2019.

[7] Biswabandan Panda. Clip: Load criticality based data prefetching
for bandwidth-constrained many-core systems. In Proceedings of the
56th Annual IEEE/ACM International Symposium on Microarchitecture,



Limoncello: Prefetchers for Scale ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

MICRO ’23, page 714–727, New York, NY, USA, 2023. Association for
Computing Machinery.

[8] Hao Wu, Krishnendra Nathella, Joseph Pusdesris, Dam Sunwoo,
Akanksha Jain, and Calvin Lin. Temporal prefetching without the
off-chip metadata. In Proceedings of the 52nd Annual IEEE/ACM Inter-
national Symposium on Microarchitecture, pages 996–1008, 2019.

[9] Onur Mutlu, Saugata Ghose, Juan Gómez-Luna, and Rachata
Ausavarungnirun. A modern primer on processing in memory. In
Emerging Computing: From Devices to Systems: Looking Beyond Moore
and Von Neumann, pages 171–243. Springer, 2022.

[10] Thomas Willhalm Sri Sakthivelu Sharanyan Srikanthan
Vish Viswanathan, Karthik Kumar. Intel® memory latency
checker v3.11. https://www.intel.com/content/www/us/en/developer/
articles/tool/intelr-memory-latency-checker.html, 2021.

[11] Jiwei Lu, H. Chen, Rao Fu, Wei-Chung Hsu, B. Othmer, Pen-Chung
Yew, and Dong-Yuan Chen. The performance of runtime data cache
prefetching in a dynamic optimization system. In Proceedings. 36th
Annual IEEE/ACM International Symposium on Microarchitecture, 2003.
MICRO-36., pages 180–190, 2003.

[12] Chi-Keung Luk, Robert Muth, Harish Patil, Richard Weiss, P. Geoffrey
Lowney, and Robert Cohn. Profile-guided post-link stride prefetching.
In Proceedings of the 16th International Conference on Supercomputing,
ICS ’02, page 167–178, New York, NY, USA, 2002. Association for
Computing Machinery.

[13] Saba Jamilan, Tanvir Ahmed Khan, Grant Ayers, Baris Kasikci, and
Heiner Litz. Apt-get: Profile-guided timely software prefetching. In
Proceedings of the Seventeenth European Conference on Computer Sys-
tems, EuroSys ’22, page 747–764, New York, NY, USA, 2022. Association
for Computing Machinery.

[14] Hongshin Jun, Jinhee Cho, Kangseol Lee, Ho-Young Son, Kwiwook
Kim, Hanho Jin, and Keith Kim. Hbm (high bandwidth memory)
dram technology and architecture. In 2017 IEEE International Memory
Workshop (IMW), pages 1–4, 2017.

[15] Muhammad Tirmazi, Adam Barker, Nan Deng, Md Ehtesam Haque,
Zhijing Gene Qin, Steven Hand, Mor Harchol-Balter, and John Wilkes.
Borg: the next generation. In EuroSys’20, Heraklion, Crete, 2020.

[16] Google. Fleetbench. https://github.com/google/fleetbench, 2023.
[17] LLVM-libc. Libc mem* benchmarks. https://github.com/llvm/llvm-

project/tree/main/libc/benchmarks, 2023.
[18] Biswabandan Panda. Spac: A synergistic prefetcher aggressiveness

controller for multi-core systems. IEEE Transactions on Computers,
65(12):3740–3753, 2016.

[19] Santhosh Srinath, Onur Mutlu, Hyesoon Kim, and Yale N. Patt. Feed-
back directed prefetching: Improving the performance and bandwidth-
efficiency of hardware prefetchers. In Proceedings of the 2007 IEEE 13th
International Symposium on High Performance Computer Architecture,
HPCA ’07, page 63–74, USA, 2007. IEEE Computer Society.

[20] Eiman Ebrahimi, Onur Mutlu, Chang Joo Lee, and Yale N. Patt. Coor-
dinated control of multiple prefetchers in multi-core systems. In 2009
42nd Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO), pages 316–326, 2009.

[21] David Callahan, Ken Kennedy, andAllan Porterfield. Software prefetch-
ing. In Proceedings of the Fourth International Conference on Archi-
tectural Support for Programming Languages and Operating Systems,
ASPLOS IV, page 40–52, New York, NY, USA, 1991. Association for
Computing Machinery.

[22] H. Al-Sukhni, I. Bratt, and D.A. Connors. Compiler-directed content-
aware prefetching for dynamic data structures. In 2003 12th Interna-
tional Conference on Parallel Architectures and Compilation Techniques,
pages 91–100, 2003.

[23] William Y. Chen, Scott A. Mahlke, Pohua P. Chang, and Wen-mei W.
Hwu. Data access microarchitectures for superscalar processors with
compiler-assisted data prefetching. In Yashwant K. Malaiya, editor,
Proceedings of the 24th Annual IEEE/ACM International Symposium on

Microarchitecture, MICRO 24, Albuquerque, NewMexico, USA, November
18-20, 1991, pages 69–73. ACM/IEEE, 1991.

[24] Edward H. Gornish, Elana D. Granston, and Alexander V. Veidenbaum.
Compiler-directed data prefetching in multiprocessors with memory
hierarchies. In ACM International Conference on Supercomputing 25th
Anniversary Volume, page 128–142, New York, NY, USA, 1990. Associ-
ation for Computing Machinery.

[25] Seung Woo Son, Mahmut Kandemir, Mustafa Karakoy, and Dhruva
Chakrabarti. A compiler-directed data prefetching scheme for chip
multiprocessors. SIGPLAN Not., 44(4):209–218, feb 2009.

[26] Michael Joseph Wolfe, Carter Shanklin, and Leda Ortega. High Perfor-
mance Compilers for Parallel Computing. Addison-Wesley Longman
Publishing Co., Inc., USA, 1995.

[27] Muneeb Khan, Andreas Sandberg, and Erik Hagersten. A case for
resource efficient prefetching in multicores. In Proceedings of the 2014
Brazilian Conference on Intelligent Systems, BRACIS ’14, page 101–110,
USA, 2014. IEEE Computer Society.

[28] Todd C. Mowry, Monica S. Lam, and Anoop Gupta. Design and evalua-
tion of a compiler algorithm for prefetching. SIGPLANNot., 27(9):62–73,
sep 1992.

[29] Youfeng Wu. Efficient discovery of regular stride patterns in irregular
programs and its use in compiler prefetching. In Proceedings of the
ACM SIGPLAN 2002 Conference on Programming language design and
implementation, pages 210–221, 2002.

[30] Jamison Collins, Suleyman Sair, Brad Calder, and Dean M. Tullsen.
Pointer cache assisted prefetching. In Proceedings of the 35th Annual
ACM/IEEE International Symposium on Microarchitecture, MICRO 35,
page 62–73, Washington, DC, USA, 2002. IEEE Computer Society Press.

[31] Chi-Keung Luk and Todd C. Mowry. Compiler-based prefetching for
recursive data structures. In Proceedings of the Seventh International
Conference on Architectural Support for Programming Languages and
Operating Systems, ASPLOS VII, page 222–233, New York, NY, USA,
1996. Association for Computing Machinery.

[32] Amir Roth, Andreas Moshovos, and Gurindar S. Sohi. Dependence
based prefetching for linked data structures. In Proceedings of the
Eighth International Conference on Architectural Support for Program-
ming Languages and Operating Systems, ASPLOS VIII, page 115–126,
New York, NY, USA, 1998. Association for Computing Machinery.

[33] Amir Roth and Gurindar S. Sohi. Effective jump-pointer prefetching for
linked data structures. In Proceedings of the 26th Annual International
Symposium on Computer Architecture, ISCA ’99, page 111–121, USA,
1999. IEEE Computer Society.

[34] Sam Ainsworth and Timothy M. Jones. An event-triggered pro-
grammable prefetcher for irregular workloads. In Proceedings of the
Twenty-Third International Conference on Architectural Support for
Programming Languages and Operating Systems, ASPLOS ’18, page
578–592, New York, NY, USA, 2018. Association for Computing Ma-
chinery.

[35] Sam Ainsworth and Timothy M. Jones. Graph prefetching using data
structure knowledge. In Proceedings of the 2016 International Conference
on Supercomputing, ICS ’16, New York, NY, USA, 2016. Association for
Computing Machinery.

[36] Abanti Basak, Shuangchen Li, Xing Hu, Sang Min Oh, Xinfeng Xie,
Li Zhao, Xiaowei Jiang, and Yuan Xie. Analysis and optimization of
the memory hierarchy for graph processing workloads. In 2019 IEEE
International Symposium on High Performance Computer Architecture
(HPCA), pages 373–386, 2019.

[37] Zhenlin Wang, D. Burger, K.S. McKinley, S.K. Reinhardt, and C.C.
Weems. Guided region prefetching: a cooperative hardware/software
approach. In 30th Annual International Symposium on Computer Ar-
chitecture, 2003. Proceedings., pages 388–398, 2003.

[38] Tatsushi Inagaki, Tamiya Onodera, Hideaki Komatsu, and Toshio
Nakatani. Stride prefetching by dynamically inspecting objects. In
Proceedings of the ACM SIGPLAN 2003 Conference on Programming

https://www.intel.com/content/www/us/en/developer/articles/tool/intelr-memory-latency-checker.html
https://www.intel.com/content/www/us/en/developer/articles/tool/intelr-memory-latency-checker.html
https://github.com/google/fleetbench
https://github.com/llvm/llvm-project/tree/main/libc/benchmarks
https://github.com/llvm/llvm-project/tree/main/libc/benchmarks


ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Jain & Lin et al.

Language Design and Implementation, PLDI ’03, page 269–277, New
York, NY, USA, 2003. Association for Computing Machinery.

[39] Ibrahim Hur and Calvin Lin. Feedback mechanisms for improving
probabilistic memory prefetching. In 2009 IEEE 15th International
Symposium on High Performance Computer Architecture, pages 443–
454, 2009.

[40] Zheng Zhang and J. Torrellas. Speeding up irregular applications in
shared-memory multiprocessors: memory binding and group prefetch-
ing. In Proceedings 22nd Annual International Symposium on Computer
Architecture, pages 188–199, 1995.


	Abstract
	1 Introduction
	2 Motivation
	2.1 Hardware Trends

	3 Hard Limoncello
	4 Soft Limoncello
	4.1 Software Prefetching Targets
	4.2 Software Prefetcher Design Space
	4.3 An Example for Clarity: memcpy

	5 Methodology
	6 Evaluation
	7 Related Work
	7.1 Hardware Prefetcher Throttling
	7.2 Software Prefetching
	7.3 Hardware-Software Codesign

	8 Discussion
	8.1 Improving Hardware Prefetching
	8.2 Improving Software Prefetching
	8.3 Better Hardware-Software Interfaces

	9 Conclusion
	10 Acknowledgements
	References

