
Bootstrapping Recommendations at Chrome Web Store
Zhen Qin, Honglei Zhuang, Rolf Jagerman, Xinyu Qian, Po Hu, Dan Chary Chen, Xuanhui Wang,

Michael Bendersky, Marc Najork
Google

Mountain View, CA
{zhenqin,hlz,jagerman,xinyuqian,phu,lottie,xuanhui,bemike,najork}@google.com

ABSTRACT
Google Chrome, one of the world’s most popular web browsers,
features an extension framework allowing third-party developers
to enhance Chrome’s functionality. Chrome extensions are dis-
tributed through the Chrome Web Store (CWS), a Google-operated
online marketplace. In this paper, we describe how we developed
and deployed three recommender systems for discovering relevant
extensions in CWS, namely non-personalized recommendations,
related extension recommendations, and personalized recommen-
dations. Unlike most existing papers that focus on novel algorithms,
this paper focuses on sharing practical experiences when building
large-scale recommender systems under various real-world con-
straints, such as privacy constraints, data sparsity and skewness
issues, and product design choices (e.g., user interface). We show
how these constraints make standard approaches difficult to suc-
ceed in practice. We share success stories that turn negative live
metrics to positive ones, including: 1) how we use interpretable neu-
ral models to bootstrap the systems, help identifying pipeline issues,
and pave the way for more advanced models; 2) a new item-item
based algorithm for related recommendations that works under
highly skewed data distributions; and 3) how the previous two
techniques can help bootstrapping the personalized recommenda-
tions, which significantly reduces development cycles and bypasses
various real-world difficulties. All the explorations in this work are
verified in live traffic on millions of users. We believe that the find-
ings in this paper can help practitioners to build better large-scale
recommender systems.

KEYWORDS
recommender systems, learning to rank, generalized additive mod-
els, text embedding

ACM Reference Format:
Zhen Qin, Honglei Zhuang, Rolf Jagerman, Xinyu Qian, Po Hu, Dan Chary
Chen, XuanhuiWang, Michael Bendersky, Marc Najork. 2021. Bootstrapping
Recommendations at Chrome Web Store. In Proceedings of the 27th ACM
SIGKDD Conference on Knowledge Discovery and Data Mining (KDD ’21),
August 14–18, 2021, Singapore. ACM, New York, NY, USA, 9 pages. https:
//doi.org/10.1145/nnnnnnn.nnnnnnn

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
KDD ’21, August 14–18, 2021, Singapore
© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM.
https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Google Chrome, one of the premier web browsers, provides a frame-
work that allows third parties to develop extensions that enhance
the browser experience, e.g. play games, listen to music, edit photos,
increase productivity, etc. Such extensions are distributed through
the Chrome Web Store1 (CWS), an online marketplace operated by
Google. CWS provides functionalities that allows users to search
for and serendipitously discover useful extensions. In this paper, we
discuss how we developed three different CWS extension recom-
mendation services from scratch, namely non-personalized recom-
mendations, related extension recommendations, and personalized
recommendations. We share techniques used and lessons learned
in developing such industrial large-scale machine learning based
recommender systems, with the goal to maximize user experience
and minimize development cycles.

At first glance, it is tempting to solve these recommendation
problems using machine learning approaches, which have been
extensively studied recently (e.g. [7, 19]). However, to build a rec-
ommender system from scratch, the main challenge to utilize such
an approach lies in obtaining the right training data for each spe-
cific application. Different from working with ready-to-use datasets
in academic papers, the ideal data source for a standard machine
learning formulation may not be readily available in practice. This
situation could be due to several common reasons: 1) It is a new use
case so there is no historical data for the particular application; 2)
Even if there are production logs, the data may be biased because
only results shown to users are collected; 3) Different data adjust-
ment strategies are needed for different phases in a recommder
system. For example, negative sampling is used to adjust the train-
ing data for the candidate generation phase, while this is usually
not needed for the ranking phase [7].

On the other hand, there are several potential benefits in us-
ing machine learning approaches over heuristics [19]: 1) When
done right, as we show in this paper, machine learning models
can potentially work better than heuristics and “jump-start” the
user experience. This is especially important for early-stage rec-
ommender systems, which need to attract and retain new users
with high quality recommendations; 2) The sooner the first ML
pipeline is ready and tested end-to-end, the earlier more advanced
ML methods can be experimented with.

In this paper, we highlight the practical challenges and our
counter strategies to overcome them. For non-personalized rec-
ommendations, we show how we design an interpretable neural
ranking model that bridges between hand-crafted heuristic ap-
proaches and full-fledged neural models. Interpretability helps with
data debugging and feature analysis, thereby enabling us to quickly

1https://chrome.google.com/webstore/

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://chrome.google.com/webstore/

deploy the first versions of the training and inference pipelines. It
paves the way for fast follow-up launches using more advanced
machine learning techniques. For related recommendations, we
show that it is non-trivial to use the user co-install data to train
a machine learning model directly due to the popularity bias in
the data. This also makes it harder to use co-install data for of-
fline evaluation. We heavily employ data analysis during model
development to understand the patterns. Based on this analysis,
item-based collaborative filtering techniques [27] are adapted for
this use case because they are easier to be adjusted. For personalized
recommendations, we show that training a machine learning model
based on user install history is challenging due to data sparsity and
popularity bias. We propose a method that bootstraps with the pre-
viously developed related and non-personalized recommendations,
and show it is effective in this case.

To summarize, the main contributions of this paper are as fol-
lows:

• We share our experience in developing three large-scale
recommender systems from scratch, sharing both success
stories and failures when handling various real-world con-
straints. To the best of our knowledge, few existing publica-
tions focus on this early stage of developing high-performance
and large-scale recommender systems.

• Technically, we introduce how we design an interpretable
neural ranking model that is both effective and easy to debug.
We also introduce a new item-item based recommendation
algorithm that mitigates highly skewed data and cold start
problems.

• We show a strategy to effectively and efficiently bootstrap
one recommendation use case using other use cases. This
provides a perspective on a holistic treatment of different
recommender modules within the same system, which is
rarely explored in the literature.

The rest of the paper is organized as follows. In Section 2, we give
an overview of the CWS platform and introduce the three recom-
mendation problems. We then present each recommendation prod-
uct specifically: non-personalized recommendation in Section 3,
related recommendation in Section 4, personalized recommendation
in Section 5, followed up by a discussion of next steps in Section 6.
Related work is reviewed in Section 7. We conclude the paper in
Section 8.

2 OVERVIEW OF CWS RECOMMENDATIONS
Chrome web store (CWS) provides a platform for millions of users
to search, discover, and install hundred of thousands of extensions.
Currently there are three recommendation modules in the store.
Non-personalized recommendations for non-signed in users and
personalized recommendations for signed-in users are served in
the “Recommended For You” module with multiple recommended
Chrome extensions on the CWS homepage, as shown in Figure 1.
Though they are served at the same location, the problem setting
and engineering architectures are very different, thus they are
treated as two products in the paper (and within the development
team). Related recommendations is the module shown when user
clicks on the “Related” tab when they are at an extension detail

Figure 1: An illustration of the “Recommended For You”
module on the CWS homepage. Non-personalized recom-
mendations use it for non-signed in users and personalized
recommendations use it for signed in users.

Figure 2: CWS related recommendations on the detail page
of extension “Custom Cursor for Chrome”.

page, as shown in Figure 2. We give more details of the product
descriptions in their respective sections.

When the team startedworking on the projects, non-personalized
recommendations was a new use case. Personalized recommenda-
tions and related recommendations were supported by some legacy
heuristics based systems. Those systems were strong quality-wise,
but used expensive and hard-to-maintain components with high
technical debts. The goal of the team was to completely replace
them with modern architectures and algorithms for easy mainte-
nance and extensibility. Thus, we did not re-use any components
(including data, algorithm, and infrastructure) from the previous
systems and these two cases can also be treated as new. However,
one benefit is, we can compare with the previous systems in online
A/B experiments, which we leverage to evaluate various algorithms.
Our initial goal was to replace them with quality-neutral metrics,
but we ended up significantly improving upon them by using tech-
niques introduced in this paper. Next we describe each product in
more detail.

3 NON-PERSONALIZED
RECOMMENDATIONS

We describe how we built the non-personalized recommendations.
The first iteration focuses on how we developed a novel inter-
pretable neural generalized additive learning to rank model. This
approach helps identify the data bias and mitigates training/serving
discrepancy for the new use case, while not sacrificing much quality.
We then briefly show how a more powerful deep model is deployed
without much effort, given that the first iteration has sanity checked
the entire pipeline of the desired setting.

3.1 Product description
The non-personalized recommendation product is designed to rec-
ommend Chrome extensions without using any user-specific infor-
mation such as the extension install history. The only information
from users are general context information, such as users’ region
and language settings from the browser. Ideally, the product is able
to automatically recommend extensions that are popularly clicked
and installed by users from a certain region and/or using the same
language. The non-personalized recommendation product is pri-
marily developed to serve the “Recommended For You” module at
the top of the CWS homepage for users who are not signed-in (Fig-
ure 1), but the results can also benefit other products as described
later.

3.2 Challenges
Since this is a new use case, the most substantial challenge is to set
up the entire pipeline from end to end, including collecting train-
ing data, serving the predicted results, and building the evaluation
metrics. Without an existing pipeline to adapt from, it would be ex-
tremely difficult to identify and pinpoint potential issues during the
development process. The complexity of machine learning models
makes troubleshooting even more challenging.

3.3 Bootstrapping with an interpretable model

Training data We utilize anonymized user logs on CWS as train-
ing data. The log consists of a set of user sessions. Each log entry
contains all the extensions X = {x1, . . . , x𝑛} shown to the user in
that session, where each x𝑖 = (𝑥𝑖1, . . . , 𝑥𝑖𝑘) is a 𝑘-dimensional fea-
ture vector representing an extension. An entry also captures which
extensions were clicked/installed, represented by Y = {𝑦1, · · · , 𝑦𝑛},
where 𝑦𝑖 indicates whether extension x𝑖 was clicked/installed. We
set the label 𝑦𝑖 = 2 when the extension was installed, 𝑦𝑖 = 1 when
the extension was clicked, and 𝑦𝑖 = 0 otherwise.

Another important signal is the context information of users.
Each entry includes the region and language configurations of the
user’s browser, but excludes all other user-specific information. We
represent the context information as a feature vector q.

Interpretable model To facilitate the development, we opted to
train interpretable models instead of black-box models as the first
version of the product. Particularly, we train generalized additive
models (GAMs). The model builds a sub-model for each feature
separately, and takes the sum of all the sub-models’ outputs as the

𝚺

𝑥# 𝑥$ 𝑥%

𝐳##

𝐳#$

𝑠# 𝑠$ 𝑠%

𝐳$#

𝐳$$ 𝐳%$

𝐳%#

𝑦)	

𝑞#

	𝛂𝟏

𝛂.𝐬

𝑞$

	𝛂𝟐

𝚺

	𝛂

Figure 3: A graphical illustration of a context-present neural
ranking GAM (Neural RankGAM+).

final prediction. Particularly, the predicted score 𝑦 is:

𝑦 = 𝐹 (x) =
∑
𝑗

𝑓𝑗 (𝑥 𝑗) (1)

where 𝑥 𝑗 is the 𝑗-th feature in the feature vector x and 𝑓𝑗 (·) is the
corresponding sub-model.

Although the performance may not be optimal compared with
fully-fledged deep neural networks, such amodel provides the trans-
parency that one needs to set up a first-version machine learning
model. Developers can visualize, examine or even edit each sub-
model to understand whether a particular bug is due to the model
or the data.

Traditional GAMs are not optimized for ranking, nor can they
take context features such as users’ regions and languages as in-
put. Therefore, we propose and apply a neural ranking generalized
additive model (Neural RankGAM) [43]. The model is instantiated
by neural networks and is capable of optimizing ranking losses.
Moreover, the model can be extended (Neural RankGAM+) to fur-
ther include context features. Specifically, the model calculates the
ranking score for each extension as:

𝑦 = 𝐹 (q, x) =
𝑘∑
𝑗=1

(
𝑤 𝑗 (q) 𝑓𝑗 (𝑥 𝑗)

)
(2)

where𝑤 𝑗 (·) maps the context feature vector q to a scalar weight for
the 𝑗-th sub-model. A graphical illustration of Neural RankGAM+
can be found in Figure 3.

Troubleshooting examples We share some example cases during
the development of the product to illustrate how the interpretable
model is helpful in troubleshooting a complicated machine learning-
based pipeline.

First, we always visualize all the features’ sub-models to make
sure they make sense (see Figure 4 for some examples). During
the examination, we found some sub-models with abnormal shape.
With further investigation, we were able to identify bugs from the
training data generation pipeline, which resulted in corrupted fea-
ture values. Without the transparent Neural RankGAM, such bugs
would not be obvious and can take much longer to be identified.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
x 1e−2

−2.5

−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

f(
x
)

(a) Feature 7

0 1 2 3 4 5 6 7
x 1e−2

−2.5

−2.0

−1.5

−1.0

−0.5

0.0

0.5

f(
x
)

(b) Feature 11

0 5 10 15 20 25 30
x

−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

f(
x
)

(c) Feature 15

Figure 4: Learned sub-model 𝑓 (𝑥) of Neural RankGAM+ for
selected features on CWS data set.

The second example occurred during the online deployment of
the model. Although we obtained positive results in offline evalua-
tion, themodel did not deliver positive results in online experiments.
By examining the sub-score of several extensions served in the
recommended results, we found that there was a noticeable discrep-
ancy between the training data distribution and the serving data
distribution. The training data we collected largely contained the
most popular extensions which were frequently shown on the CWS
homepage, whereas the candidate extensions during serving could
include many extensions that never appear in the training data.
The feature values of such extensions often deviate so much from
the distribution of the training data that makes the corresponding
sub-model output an extreme score.

Based on this discovery, we further worked on aligning the distri-
bution between data used in training and serving. There are several
options, such as weighting training data or introducing confidence
intervals on serving scores. For simplicity, we simply added a can-
didate filter in the serving pipeline. We calculate the frequency of
candidate extensions in the training data and remove extensions
that do not appear more frequently than a certain threshold. We
only serve extensions that appeared frequently enough in the train-
ing data. The online performance turned positive with this filter
applied. We plan to work on more sophisticated techniques for
resolving this issue.

3.4 Experiments

Offline experiment We compare with other interpretable alter-
natives in the offline experiments, including Tree GAM [20], Tree
RankGAM [18], as well as a variation of Neural RankGAM which
optimizes regression loss (Neural GAM). We also compare both the
context-absent version of Neural RankGAMand the context-present
version of Neural RankGAM (denoted as Neural RankGAM+). Ta-
ble 1 shows the performance.

As one can clearly see, our proposed Neural RankGAM is as com-
petitive as tree-based counterpart. More importantly, the extended
context-based Neural RankGAM+ can effectively leverage the con-
text features and further improve the performance significantly.

Based on the results, we move on with both Neural RankGAM
and Neural RankGAM+ models, where Neural RankGAM+ serve
users with region/language configurations sufficiently frequent in
the training data, and the context-absent Neural RankGAM serve
users with less frequent region/language settings.

Online experiment In online experiments, we verify whether
serving the non-personalized recommendation results in the “Rec-
ommended for You” block can actually help users without signing

Table 1: Offline performance comparison for non-
personalized recommendation. Results that are statistically
significantly better (𝛼 = 0.01 using a two-tailed 𝑡-test) than
Tree RankGAM are marked with ↑, and the best results are
bolded.

Method NDCG@1 NDCG@5 NDCG@10
Tree GAM 0.1974 0.3291 0.3672
Neural GAM 0.2009 0.3401 0.3860

Tree RankGAM 0.2016 0.3506 0.3927
Neural RankGAM 0.2035 0.3494 0.3893
Neural RankGAM+ 0.2443↑ 0.3988↑ 0.4284↑

Table 2: Online relative performance on the CWShomepage
compared with not showing the “Recommended For You”
module for users who are not signed in. ↑ denotes a statisti-
cally significant increase (𝛼 = 0.01 using a two-tailed 𝑡-test).

Model Click Number Install Number
Neural RankGAM+ +1.91%↑ +0.98%↑

in. Table 2 shows the online A/B experiment performance for 2
weeks of the launched model. The results show that by adding this
block, we can significantly improve user engagement metrics in
terms of both clicks and installs on the entire homepage.

3.5 Follow-up model development
By deploying the interpretable RankGAM model for bootstrapping
non-personlized recommendations, we were able to set up the en-
tire pipeline in the TensorFlow ecosystem [1, 22, 24]. Our next
launch simply uses a more complex fully connected neural net-
works and more training data with significant gains (+3.08% clicks,
+1.65% installs on the CWS homepage). The iteration is much faster
considering that the Tensorflow pipeline has been stress-tested,
and the engineers are allowed to largely focus on model quality
improvements.

4 RELATED RECOMMENDATIONS
We introduce the development of Related extension recommen-
dations. We describe the challenges and two failed attempts from
which we learned. Then we introduce a new hybrid item-item based
recommendation method that led to significant gains during online
A/B experiments.

4.1 Product description
Each extension in CWS has its own detail page. It has a “Related” tab
that recommends similar or complementary extensions (Figure 2).
The related tab is one of the major discovery methods in CWS. It
allows users to find extensions relevant to the owner of the detail
page, which is called the context extension in this section.

4.2 Challenges
When the team started working on the project, there was a legacy
heuristic-based system running in production. We will describe this
system in more detail later. Despite the already deployed system,

activities on the extension detail page were not being logged due
to logging privacy constraints. We only have anonymized user co-
install data: given an anonymized user, we know which items they
have installed. The main challenge we face here is how to build a
related recommendation system using solely co-install data.

We believe that this is a common setting in practice and our ex-
perience can help practitioners. First, the related recommendations
use case is popular and frequently used on many online websites,
such as Pinterest [19]. While most papers on recommender sys-
tems are user-centric, related recommendations are item-centric.
Second, the lack of actual logs from the extension detail page is a
common problem if it is a new product or there are limitations on
what can be logged, both from a privacy and engineering stand-
point, as is the case with our system. Lastly, user co-install data is
actually one of the most common data formats for recommender
system research [27]. In what follows, we show how practitioners
can leverage such data to build a related recommendation system.

4.3 The production baseline
As we mentioned, there was a legacy heuristic-based production
system. It had reasonable quality – aswe show below, some standard
off-the-shelf recommendation algorithms perform substantially
worse than this production system. However, the system used an
internal Knowledge Graph (KG) based engine to match attributes
of the extensions. The call latency to the KG service was causing
severe performance issues, and the complex hand-crafted rules were
difficult to evolve. Therefore, our plan was to completely replace
the legacy system. Indeed, we no longer use any components from
this system, so the development of related recommendations can be
treated as a new use case built from scratch. Meanwhile, we were
able to compare it with the legacy system in online A/B experiments
to measure different methods.

4.4 First attempt: Pointwise mutual
information

Our first attempt was to leverage the classic pointwise mutual
information (PMI) [6]. Given co-install data, we can treat each user
as a collection and calculate pairwise scores between two extensions
𝑒1 and 𝑒2 as follows:

𝑃𝑀𝐼 (𝑒1, 𝑒2) =
𝑁 · #(𝑒1, 𝑒2)
#(𝑒1)#(𝑒2)

∝ #(𝑒1, 𝑒2)
#(𝑒1)#(𝑒2)

(3)

where 𝑁 is the total number of installs, #(𝑒𝑖) is the number of times
extension 𝑒𝑖 is installed, and #(𝑒1, 𝑒2) is the number of times 𝑒1
and 𝑒2 are co-installed by a user. During inference, given context
extension 𝑒1, we rank all candidate extensions by 𝑃𝑀𝐼 (𝑒1, ·) and
serve the top results as related results. We note that #(𝑒1) can be
ignored in implementation, and other variants such as normalizing
the counts or adding logarithm will have the same results for this
application.

We conducted online A/B experiments and the results are shown
in Table 3. We can see the results are shockingly bad. This also
shows the production baseline is a strong one to match.

Cold start problem and UI implications After closely examin-
ing the results, we found two major problems. First, PMI, which

Table 3: Online relative performance comparedwith the pro-
duction baseline using PMI for related recommendations. ↓
denotes a statistically significant decrease (𝛼 = 0.01 using a
two-tailed 𝑡-test).

Model Click Rate Install Rate
PMI -28.93%↓ -32.23%↓

depends on statistical counting, does not work for the many tail
extensions with very few installs. This is a well-known cold start
problem for recommender system and the problem is more severe
for related recommendations, since we are generating results for
every extension. Second, as has been observed in the literature [17],
PMI tends to find relevant but rare items. This could be useful in
some applications, but when we look at Figure 2, we can see the user
interface exposes the number of ratings of each extensions, which
roughly correlates with popularity. When we show rare extensions
without many ratings, users just tend to ignore them, regardless of
relatedness. Thus, production implications such as user interface
design should also be considered when developing real-world rec-
ommender systems, and popularity is a factor we need to consider
in this use case, which PMI cannot satisfy.

4.5 Second attempt: A learning to rank
formulation

Motivated by the success of non-personalized recommendations,
our second attempt was to build a neural learning to rank model
using co-install data. To obtain training examples, we use the follow-
ing approach: given a user’s co-install data, for example {𝑒1, 𝑒2, 𝑒3},
we randomly sample one extension, say 𝑒1, to serve as the con-
text/query. Then 𝑒2 and 𝑒3 are treated as positive examples, and we
randomly sample some negative examples from the entire corpus.
Now this is a standard learning to rank problem setting and differ-
ent models can be trained on such data. The features we started
with were extension ids. During inference, given a context exten-
sion and the trained model, we can rank the entire corpus and use
the top results as the related extensions. It is not hard to show
that this approach is equivalent to the neural collaborative filtering
approach [14], though the context here is an extension, not a user.

4.5.1 Popularity bias. Manual inspection of initial results clearly
showed the failure of the first trained model – virtually all context
extensions have the same set of most popular related extensions,
and we did not even bother testing it online. This is understandable
since CWS extension install numbers possess a highly skewed
distribution that is common in practice – most positive examples
in the learning to rank setting are the few most popular extensions,
so the model memorizes them. Though it might make some sense
to recommend the most popular items for user-centric applications
(in fact, many websites have popularity based recommendation
modules), such results are disastrous to related recommendations
since the most popular items will be completely unrelated to the
context extension in consideration.

4.5.2 Importance weighting is hard to tune. After realizing the
highly skewed data, we tried different methods including example
weighting (e.g., downweight the popular items), more sophisticated

Table 4: Online relative performance comparedwith the pro-
duction baseline using learning-to-rank (LTR) for related
recommendations. ↓ denotes a statistically significant de-
crease (𝛼 = 0.01 using a two-tailed 𝑡-test).

Model Click Number Install Number
LTR -32.30%↓ -47.13%↓

negative sampling [36], and adding more generalizable features
such as textual extension titles and descriptions. For each of these
variants, we inspect them manually. Once we had a model that
passed manual inspection, we moved to online A/B experiments.
The results are shown in Table 4.

The results turned to be even worse than PMI. We found that as
we started to manipulate the training data via example weighting,
the model goes from one extreme of recommending popular items
to another extreme of recommending lexically similar but unpopu-
lar items. The lesson is that it is very difficult to control the trade-off
between popularity and relatedness on a real-world data using a
pure learning-based approach. We needed more controllable meth-
ods to bootstrap the co-install data for related recommendations.

4.6 A new hybrid item-item recommendation
method

We note that PMI is more controllable and has clear failure patterns.
In this section, we propose a novel mixture model for the co-install
data to overcome the popularity bias. We find that this method has
a complementary pattern compared with PMI. Thus we combine
them in a new hybrid approach that mitigates the drawbacks of
each other.

4.6.1 Mixture model. Given an extension 𝑒1, we would like to re-
turn a list of 𝑒2’s that are related to 𝑒1. The absolute co-install count
of #(𝑒1, 𝑒2) is biased towards the popular extensions. We propose a
generative mixture model to overcome this bias. The mixture model
assumes that a co-install of 𝑒2 given 𝑒1 is generated by a mixture
of two components: 𝑒2 is related to 𝑒1, and 𝑒2 is randomly picked
based on its popularity:

𝑃installed (𝑒2 |𝑒1) = (1 − 𝜆) · 𝑃related (𝑒2 |𝑒1) + 𝜆 · 𝑃 (𝑒2)

where 𝜆 is the mixture weight and set to 0.99 in our use case and

𝑃 (𝑒2) ∝ #(𝑒2).

We are interested in estimating 𝑃related (𝑒2 |𝑒1). We can define a
maximum likelihood problem using the co-install counts

𝐿 =
∑
𝑒2

#(𝑒1, 𝑒2) log (𝑃installed (𝑒2 |𝑒1)) .

This can be done by a standard Expectation-Maximization (EM)
algorithm [8] as shown in [38], which is slow to converge. Fortu-
nately, a fast exact method was discovered for this simple mixture
model in [39]. It only needs to sort the extensions once and then
perform a few linear scans of the sorted extensions to compute the
exact 𝑃related (𝑒2 |𝑒1) values.

Figure 5: An illustration of the textual descriptions for the
extension “Custom Cursor for Chrome”.

4.6.2 Hybrid method. By inspecting the results, we found that
the mixture model gives quite sensible extensions that tend to be
popular. This is complementary to the patterns of PMI. We thus
combine them together by weighted sum:

𝑃𝑀𝐼 (𝑒1, 𝑒2) +𝑤 ∗ 𝑃related (𝑒2 |𝑒1)

where 𝑤 is set to 5.0 manually. We use this method for head ex-
tensions.

However, neither PMI nor the mixture model works for tail
extensions that have very few installs, namely the cold-start prob-
lems.We propose to leverage the state-of-the-art pre-trained natural
language processing models, such as BERT [9]. As shown in Fig-
ure 5, the extension developer would provide textual description
of each extension, which we can feed into BERT to get its text em-
bedding. We simply use the dot product of text embedding vectors
as the base score followed by simple re-ranking based on popu-
larity. Note that by leveraging pre-trained models, the method for
tail extensions is completely unsupervised and requires minimal
development cycles.

The results of the hybrid approach are shown in Table 5, running
on millions of users for 2 weeks. We can see the results are very
positive after we resolved all the major pain points of standard
approaches. The hybrid approach completely replaced the previous
system and is currently fully deployed to all users.

Table 5: Online relative performance comparedwith the pro-
duction baseline using the hybrid approach for related rec-
ommendations. ↑ denotes a statistically significant increase
(𝛼 = 0.01 using a two-tailed 𝑡-test).

Model Click Number Install Number
LTR +6.99%↑ +4.69%↑

5 PERSONALIZED RECOMMENDATIONS
We discuss how we built the personalized recommendations ser-
vice at CWS. We explain why practical constraints make standard
approaches difficult for this use case. We then introduce how we
leverage non-personalized recommendations and related recom-
mendations to help bootstrapping this use case with minimal de-
velopment effort.

5.1 Product description
The same as non-personalized recommendations, the personalized
recommendation product is developed to serve the “Recommended
For You” module at the top of CWS homepage for users (Figure 1)
who are signed-in, so we generate the recommendations based on
each user’s historical behaviors. Though served at the same place,
personalized recommendations and non-personalized recommen-
dations are two different products with substantial differences in
terms of privacy requirements, data storage, and methodologies.

5.2 Challenges
Personalized recommendations is the standard research problem
for recommender systems, especially in academic research. There
are two common approaches in the recent literature: 1) Log user
information and activities (such as clicks) in actual user sessions,
and train machine learning models using these logs [7, 25]; 2) Given
a user’s installed extensions with associated install time stamps,
build a predictive model under the sequential recommender system
framework [21, 29, 30, 32, 33].

Option 1) can be time-consuming to realize nowadays due to user
privacy and the non-trivial engineering efforts needed to properly
store sensitive private data. Option 2) is a better choice since it
only requires offline collection of users’ installed extensions. This
dataset is similar but slightly different from the one used in related
recommendations in that each user is associated with an identifier.
Otherwise we could not serve personalized recommendations. The
temporal extent of each user’s install history is shorter than that
used in related recommendations due to privacy requirements.

5.3 The production baseline
The legacy system, which was based on heuristic rules and Knowl-
edge Graph attributes similar to the legacy system for related rec-
ommendations in Section 4.3, had been running in production for
a long time and delivered robust personalized recommendations.
We do not use any components from that system but we were able
to compare with it in online A/B experiments.

5.4 Attempt: A predictive learning to rank
formulation

Similar to the approach introduced in Section 4.5, we started build-
ing a learning to rank model. Given a user’s install history, for
example {𝑒1, 𝑒2, 𝑒3}, ordered in time, we select a break point and
formulate this as a prediction problem, say {𝑒1, 𝑒2} → 𝑒3, we can
treat {𝑒1, 𝑒2} as the context/query and 𝑒3 as the positive example.
We do negative sampling from the entire corpus. The features we
started with were extension ids, textual descriptions, etc. During
inference, given each user’s installed history, we can rank the entire

corpus and use the top results as the personalized recommenda-
tions.

However, similar to the learning to rank effort for related rec-
ommendations, this attempt is compromised by skewed and sparse
data. The problem is more severe since the time span is even shorter
than that used in related recommendations, and the data becomes
even sparser when we split each sequence to past and future. We
also tested with techniques such as example weighting and more
advanced negative sampling techniques but the results were not
satisfying.

5.5 A bootstrapping approach
Among the three projects introduced in this paper, the personalized
recommendation project experienced the slowest progress due to its
challenging setting both methodology- and process-wise. After we
had successfully deployed highly-performant non-personalized and
related recommendations services, we wondered whether we could
leverage these services to bootstrap personalized recommendations
and moreover to provide users a coherent CWS experience.

As it turns out, we can indeed, by using a simple yet effective
approach. For a user with install history {𝑒1, 𝑒2, 𝑒3}, we retrieve the
related results for 𝑒1, 𝑒2, and 𝑒3 (as described in Section 4). We also
retrieve the non-personalized recommendations based only on the
user’s browser setting (as described in in Section 3) as a 4th set for
this example. We find the non-personalized recommendations are
useful to improve diversity, especially when a user only installed
few extensions. These extensions are ranked by simple heuristics
using levels: At each level 𝑘 (starting from 1), we pick the 𝑘-th
results from the 4 sets, ordered them by popularity, and then place
them at positions from 4𝑘 − 3 to 4𝑘 . Such simple strategy further
improves diversity. The 2 week online A/B results are shown in
Table 6.

Table 6: Online relative performance comparedwith the pro-
duction baseline leveraging non-personalized and related
recommendations for personalized recommendations. “In
module” means metrics within the recommended for you
module, and “in homepage” means the CWS homepage. ↑
denotes a statistically significant increase (𝛼 = 0.01 using a
two-tailed 𝑡-test).

Click Number Install Number Click Number Install Number
in module in module in Homepage in Homepage
+9.92%↑ +10.50%↑ +2.83%↑ +3.08%↑

The performance improvements are very significant. We believe
the strong results are due to leveraging the highly-performant re-
lated and context-based non-personalized recommendations. In
fact, this strategy may be appealing from a user’s perspective: af-
ter a user has installed 𝑒1, they may not visit the detail page of
𝑒1 often and see its related results. Similarly for non-personalized
recommendations, when a user is logged in, they will not see the
non-personalized recommendations. By bootstrapping personal-
ized recommendations with the other two use cases, we are able
to promote those high quality personalized results to the user’s
homepage. Interestingly, though the development of personalized

recommendations took the longest development time among the
three services, the actual implementation of the working system
took very short amount of time by leveraging established systems.
The described system has been deployed and is serving all person-
alized recommendations in CWS.

Based on the lessons we learned, we encourage practitioners to
think of the recommendation modules in a website as a coherent
set, which can be useful for bootstrapping new use cases. This can
provide users with a better overall experience in general, as demon-
strated in this work. To the best of our knowledge, discussions of
such topics are rare in the literature.

6 DISCUSSION AND NEXT STEPS
In this work, we focused on showing several techniques and strate-
gies to build three large-scale recommendation products in CWS
from scratch. We believe that our learned lessons and novel strate-
gies to mitigate real-world constraints will be useful for practition-
ers who seek to “jump-start” user experience in their recommenda-
tion systems. The proposed techniques are also easily extendable,
and we propose a few follow-up steps in particular:

• For non-personalized recommendations, as we mentioned,
we are exploring more advanced machine learning tech-
niques, such as more expressive models [9, 26], result di-
versification [35], and unbiased learning to rank [16, 42] to
account for potential biases in logged user interactions.

• For related recommendations, we are working on the logging
of actual session data while retaining maximal user privacy,
and plan to build learning based models to further improve
the current system. Fine-tuning BERT with such data to fur-
ther improve performance for tail extensions is also plausible.
On the other hand, we are still interested in a unified ma-
chine learning based approach where we can better balance
the trade-off between popularity and relatedness.

• Similar to related recommendations, we are working on log-
ging user activity data under privacy constraints, and we are
researching unified models that work on highly skewed real-
world data. On the other hand, any improvements from the
other two products may improve personalized recommenda-
tions. We are also exploring other ways to better coordinate
all recommendation use cases in CWS, and even interact
with other Google products, such as web search.

7 RELATEDWORK
Many case studies of industrial recommendation systems describe
final systems, but they do not describe how one might build the
system incrementally, especially the first iterations. A lot of work
focuses on developing advanced machine learning models to fur-
ther improve the quality of existing products, assuming functional
pipelines and appropriate training data (e.g., from an existing de-
ployed system) that are results of non-trivial engineering efforts
and data accumulation.

Real-world recommender systems have been described for image
search [15], video discovery on YouTube [7], movies on Netflix [11],
and private documents in Google Drive [5]. Covington et al. [7]
discuss work on improving YouTube’s recommendation system,
focusing on the implementation of the deep neural networks. Zhao

et al. [41] use an advanced multi-task deep architecture to recom-
mend what video to watch next on YouTube. Beutel et al. [2] design
a novel algorithm to better use context information for Youtube
Recommendations. Haldar et al. [13] give an introduction at how
deep learning enabled them to significantly improve Airbnb search.
Grbovic et al. [12] focus on building user and item embeddings
for Airbnb search and recommendations. Yin et al. [37] describe
ranking functions, semantic matching features, and query rewriting
components for Yahoo search. Eide et al. [10] discuss the use of
multi-armed bandits as a high-level reranker on top of other rec-
ommendations at the popular Norwegian website FINN.no. Xu et
al. [34] describe how to use knowlegde distillation to better utilize
unseen features during inference time at Taobao recommendations.
Zhao et al. [40] study deep reinforcement learning on page-wise
recommendations at JD.com.

Few existing work addresses real-world constraints that make
the first iterations of machine learned recommender systems dif-
ficult and possibly time-consuming, such as privacy constraints,
difficulties in debugging ML pipelines, and the lack of appropriate
training data. Paleyes et al. [23] survey challenges at every step of
the ML deployment workflow due to practical considerations of
deploying ML in production. Our work focuses on bootstrapping
large-scale recommender systems, proposing strategies to amelio-
rate real-world constraints, resulting in highly-functional systems
that work significantly better than heuristics that are usually used
for bootstrapping [19] with short development time. We leverage
pre-trained NLP models [4, 9] and bootstrap one module with other
modules, treating the entire Chrome Web Store as a coherent space.
Such strategies are not well explored in the literature.

Most existing recommender systemwork focuses on user-centric
recommendations. For Related recommendations, early work de-
signs similarity functions based on domain expertise [31]. Brovman
et al. [3] use coview data logged from the same browsing sessions in
eBay. Schnabel et al. [28] focus on debiasing user feedback, assum-
ing the existence of interaction logs and an extra annotated dataset.
Liu et al. [19] cover the gradual improvement of the Pinterest “Re-
lated Pins” recommendation system. Besides the different use case
and real-world constraints, Liu et al. [19] leverage user generated
boards that consist of posts for pattern discovery. Such explicit col-
lections are different from our implicit user install history, which
tends to be much noisier and biased.

8 CONCLUSION
In this work, we showed how we built three large-scale recom-
mendation products in Chrome Web Store from scratch. We focus
on bootstrapping strategies for early iterations, proposing several
techniques and strategies that outperform strong baselines and
reduce development or debugging time. Our main findings are: 1)
For early model development, interpretable models such as GAMs
are helpful as they can aid troubleshooting, help find bugs, and
discover data distribution discrepancies; 2) Popularity bias, espe-
cially for related recommendations, should be considered for model
development, particularly when the user interface design exposes
popularity information; 3) By re-using recommendation modules
we can more efficiently bootstrap new use cases and provide users
with a better experience. We believe that our learned lessons and

novel strategies are useful for practitioners to mitigate various real-
world constraints and to rapidly and cost-efficiently deliver strong
recommendation experiences to their users.

REFERENCES
[1] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey

Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al.
2016. Tensorflow: A system for large-scale machine learning. In USENIX Sympo-
sium on Operating Systems Design and Implementation. 265–283.

[2] Alex Beutel, Paul Covington, Sagar Jain, Can Xu, Jia Li, Vince Gatto, and Ed H
Chi. 2018. Latent cross: Making use of context in recurrent recommender systems.
In Proceedings of the 11th ACM International Conference on Web Search and Data
Mining. 46–54.

[3] Yuri M Brovman, Marie Jacob, Natraj Srinivasan, Stephen Neola, Daniel Galron,
Ryan Snyder, and Paul Wang. 2016. Optimizing similar item recommendations
in a semi-structured marketplace to maximize conversion. In ACM Conference on
Recommender Systems. 199–202.

[4] Daniel Cer, Yinfei Yang, Sheng-yi Kong, Nan Hua, Nicole Limtiaco, Rhomni St
John, Noah Constant, Mario Guajardo-Céspedes, Steve Yuan, Chris Tar, et al.
2018. Universal sentence encoder. arXiv preprint arXiv:1803.11175 (2018).

[5] Suming J Chen, Zhen Qin, Zac Wilson, Brian Calaci, Michael Rose, Ryan Evans,
Sean Abraham, Donald Metzler, Sandeep Tata, and Michael Colagrosso. 2020. Im-
proving Recommendation Quality in Google Drive. In ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining. 2900–2908.

[6] Kenneth Church and Patrick Hanks. 1990. Word association norms, mutual
information, and lexicography. Computational linguistics 16, 1 (1990), 22–29.

[7] Paul Covington, Jay Adams, and Emre Sargin. 2016. Deep neural networks
for youtube recommendations. In ACM Conference on Recommender Systems.
191–198.

[8] A. P. Dempster, N. M. Laird, and D. B. Rubin. 1977. Maximum likelihood from
incomplete data via the EM algorithm. Journal of the Royal Statistical Society:
Series B 39 (1977), 1–38.

[9] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. Bert:
Pre-training of deep bidirectional transformers for language understanding. arXiv
preprint arXiv:1810.04805 (2018).

[10] Simen Eide and Ning Zhou. 2018. Deep neural network marketplace recom-
menders in online experiments. In ACM Conference on Recommender Systems.
387–391.

[11] Carlos A Gomez-Uribe and Neil Hunt. 2015. The netflix recommender system:
Algorithms, business value, and innovation. ACM Transactions on Management
Information Systems 6, 4 (2015), 1–19.

[12] Mihajlo Grbovic and Haibin Cheng. 2018. Real-time personalization using em-
beddings for search ranking at airbnb. In ACM SIGKDD International Conference
on Knowledge Discovery & Data Mining. 311–320.

[13] Malay Haldar, Mustafa Abdool, Prashant Ramanathan, Tao Xu, Shulin Yang,
Huizhong Duan, Qing Zhang, Nick Barrow-Williams, Bradley C Turnbull, Bren-
danMCollins, et al. 2019. Applying deep learning to Airbnb search. In Proceedings
of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data
Mining. 1927–1935.

[14] Xiangnan He, Lizi Liao, Hanwang Zhang, Liqiang Nie, Xia Hu, and Tat-Seng
Chua. 2017. Neural collaborative filtering. In The Web Conference. 173–182.

[15] Yushi Jing and Shumeet Baluja. 2008. Pagerank for product image search. In The
Web Conference. 307–316.

[16] Thorsten Joachims, Adith Swaminathan, and Tobias Schnabel. 2017. Unbiased
learning-to-rank with biased feedback. In ACM International Conference on Web
Search and Data Mining. 781–789.

[17] Marius Kaminskas and Derek Bridge. 2014. Measuring surprise in recommender
systems. InWorkshop on Recommender Systems Evaluation: Dimensions and De-
sign.

[18] Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen, Weidong Ma,
Qiwei Ye, and Tie-Yan Liu. 2017. LightGBM: A Highly Efficient Gradient Boost-
ing Decision Tree. In International Conference on Neural Information Processing
Systems. 3149–3157.

[19] David C Liu, Stephanie Rogers, Raymond Shiau, Dmitry Kislyuk, Kevin C Ma,
Zhigang Zhong, Jenny Liu, and Yushi Jing. 2017. Related pins at Pinterest: The
evolution of a real-world recommender system. In The Web Conference. 583–592.

[20] Yin Lou, Rich Caruana, and Johannes Gehrke. 2012. Intelligible models for classi-
fication and regression. In ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining. 150–158.

[21] Yifei Ma, Balakrishnan Narayanaswamy, Haibin Lin, and Hao Ding. 2020.
Temporal-Contextual Recommendation in Real-Time. In Proceedings of the 26th
ACM SIGKDD International Conference on Knowledge Discovery & Data Mining.
2291–2299.

[22] Christopher Olston, Noah Fiedel, Kiril Gorovoy, Jeremiah Harmsen, Li Lao, Fang-
wei Li, Vinu Rajashekhar, Sukriti Ramesh, and Jordan Soyke. 2017. Tensorflow-
serving: Flexible, high-performance ml serving. arXiv preprint arXiv:1712.06139
(2017).

[23] Andrei Paleyes, Raoul-Gabriel Urma, and Neil D Lawrence. 2020. Challenges in de-
ployingmachine learning: a survey of case studies. arXiv preprint arXiv:2011.09926
(2020).

[24] Rama Kumar Pasumarthi, Sebastian Bruch, Xuanhui Wang, Cheng Li, Michael
Bendersky, Marc Najork, Jan Pfeifer, Nadav Golbandi, Rohan Anil, and Stephan
Wolf. 2019. TF-Ranking: Scalable tensorflow library for learning-to-rank. In
ACM SIGKDD International Conference on Knowledge Discovery & Data Mining.
2970–2978.

[25] Changhua Pei, Yi Zhang, Yongfeng Zhang, Fei Sun, Xiao Lin, Hanxiao Sun, Jian
Wu, Peng Jiang, Junfeng Ge, Wenwu Ou, et al. 2019. Personalized re-ranking for
recommendation. In ACM Conference on Recommender Systems. 3–11.

[26] Zhen Qin, Le Yan, Honglei Zhuang, Yi Tay, Rama Kumar Pasumarthi, Xuanhui
Wang, Michael Bendersky, and Marc Najork. 2021. Are Neural Rankers still
Outperformed by Gradient Boosted Decision Trees?. In International Conference
on Learning Representations.

[27] Badrul Sarwar, George Karypis, Joseph Konstan, and John Riedl. 2001. Item-Based
Collaborative Filtering Recommendation Algorithms. In The Web Conference.
285–295.

[28] Tobias Schnabel and Paul N Bennett. 2020. Debiasing Item-to-Item Recommen-
dations With Small Annotated Datasets. In ACM Conference on Recommender
Systems. 73–81.

[29] Fei Sun, Jun Liu, Jian Wu, Changhua Pei, Xiao Lin, Wenwu Ou, and Peng Jiang.
2019. BERT4Rec: Sequential recommendation with bidirectional encoder repre-
sentations from transformer. In ACM International Conference on Information and
Knowledge Management. 1441–1450.

[30] Jiaxi Tang, Francois Belletti, Sagar Jain, Minmin Chen, Alex Beutel, Can Xu, and
Ed H. Chi. 2019. Towards neural mixture recommender for long range dependent
user sequences. In The Web Conference. 1782–1793.

[31] Charlie Wang, Arpita Agrawal, Xiaojun Li, Tanima Makkad, Ejaz Veljee, Ole
Mengshoel, and Alvin Jude. 2017. Content-based top-n recommendations with
perceived similarity. In IEEE International Conference on Systems, Man, and Cy-
bernetics. 1052–1057.

[32] Shoujin Wang, Liang Hu, Yan Wang, Longbing Cao, Quan Z Sheng, and Mehmet
Orgun. 2019. Sequential recommender systems: challenges, progress and
prospects. arXiv preprint arXiv:2001.04830 (2019).

[33] Chao-Yuan Wu, Amr Ahmed, Alex Beutel, Alexander J Smola, and How Jing.
2017. Recurrent recommender networks. In ACM International Conference on
Web Search and Data Mining. 495–503.

[34] Chen Xu, Quan Li, Junfeng Ge, Jinyang Gao, Xiaoyong Yang, Changhua Pei, Fei
Sun, Jian Wu, Hanxiao Sun, and Wenwu Ou. 2020. Privileged Features Distilla-
tion at Taobao Recommendations. In ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining. 2590–2598.

[35] Le Yan, Zhen Qin, Rama Kumar Pasumarthi, Xuanhui Wang, and Mike Bendersky.
2021. Diversification-Aware Learning to Rank using Distributed Representation.
In The Web Conference.

[36] Xinyang Yi, Ji Yang, Lichan Hong, Derek Zhiyuan Cheng, Lukasz Heldt, Adi-
tee Kumthekar, Zhe Zhao, Li Wei, and Ed Chi. 2019. Sampling-bias-corrected
neural modeling for large corpus item recommendations. In ACM Conference on
Recommender Systems. 269–277.

[37] Dawei Yin, Yuening Hu, Jiliang Tang, Tim Daly, Mianwei Zhou, Hua Ouyang,
Jianhui Chen, Changsung Kang, Hongbo Deng, Chikashi Nobata, et al. 2016.
Ranking relevance in yahoo search. In ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining. 323–332.

[38] Chengxiang Zhai and John Lafferty. 2001. Model-Based Feedback in the Language
Modeling Approach to Information Retrieval. In International Conference on
Information and Knowledge Management. 403–410.

[39] Yi Zhang and Wei Xu. 2007. Fast Exact Maximum Likelihood Estimation for Mix-
ture of Language Models. In ACM SIGIR Conference on Research and Development
in Information Retrieval. 865–866.

[40] Xiangyu Zhao, Long Xia, Liang Zhang, Zhuoye Ding, Dawei Yin, and Jiliang
Tang. 2018. Deep reinforcement learning for page-wise recommendations. In
ACM Conference on Recommender Systems. 95–103.

[41] Zhe Zhao, Lichan Hong, Li Wei, Jilin Chen, Aniruddh Nath, Shawn Andrews,
Aditee Kumthekar, Maheswaran Sathiamoorthy, Xinyang Yi, and Ed Chi. 2019.
Recommending what video to watch next: a multitask ranking system. In Pro-
ceedings of the 13th ACM Conference on Recommender Systems. 43–51.

[42] Honglei Zhuang, Zhen Qin, Xuanhui Wang, Mike Bendersky, Xinyu Qian, Po
Hu, and Chary Chen. 2021. Cross-Positional Attention for Debiasing Clicks. In
The Web Conference.

[43] Honglei Zhuang, Xuanhui Wang, Mike Bendersky, Alexander Grushetsky,
Yonghui Wu, Petr Mitrichev, Ethan Sterling, Nathan Bell, Walker Ravina, and Hai
Qian. 2021. Interpretable Ranking with Generalized Additive Models. In ACM
International Conference on Web Search and Data Mining.

	Abstract
	1 Introduction
	2 Overview of CWS recommendations
	3 Non-personalized recommendations
	3.1 Product description
	3.2 Challenges
	3.3 Bootstrapping with an interpretable model
	3.4 Experiments
	3.5 Follow-up model development

	4 Related recommendations
	4.1 Product description
	4.2 Challenges
	4.3 The production baseline
	4.4 First attempt: Pointwise mutual information
	4.5 Second attempt: A learning to rank formulation
	4.6 A new hybrid item-item recommendation method

	5 Personalized recommendations
	5.1 Product description
	5.2 Challenges
	5.3 The production baseline
	5.4 Attempt: A predictive learning to rank formulation
	5.5 A bootstrapping approach

	6 Discussion and next steps
	7 Related work
	8 Conclusion
	References

