
HAL Id: hal-03149553
https://hal.archives-ouvertes.fr/hal-03149553v3

Preprint submitted on 14 Oct 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Efficient convolution optimisation by composing
micro-kernels

Nicolas Tollenaere, Auguste Olivry, Guillaume Iooss, Hugo Brunie, Albert
Cohen, P Sadayappan, Fabrice Rastello

To cite this version:
Nicolas Tollenaere, Auguste Olivry, Guillaume Iooss, Hugo Brunie, Albert Cohen, et al.. Efficient
convolution optimisation by composing micro-kernels. 2021. �hal-03149553v3�

https://hal.archives-ouvertes.fr/hal-03149553v3
https://hal.archives-ouvertes.fr


Efficient convolution optimisation by composing micro-kernels

Nicolas Tollenaere∗ Auguste Olivry∗ Guillaume Iooss∗∗ Hugo Brunie†

Albert Cohen‡ P. Sadayappan§ Fabrice Rastello∗

October 14, 2021

Abstract

Optimizing the implementation of tensor computations is essential to exploiting the full capacity
of a given processor architecture on a wide range of scientific and machine learning applications.
However, the complexity of the microarchitectural features that come into play when approaching
the peak performance of the processor makes it very hard. Focusing on 2D convolutions, we observe a
common weakness in all tensor compilers and libraries related to efficiently covering the wide variety
of problem sizes occurring in real-world applications.

We propose TTile, a domain-specific code generator and autotuner for implementing efficient
convolutions. Similarly to BLIS [30], TTile nests multiple levels of tiling above a vectorized tensor
contraction microkernel. But unlike traditional approaches, we explore of a variety of microkernels
and compose them to fit exactly the tensor shapes of a convolution. While this helps achieving
consistently high performance on virtually all possible tensor sizes, our method also introduces more
degrees of freedom in the optimization space, which makes it challenging for autotuning strategies.
To address this, we leverage an analytical model of data movement [22, 25], and combine it with
feedback-directed autotuning. We evaluate TTile as a stand-alone compiler and also as a complement
to TVM [8] on recent Intel x86 microarchitectures.

1 Introduction

Tensor computations are at the core of many applications in scientific computing, data analytics and
machine learning. Their optimized implementation is therefore of considerable interest. The current
options for optimizing the implementation of a tensor operator, such as a 2D convolution, are:

• Polyhedral compilers like Diesel [11], Polly [16], Pluto [6], PPCG [32], Tensor Comprehensions,
[31], Tiramisu [2] automatically generate multi-level tiled code for any affine loop computation such
as 2D convolutions. However, a significant limitation is that none of them can directly optimize
across tile sizes, which is critical for efficient CNN implementations.

• Vendor libraries like oneDNN [19] and cuDNN [24] have been manually optimized by expert HPC
and software engineers. While these implementations use JIT optimization, they cannot fully adapt
to every given tensor extents of a CNN layer in a DNN pipeline.
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• Autotuning can be performed by systems like AutoTVM [9] or AutoScheduler [34] both part of
the DNN specific compiler TVM [8]. An expert user provides a multi-level tiled loop structure
along with a specification of a search space including permutation among subsets of loops and
parametric tile sizes. A search process guided by a dynamically constructed machine learning model
[9] iterates through tiled loop configurations, where code is generated, compiled and executed on
the target platform. AutoTVM has been demonstrated to outperform polyhedral compilers [9],
and AutoScheduler to outperform AutoTVM [34], but both of them still do not match reference
libraries like oneDNN.

• Analytical modeling and optimization. Recent research has shown that a comprehensive char-
acterization and optimization across all possible tiled loop configurations for CNNs is feasible [22].
The approach is semi-automatic: manual reasoning to build analytical cost models for data move-
ment and pruning, in conjunction with the automated resolution of nonlinear optimization problems
to optimize tile sizes. The innermost loops use a manually created microkernel, similar to the BLIS
one [30] and vendor libraries. Over a set of 20+ CNN stages from 2 DNN pipelines, performance
was shown to be consistently higher than state-of-the-art autotuning [8] and comparable or better
than the state-of-the-art oneDNN library [19].

The best performing implementations in the state-of-the-art are based on a single microkernel. In this
paper, we challenge that assumption, by claiming that limiting ourselves to a single microkernel
for all problem sizes is too restrictive. Indeed, we show that there is a collection of well performing
microkernels, and some of them might better fit the considered problem sizes.

We also claim that we should use combinations of microkernels of different sizes to cover exactly
the whole space, as an alternative of partial tiles and the padding technique. This is especially critical
for computation whose sizes are small: indeed the effect of padding or of a partial tile is significant on
the performance. Therefore, combining microkernels allows us to have more consistant and performant
implementation. In particular, such situation happens for the convolutional layers of neural networks.

Our main contribution is an end-to-end compiler flow for the optimization of tensor operations, with
these properties:
No partial tiles: It is possible to compose microkernels of different shapes to cover the iteration space,
obviating the need for mixing full tiles (optimized) with partial tiles (suboptimal or unoptimized).
Hybrid compilation strategy: We compose techniques with complementary strengths and weaknesses,
such as domain-specific compilation, autotuning and analytical modeling, in order to use them effectively
while compensating their limitations.

• To provide an example of the limitations of analytical modeling, some recent efforts [22, 25] de-
veloped analytical models for optimizing CNNs, establishing tight data-movement bounds in an
idealized model of computation. However, their experimental results on real processors show that
it is not as effective. A long-time barrier to accurate performance modeling is that architectural
features like out-of-order execution or hardware prefetchers are virtually impossible to incorporate
into a model for code optimization.

• Another example of limitation, concerning autotuning techniques, is the explosion of the size of the
search space: the full space of possible tiled loop configurations, choice of tile sizes and microkernels
is enormous and only a tiny fraction is feasible to search. Autotuners resort to manually pruning
the search—e.g. scheduling templates in AutoTVM [8]—and/or restricting its expressiveness at the
expense of missing high-performing variants—e.g. narrowing to a single microkernel.

Our hybrid strategy overcomes these limitations by combining them: we use experimental evaluation of
microkernels to prune the search space early, and we also use analytical modeling to guide autotuning.
Decoupling of the search space: Both the modeling work of Olivry et al. [25] and the AutoTVM
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autotuning framework [8] take a uniform or “flat” perspective of the tiled iteration space of a computation.
In contrast, we use a “split” approach where a small set of innermost loops is decoupled from the remaining
outer tile loops for the purpose of optimization. The inner set of loops constitute a microkernel that we
separately optimize using extensive autotuning to generate a collection of high-performance variants. We
then use a combination of analytical modeling and much smaller scale autotuning to optimize the outer
tile loops.

While our approach applies to a wider class of tensor computations, we focus on CNNs with 2D
convolutions in the evaluation. The main contributions of the paper are as follows:

• Instead of a single fixed (hand-coded) microkernel used by prior approaches [30, 22], we conduct a
comprehensive search among the space of possible microkernel configurations, identifying a set of
microkernel instances as base building blocks for use in generating optimized code for every specific
convolution instance.

• For a specific convolution and microkernel, a judicious mix of automated analytical modeling along
with limited autotuning allows to optimize the tile loops enclosing the microkernel.

• For a specific convolution, a combination of several microkernels can be considered using imperfectly
nested loops—or “beyond perfect” tile loops.

• Experiments with all 20+ CNN layers from 2 ML inference models (ResNet-18 and Yolo-9000)
matches or outperforms the state-of-the-art oneDNN library [19] and TVM [8] autotuning frame-
works. We observe that we are able to automatically match or outperform the performance of
vendor libraries without copying and packing. This goes against the established methodologies
[30, 19] and raises open questions about the impact of this optimisation on performance.

The rest of the paper is organized as follows: Sec. 2 provides a high-level overview of our approach.
Sec. 3 shows the importance of the divisibility constraint, which motivates the choices made in the design
of the search space in Sec. 4. Sec. 5 details the search strategies and Sec. 6 describes our code generator.
Sec. 7 reports experimental comparisons against state of the art frameworks and libraries. Sec. 8 discusses
related work before the conclusion in Sec. 9.

2 Overview of the Approach

Let us now present a high-level overview of our optimization approach. Its rationale derives from the
following observations based on the advances made as well as the challenges faced by prior optimization
efforts:

• Accurate fine-grained performance modeling of a multi-level tiled loop computation down to the
innermost levels is extremely challenging and has not been achieved for complex computations like
CNNs by any prior effort, but coarse-grained analytical modeling of the memory hierarchy has been
shown to be effective, e.g., the work of Li et al [22]. Their use of a microkernel made the analytical
modeling coarse-grained and sufficiently accurate, but by using a fixed microkernel they limited the
design space they explored.

• Autotuning is an effective approach to overcome the challenges of accurate performance modeling.
The main blocker to its application to multi-level tiled loops is the enormous explosion of the
optimization space and its effective traversal. Adding degrees of freedom with the ability to select
among multiple microkernels, and to combine them, makes the problem even more challenging.
AutoTVM does find good solutions but only by using expert-engineered scripts that limit the
search space.

• A key insight behind the optimization framework presented in this paper is that we can explore the

3



for (n = 0 ; n < N ; n+= 1)
for (k = 0 ; k < K ; k+= 1)
for (c = 0 ; c < C ; c+= 1)
for (h = 0 ; h < H ; h+= 1)
for (w = 0 ; w < W ; w+= 1)
for (r = 0 ; r < R ; r+= 1)
for (s = 0 ; s < S ; s+= 1)
O[k, h, w] = K[k, c, r, s] ∗ I[c, h+ r, w + s]

Figure 1: 2D Convolution (unit stride).
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Figure 2: Code generation sketch using microkernel composition. Convolution sizes are K = 64, C = 128,
H = W = 136 and R = S = 1. Note that 136 = (8 + 13 × 2) × 4. Loop colors in (b) match the cache
level they fit into.

full design space effectively using a split two-level strategy:
1) Develop a collection of microkernels for a given target hardware platform via extensive one-time
autotuning. The set of microkernels is agnostic to the actual sizes of CNN layers to be optimized.
At this level, accurate performance modeling is infeasible, but the optimization space is quite
manageable through autotuning via the execution of all potential variants of interest (detailed in
Sec. 5.1). We then combine them in order to exactly fit a problem size without any partial tiles
(detailed in Sec. 5.3).
2) Use a combination of autotuning and analytical modeling to dramatically prune the space of
possible tile loop permutations and degenerate loops (explained shortly). This is detailed in Sec. 5.2
to Sec. 5.4.

We illustrate our integrated approach to optimized code generation for convolutions on Fig. 1 and
Fig. 2. A 2D convolution is a 7-dimensional nested loop. Its optimized implementation requires multi-level
tiling. Given a d-dimensional nested loop (d = 7 here), and a 5-level memory hierarchy (main-memory,
L3, L2, L1 caches and registers), the total number of nested loops for tiling at all levels is 5d (35 here).
This is illustrated in Fig. 2(a) as a set of outermost d tile-loops that step through L3-level tiles. Each
L3-level tile has d tile-loops to step through a set of L2-level tiles, and so on, with the register-level tiles
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being marked as a microkernel. In practice, efficient tiled implementations will only have a small subset
of active tile loops at a level, while the remaining ones are degenerate with a range of a single iteration
and hence removed from the code. However, we cannot know a priori which tile-loops in a band are
active versus degenerate. We first identify the microkernels that are performing well in isolation. Then
we pick, among those, one or two combined microkernels that fit the considered problem size. Then,
we use analytical modeling to identify the active loops in each band and the permutation within active
loops in a band. This modeling is similar to other recent efforts on analytical model-driven optimization
of CNN (e.g. the work of Olivry et al. [25] or that of Li et al. [22]), so they will just be summarized in
this paper. Finally, we use autotuning to search across the dramatically pruned space of outer-level tile
configurations.

Fig. 2(b) shows the code generated by our optimization framework on one sample convolution for a
target platform with a vector size of 16 elements. It uses two microkernels, one corresponding to a slice
of the convolution iteration space with tile extents [H : 8,W : 1, C : 1,K : 2× 16], and another with tile
extents [H : 13,W : 1, C : 1,K : 2× 16]. The L1-level tile (color coded blue) spans the full range of 128
iterations along C, which covers the full problem extent along C. An L2-level tile (color-coded red) spans
a range of 8 + 2× 13 = 34 along H and a range of 2× 32 = 64 along K (which is the full problem extent).
An L3-level tile (color-coded green) spans 4 × 34 = 136 along H, 136 along W. At this point the full
problem extents have been covered and therefore the outer-most level of tiling loops (color-coded black
in Fig. 2(a)) are degenerate. This example illustrates how combining two well-performing microkernels
can be used to divide a problem size. It also shows that only a subset of the tile loops at any level are
non-degenerate, thus demonstrates the importance of having an analytical model to prune the search
space, before exploring it using autotuning.

3 Divisibility constraint and microkernels

In this section, we demonstrate the importance of combining microkernels instead of relying on (subop-
timal) partial tiles. We consider the multiplication of very small matrices, such that the data footprint
fits inside the L1 cache, and we measure performance for a continuous range of problem sizes.

If the microkernel sizes divide exactly the problem sizes, then it fits perfectly, and we observe a peak
in performance. If the microkernel sizes does not divide exactly, the classical options are (i) to have a
partial tile, smaller than the microkernel, that finishes the coverage of the iteration space; or (ii) to pad
the space in order to continue using the microkernel one last time, at the cost of additional computation.
In this paper, we take a third route: (iii) to combine two of the best performing microkernels to cover the
space without partial tiles. The method to determine the best performing microkernel will be described
in Section 5.1, and the selection algorithm is explained in Section 5.3.

Figure 3 compares the sequential performance of small matrix multiplication implementations, for
problem sizes J = K = 128 and 8 ≤ I ≤ 49, on a Intel Xeon Gold 6230R CPU (Cascade Lake-SP, with
AVX512). The performances are shown as percentage of the absolute peak performance, corresponding
to the maximal utilisation of the two vectorized FMA units of the architecture.

MKL, Blis and libxsmm report the performance of these libraries. Notice the peak every 8 elements
of I for MKL and a peak every 12 elements for BLIS. This gives us an indication about the size of their
microkernel along the i dimension. Libxsmm also considers combination of microkernels, but restricted
to predefined sizes such as multiples of 2 along the i dimension. Our experiment shows that this is not
enough to obtain consistent performance for all problem sizes.

“Single microkernel, partial tile” is the performance of code generated by our framework, but only
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Figure 3: Performance of small matrix multiplication kernels, for J = K = 128 and 8 ≤ I ≤ 50.

using the BLIS microkernel, with an unrolled partial tile. We observe a fluctuation of periodicity 12 in
its performance. Notice that for values of I with a low modulo 12, the performances are worse than for
the high modulo 12, because of the low performance of the partial tile.

“Single microkernel, padded” is also the performance of the code generated by our framework, but
using a padding strategy instead of a partial tile. We assumed that the padding overhead is free. As
expected, the performance for low modulo are quite low, due to the significant additional amount of
computation performed. However, this penalty decreased with the size of I.

Finally, “Combination of microkernels” corresponds to our microkernel combination strategy. The
performances are more stable for any value of I.

This shows the importance of using all the microkernels available and to combine them, to avoid
loss of performance due to padding or partial tiles. This is particularly important for some convolution
benchmarks, such as Yolo9000, which have small problem sizes along most dimensions, which amplifies
the penalty due to a partial tile, and which can have uncooperative divisors, (such as 34 = 2 × 17 for
Yolo9000-12). Therefore, we build our optimisation space around this constraint, as described in Sec.4.

4 Defining the Optimization Space

In the following, a microkernel refers to an efficient region of code composed of a (large) basic block
resulting from the full unrolling of innermost parallel loops, enclosed into zero or more perfectly nested
reduction loops. It is generally written in assembly language or using vector intrinsics, aiming for the
following objectives: (i) effective utilization of vector ALUs; (ii) effective reuse of data in (vector) registers
across iterations through unrolling and register promotion; (iii) adequate Instruction-Level Parallelism
(ILP) to hide the latency of pipelined functional units (multiply-and-add).

The iteration space is the set of integer vectors taken by the loop indices enclosing a given compu-
tational statement. Tiling [28, 10] is a loop transformation that partitions the iteration space into sets,
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for ( it = 0 ; it < I ; it += 6)
for (jt = 0 ; jt < J ; jt += 32)

for (k = 0 ; k < K ; k += 1)
µkernel gemm6,32(C,A,B, it, jt, k)

Figure 4: Tiled sgemm with microkernel.

called tiles and executed atomically. We only consider programs with rectangular iteration spaces, and
rectangular tiling. Tiled code has additional loops compared to the original code: loops over tiles, and
loops inside a tile. This partitioning allows us to control the amount of data accessed per tile, a.k.a.
footprint, to make sure it does not exceed a given cache capacity.

Fig. 4 shows a tiled matrix multiplication kernel as an illustrative example. It relies on an (inline)
fully-unrolled and vectorized microkernel of size 6× 32.

We use lowercase for problem dimensions (i, j, k), i.e. loop iterations, and uppercase to name the
(possibly symbolic) upper bound on each dimension (resp. I, J , K), a.k.a. problem size. We also assume
that any dimension is either parallel—i and j—or a reduction—k and all dimensions are permutable
(loop interchange). While associativity can be used to parallelize a reduction, we do not exploit it.

In the class of computations we consider, a tensor may be accessed multiple times but always with
the same subscript expressions, which are affine functions of surrounding loop iterators. For example,
tensor A of shape {i, k | 0 ≤ i < I, 0 ≤ k < K} may be subscripted by [i, k], corresponding to the access
function (i, j, k 7→ i, k). We also assume that a loop index cannot appear twice inside an access function:
for example E[i, i] is forbidden. These conditions are satisfied by all tensor contractions and convolutions,
including strided variants.

As mentioned previously in Sec. 3, high-performance libraries, such as BLIS, TCCG, oneDNN, rely
on the use of a single microkernel with some fixed tile sizes within the microkernel, e.g., 6 and 32 in
the example of Fig. 4. When tile sizes do not divide tensor shapes, the traditional approach involves
conditional execution or padding to manage partial tiles. We consider a broader optimization space, using
a collection of microkernels so that their combination eliminates the need for partial tiles. We relax the
divisibility constraint that must be satisfied in order to avoid partial tiles, enabling the ability to compose
multiple, fully-optimized microkernels.

Our code generator is driven by a so-called optimization scheme. Conceptually, it can be seen as as a
specialized abstraction, higher level than TVM schedules. An optimization scheme is a list of specifiers
that describe the layered structure of the generated code, from the outermost loop inwards:

• Rd inserts the outer loop along dimension d. This loop will iterate over the outer-level tiles along
d. The sizes of these tiles should divide the problem size D. Besides, Rd may appear at most once
for a given dimension d.

• Tα,d inserts a tile loop along dimension d. It iterates exactly α times along d. Again, α must divide
the size of the iteration space along d.

• Uα,d virtually inserts a tile loop with Tα,d then fully unrolls it (register tile). The divisibility
constraint holds.

• Vd virtually inserts a tile loop with Tv,d where v the vector length then vectorizes it. Vectorization
occurs at the innermost level only: there may be at most one V•.

• λseqd
α. [`], where ` = [(ri, ai)]1≤i<s is a list of s ≥ 2 pairs introducing a sequence of s loops of

size ri along dimension d. Each one iterates over next-level tiles, defining parameter α = ai for
the specifier introducing these tiles. This specifier generates non-perfectly nested tiles, composing
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for (j = 0 ; j < 128 ; j+= 16) {
for ( i = 0 ; i < 72 ; i+= 6)

for (k = 0 ; k < nk ; k+= 1)
µkernel gemm6,16

for ( i = 72 ; i < 128 ; i+= 7)
for (k = 0 ; k < nk ; k+= 1)

µkernel gemm7,16

}

Figure 5: Microkernel composition example.

microkernels whose sizes do not individually divide the size of a given dimension. For example,
splitting a dimension y of size Y = 34 into two non-equal parts 22 and 12 with ` = [(2, 11), (1, 12)]
fulfills the divisibility constraint (no partial tiles) while involving high-performance microkernels of
size 11 and 12 along y.

Example The naive implementation of a matrix multiplication would be represented as [Ri,Rj , Rk].
An implementation for higher performance, based on the BLIS [30] microkernel for floats (f32) on AVX2
is:

[Rj ,Rk,Ri,Tnc
16 ,j

,Tmc
6 ,i,Tnk,k,U6,i,U2,j ,Vj ]

The generated code contains a microkernel of size (i = 6, j = 16, k = nk) known to be quite efficient as
it requires only 15 vector registers and exposes enough ILP (12 independent multiply-add instructions
issued between two accumulation steps) [30]. Above it, loops i and j induce a 2D tile of size (mc, nc).
One may immediately notice that this approach assumes that I is a multiple of mc, itself being a multiple
of 6 (similar constraints apply for j and k). State of the art libraries rely on fixed-size microkernels and
tuned tiles sizes, and thus introduce partial non-optimized tiles to cope with arbitrary problem sizes
that do not fulfill such a divisibility constraint. Assume for example a matrix-multiplication of size
I × J ×K = 128 × 128 × 64. 128 is not divisible by 6, but 128 = 12 × 6 + 8 × 7, and efficient code can
be obtained using the following scheme:

[Rj , λseqi
α. [(12, 6), (8, 7)] ,Tnk,k,Uα,i,U2,j ,Vj ]

which leads to the loop structure shown in Fig. 5.

5 Optimization space exploration

We propose a novel optimization algorithm capable of exploring the expressive optimization space intro-
duced in the previous section. This algorithm uses a combination of analytical modeling and autotuning;
it is split into the offline optimization of the microkernel (register level), before specializing on a particular
convolution and deciding on a tiling structure (cache level). Among all the possible combinations for a
tiled convolution, we apply the following pruning strategy:

• we only use the best performing microkernels: the performance of this portion of the code limits the
performance of the whole application, so we need to ensure that it runs as efficiently as possible;
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• we forbid partial tiles, which is a source of slowdown, especially on the innermost levels of the
generated code; because the divisibility constraint would be too strict for some problem sizes, we
consider combinations of microkernels.

To speed up the search, we use a metric that focuses on the variations which maximize the sizes of
the reduction loop above the microkernel, and the operational intensity of the computation.

Finally, we consider multiple parallelisation strategies, allowing to collapse and parallelize across
multiple non-reduction loops.

The full algorithm is summarized by Fig. 6:
Step 1. We measure the performance of many microkernels in isolation. The set of microkernel candidates
is formed of the best-performing ones (Sec. 5.1). This phase is problem size agnostic but specific to each
target architecture.
Step 2. For each microkernel candidate, accounting for the problem size and cache sizes, we determine
the best loop permutation (list of loop dimensions) enclosing the microkernel, that is, the main structure
of the loop nest(which dimensions are tiled at each level). Tile sizes are not determined at this point.
This permutation is obtained through operational research, using an analytical model of the footprint,
data movement and reuse across tiles (Sec. 5.2).
Step 3. From the selected microkernels and loop permutations, we generate the space of optimization
schemes (Sec. 5.3). In general, we require any tile size picked at a given dimension to be a multiple of the
size of its sub-tiles and to divide the (full) problem size along that dimension. Except for microkernels
where such a restriction would be impractical: e.g. Yolo9000-8 has a problem size H = 17, which is a
prime number and all microkernels of size 17 have terrible performance. We leverage the λseq specifier to
compose microkernels of size 5 and 6 to solve the problem: microkernels of size {µS = 3, µH = 5, µK = 4}
and {µS = 3, µH = 6, µK = 4} can be combined by sequencing two iterations of the latter before one
iteration of the former, fulfilling the divisibility constraint without compromising performance (Sec. 5.3).
Step 4. At this point, the search space is already tractable for autotuning (a few hours per convolution),
but we can do better. A simple metric (detailed in Sec. 5.4) sorts all the resulting schemes, from which
we can retrieve any number of candidate implementations. We pick the top 200.
Step 5. Optionally, we may integrate the top-performing scheme as a sub-tree in a TVM program.
We use this ability to facilitate performance comparisons, and to automatically upgrade the optimal
sequential scheme into a parallel implementation (see Sec. 5.5).

5.1 Microkernel definition and evaluation

We identified 4 different unrolling schemes to form efficient microkernels for a 2D convolution. Each one
is suitable for a different class of tensor shape and convolution operator. In all 4 schemes, dimension k
is selected for vectorization because it contains the simplest access pattern among w, h and k. Unrolling
takes place along k and h, and optionally along the convolution kernel (stencil) dimensions r and s to
form the 4 schemes:

• [T512,c,Uβ,h,Uα,k,Vk]
• [T512,c,U3,s,Uβ,h,Uα,k,Vk]
• [T512,c,U3,r,Uβ,h,Uα,k,Vk]
• [T512,c,U3,r,U3,s,Uβ,h,Uα,k,Vk]

where α and β are the sizes of the microkernel along the k and the h dimension, respectively.
To evaluate performance, we repeat the resulting unrolled basic block many times along the c dimen-

sion (T512,c) and run the microkernel on a matching problem size. The results for the first scheme on
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Figure 6: Flow of the optimization algorithm.

AVX512 are shown in Fig. 7 (on an Intel Xeon Gold 6130, frequency set to 2.1 GHz, Debian, kernel v4.19,
and hardware counters monitored with PAPI v5.7.0).

We observe that the graph is roughly convex with some local fluctuations. Many microkernels are
near-optimal for a given unrolling scheme. We select the ones above 85% optimal and partition them into
classes of fixed sizes for C, S, R, and where H belongs to an interval defining the class. For example,
{[Uβ,h,U2,k,Vk], 8 ≤ β < 15} is one of the class of microkernels that is selected for AVX-512, as shown
with the leftmost red vertical rectangular contour on Fig. 7.

This step is problem size agnostic and needs to be done only once per target architecture.

5.2 Loop permutation above the microkernel

The next step is to find a suitable permutation of tiling loops, for fixed values of parameters and for each
candidate microkernel. For example, for Yolo9000 layer 0, the permutation that is chosen for microkernel
[U8,h,U2,k,Vk] is (from outer to inner):

[
K,H,W,H,H, S,R,W,C

]
. This permutation is found using an

analytical model of the data movement across all cache levels, similar to the one taken in recent work by
Li et al. [22] and Olivry et al. [25]. For a given permutation, we derive an analytical expression of the
data movement volume at each cache level, as a function of tiling loop extents and cache sizes. This is
done by computing the footprint of each array at each level of the loop nest, as well as the level at which
the total memory footprint exceeds the cache size.

First, a pre-processing step prunes the space of all possible loop permutations. Indeed, we have (7!)
loop permutation for each of the 4 remaining level of memory, and many permutations are equivalent
in term of data movement cost, or can be shown to have worse data reuse than others. Following the
methodology proposed by Olivry et al. [25], we manage to reduce the number of considered permutations
from 7! to only 6 (for each level of the memory hierarchy).

Then, for given values of array sizes, the analytical model is fed to a non-linear problem optimizer
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Figure 7: Performance of microkernels in isolation for AVX512 in percentage of the machine peak, for R =
S = 1. Microkernel sizes—α along the k dimension (horizontal axis) and β along the h dimension (vertical
axis)—vary between 1 and 15. Only the upper-left triangle was evaluated. Red-bordered microkernels
are the ones selected (offline) for our algorithm.
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which select the best permutation overall. The result is actually richer than that, as the solver also
produces (generally non-integral) tile sizes that minimize the overall data movement [25]. Yet we observed
that these tile sizes are not necessarily useful, as finer-grained performance considerations come into play
when getting closer to the peak performance of the machine. We thus only retain the loop permutation
and delay tile size selection to a later autotuning step.

Interestingly, we observe that the permutation remains stable when varying the unroll factor of micro-
kernels along the h dimension. This is easily understood, considering that the loop permutation mostly
relates to cache-level optimization while microkernels operate at the register level. As a result, we use
the same permutation and only perform the analysis once per unrolling factor along k, r and s. As a
fortunate side-effect, this means that when combining two microkernels, since they only differ in their
unrolling factor along h, we can be sure that the loop order above both of them is the same.

5.3 Space of the valid optimization schemes

Microkernels and combination We consider each class of microkernels and select those whose sizes
divide the problem sizes. Then, we look for the combination of two microkernels differing only along the
h dimension that allow to cover the size of the h dimension. For all pairs of microkernel in the same
class, of sizes h1 and h2, and given a problem size H, we look for a number of repetitions a and b of
these microkernels such that: (a× h1 + b× h2) divides H. For example, if H = 34 and considering two
microkernels of the same class of size h1 = 11 and h2 = 12, one may combine two microkernels of size 11
followed by a microkernel of size 12, for a total of 34.

If no single microkernel or combination of microkernels would be found with this process, the fallback
would be to use a suboptimal microkernel, which is what we wanted to avoid by ruling out partial tiles.
Fortunately, this situation never happens on the AVX512 microarchitectures we considered. Indeed, the
classes of microkernels identified in Section 5.1 are large enough to accommodate for any possible size
through the combination of two microkernels (as long as the size of the convolution dimension of interest
is greater than or equal to the smallest microkernel in the selected class). For example, for the microkernel
class {[Uβ,h,U2,k,Vk], 8 ≤ β < 16}, assuming that the problem size along the K dimension is even, all
problem sizes H above 8 can be obtained by a linear combination of two integral elements h1 and h2

from the interval [8, 15] (e.g. 17 = 8 + 9).

Completing the scheme Given (i) a single microkernel that divides the problem sizes, or a microkernel
combination that divides the problem sizes, and (ii) a loop permutation, completion into an optimization
scheme proceeds as follows:

• Set the optimization scheme (the list of specifiers) to the one corresponding to the chosen microkernel
or combination of microkernels.

• For each dimension, consider the divisors of the problem size divided by the microkernel size. These
divisors need to be allocated to the different strip-mined occurrences of the dimension across the
whole permutation. There are multiple solutions and the algorithm considers all of them. Notice
that there are (by construction) at most 4 occurrences of a dimension in a loop permutation, which
limits the amount of possibilities.

• For each element d in the loop permutation, consider the product π of the divisors allocated to this
occurrence and insert the corresponding specifier Tπ,d to the left of the current scheme.

• When considering a sequence of two microkernels at dimension d with the combination a×h1+b×h2,
insert λseqd

α. [l] at any occurrence of dimension d in the scheme, and consider all possibilities of
placement of this insertion. The value of the list ` is [(a, h1), (b, h2)].
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Example Consider the range of microkernels:

{[Uβ,h,U2,k,Vk], 8 ≤ β ≤ 15}

for an AVX512 architecture, and the Yolo9000-13 problem sizes (K,C,H/W,R/S) = (512, 256, 34, 3).
Assume that the corresponding loop permutation found was:

[[K,H], [W,H], [H], [S,R,W,C]]

The problem size H on dimension h is 34 = 2×17, hence there is no single microkernel from the considered
class that matches one of its divisors. Next, we consider combinations of 2 microkernels from that class;
2 × 11 + 12 is one such combination. Now, we need to distribute the multiples of the other dimensions
across the different levels of tiling described by the loop permutation:

• The k dimension is trivial: there is only one loop above the microkernel and the microkernel size
along this dimension has a footprint of 32. Thus, we need to tile by a factor of 16 on the outer loop
to reach 512.

• The c dimension is also trivial: the only loop need to be tiled by a factor of 256. Likewise for the
r and s dimensions, the tiling factor should be 3 for both.

• The h dimension is already managed by the combination of microkernels. We have 3 locations
where we can place the λseqh

β. [(2, 11), (1, 12)] compositon of two microkernels. Let us consider the
outer one.

• The w dimension has 34 to be distributed across 2 level of tiling. There are 4 combinations: 34×1,
17× 2, 2× 17 and 1× 34. Let us consider the second one.

The resulting optimization scheme (among many) is:

[T16,k,T1,h, λseqh
β. [(2, 11), (1, 12)] ,T17,w,T1,h,T1,h,T3,s,T3,r,T2,w,T256,c,Uβ,h,U2,k,Vk]

5.4 Further pruning of the optimization space

At this stage, we have a space of sequential scheme candidates, whose size range from a few hundreds to
tens of thousands of potential schemes, depending on both the size of the problem and the architecture.
Our objective is to prune this space by combining two criteria. The first criterion is to maximize the
Operational Intensity, that is, the number of operations divided by the volume of data movement. The
second criterion is to reduce the overhead of control flow, control misprediction, and data misprefetching.
In particular, the larger the size of the reduction loop above the microkernel (along dimension c) is, the
better the scheme is in relation to this criterion.

So, we propose the following metric, to focus on a region where there is at least one of the best
performing schemes:

• First, select 40% of the schemes that have the largest reduction sizes (on c) above the microkernel.
• Then, sort these schemes according to their volume of data movement. The smallest volume is the

best candidate, and we select up to 200 candidates.

5.5 Integration and parallelization with TVM

So far, we focused on optimising sequential performance. We have interfaced our tool with TVM to
facilitate comparisons with the state of the art and to generate parallel code. Because TVM does not
have currently a notion of microkernel, we use its tensorize construct to import a generated C code
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Benchmark Problem sizes
(K, C, H/W, R/S)

Yolo9000-0 32, 3, 544, 3
Yolo9000-2 64, 32, 272, 3
Yolo9000-4 128, 64, 136, 3
Yolo9000-5 64, 128, 136, 1
Yolo9000-8 256, 128, 68, 3
Yolo9000-9 128, 256, 68, 1
Yolo9000-12 512, 256, 34, 3
Yolo9000-13 256, 512, 34, 1
Yolo9000-18 1024, 512, 17, 3
Yolo9000-19 512, 1024, 17, 1
Yolo9000-23 28269, 1024, 17, 1

Benchmark Problem sizes
(K, C, H/W, R/S)

ResNet18-1* 64, 3, 224, 7
ResNet18-2 64, 64, 56, 3
ResNet18-3 64, 64, 56, 1
ResNet18-4* 128, 64, 56, 3
ResNet18-5* 128, 64, 56, 1
ResNet18-6 128, 128, 28, 3
ResNet18-7* 256, 128, 28, 3
ResNet18-8 256, 128, 28, 3
ResNet18-9 256, 256, 14, 3

ResNet18-10* 512, 512, 14, 3
ResNet18-11* 512, 256, 14, 1
ResNet18-12 512, 512, 7, 3

Figure 8: Convolution benchmarks and sizes. The kernels marked with a * are stride 2, else stride 1.
Dimension k of Yolo9000-23 was padded to 28272 (a multiple of 16) to vectorize it on AVX512.

(see Sec. 6) corresponding to the innermost loops inside TVM’s Python intermediate representation of
a convolution. These innermost loops are the ones up to dimensions h and w, which are usually part of
the L1 tiling level. By construction, these loops will include the microkernel and some of the L1-resident
loops, including the innermost reduction loop (on c) enclosing the microkernel.

This allows us to express completely a sequential scheme in the TVM framework. Then, we consider
the loops above the tensorized section, and we consider several strategies to introduce parallelism:

• We consider the biggest band of non-reduction loops (to have enough iterations), collapse it and
parallelize the resulting loop.

• We regroup the reduction loops at the innermost level and collapse/parallelize the rest of the loops.
• We regroup the reduction loops at the outermost level and collapse/parallelize the rest of the loops.

We add these strategies as a part of the optimization space, and consider all variations when evaluating
the performance of the candidates.

6 Code generation

We now describe how to generate C code from a computation specification, problem size and the asso-
ciated optimization scheme. Generating a loop requires to know the size of the sub-tiles, so our code
generator proceeds from innermost outwards. Calling a sub-scheme the suffix of an optimization scheme,
at a given step the already generated code (that corresponds to inner levels) is fully specified by the
corresponding sub-scheme. In the following, the size of a sub-scheme refers to the size of the correspond-
ing (parameterized) sub-iteration space. Taking the example from Sec. 4, the sub-scheme of the BLIS
microkernel (including the reduction loop on k) is: Sµkernel = [Tnk,k,U6,i,U2,j ,Vj ]. Its size along i, j,
and k is respectively 6, 16 and nk.
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6.1 Overview of the code generation algorithm

Our code generator iterates right to left on the optimization scheme in a single pass. At every level, we
keep track of the following information: (i) the size of the loops that are already generated; (ii) for each
dimension, the name of the last index used by a for loop (to handle tiling).

Before applying our code generation algorithm, we apply a preprocessing step to get rid of the λseq
specifier and its parameter α. We introduce a new specifier Seq that corresponds to the sequential
composition of a list of strategies. In our case, the list of the λseq specifier is always of size 2. The
corresponding rewriting rule is:

[ . . . , λseqd
α. [(i1, v1), (i2, v2)] , S ]⇒ [ . . . ,Seq([Ti1,d, S[α/v1]], [Ti2,d, S[α/v2]]) ]

where S is the sub-scheme following the λseq specifier and S[α/v] is this sub-scheme where α was
substituted by the value v. We now have a tree of specifiers instead of a list of specifiers, on which
we can still iterate from the leaves (innermost loops) to the root of the tree (outermost loops).

6.2 Code generation rules

Let us now survey the different specifiers and how code generation operates for each one:
• Sequence Seq: Combine sequentially the generated code corresponding to the sub-schemes inside

the Seq.
• Vectorization Vd: Considering the definition of the computation described in Sec. 4, one may

determine which operations should be vectorized by traversing the graph starting from the loads:
– read (T, f) is vectorized if d appears in the access function f .
– Op (x, y) is vectorized if one of its operands (x or y) is vectorized. If one of them is a scalar,

it is broadcasted.
– write (v, T, f) is vectorized if v is a vector and d appears in the access function f . These

conditions must be both true or false, else this is an error.
The C code uses Intel intrinsics to manipulate vectors.

• Unroll Uk,d: Unroll the computation over the d dimension k times by duplicating the generated
code of its sub-scheme, while updating the value of the loop index on the d dimension in each
duplication.

• Tiling Tk,d or Rd: Add a loop over the generated code of its sub-scheme that iterates k times,
and whose value is increased by the value of the sub-scheme. In the case of Rd, one may deduce
the correct number of iterations by comparing the size of the sub-scheme with the problem sizes.
This changes the current loop index in use over the d dimension.

7 Performance results

In this section, we evaluate the performance of the code generated by TTile with several state-of-the-
art approaches: oneDNN [19] (Intel library, V2.3), AutoTVM [8] (autotuning, v0.8.dev0 of June 2021),
Autoscheduler [34] (Ansor, autotuning, in TVM) and Mopt [22] (analytical modeling).

Setup The experiments were carried out on two architectures: (a) a 18-core Intel Xeon Gold 5220
Cascade Lake processor (frequency set to 2.2 GHz) with with 1 socket and 1 AVX512 fused multiply-add
unit per core; and (b) a 32-core Intel Xeon Gold 6130 Skylake processor (frequency set to 2.3 GHz) 2
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Figure 9: Comparison with AutoTVM, AutoScheduler, oneDNN, Mopt for AVX512 (Intel Xeon Gold
5220 and 6130), shown as percentage of machine peak. The left side of each line is the sequential
performance and the right side is the parallel performance for the same convolution sizes. The last entry
is the geometric mean for each tool, for the sequential and parallel case.
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Benchmark Microkernel
Yolo9000-0 [8H2K]
Yolo9000-2 [3S4H4K]
Yolo9000-4 [3R10H]+2[3R12H]
Yolo9000-5 [8H2K]+2[13H2K]
Yolo9000-8 [3S4H4K]
Yolo9000-9 [8H2K]+5[12H2K]
Yolo9000-12 2[3R11H]+[3R12H]
Yolo9000-13 2[10H2K]+[14H2K]
Yolo9000-18 [8H2K]+[9H2K]
Yolo9000-19 [8H2K]+[9H2K]
Yolo9000-23 [8H3K]+[9H3K]

Benchmark Microkernel
ResNet18-1* [14H2K]
ResNet18-2 [14H2K]
ResNet18-3 [14H2K]
ResNet18-4* [14H2K]
ResNet18-5* [14H2K]
ResNet18-6 [3S4H4K]
ResNet18-7* [14H2K]
ResNet18-8 [14H2K]
ResNet18-9 [3R14H]

ResNet18-10* [3R7H4K]
ResNet18-11* [7H4K]
ResNet18-12 [3S7H4K]

Figure 10: Microkernels of the best parallel scheme found by TTile on an Intel Xeon Gold 6130. The
corresponding unrolling factors and split factors of (combined) microkernels are reported with a compact
notation where “2[3R11H]+[3R12H]” stands for the combination of 2 microkernels: the first is used twice
as much as the second; “[3R11H]” stands for a microkernel where dimension r is unrolled 3 times and h
is unrolled 11 times.

sockets and 2 AVX512 fused multiply-add units per core. Both architectures have 32KB L1 cache and
1024KB L2 cache per core. The first processor has a 24.75MB shared L3 cache while the second one has
a 22MB shared L3 cache.

The OS is Debian GNU/Linux with kernel version 4.19, monitoring hardware counters using PAPI
version 5.7.0. All codes were compiled using gcc with the flags -O3 -march=native -fno-align-loops.
For AutoTVM and AutoScheduler, we used the recommended template conv2d NCHWc from the TVM
library. AutoTVM’s machine learning model ran over 1000 trials in order to find its best configuration.

We evaluate performance over the convolutions of two networks: Yolo-9000 [27] and ResNet-18 [18].The
sizes of their convolution layers can be found in Fig. 8. To measure performance with AutoTVM and
TVM+TTile, we used the TVM function evaluator, with parameters repeat and number set to 1. Runs
of oneDNN use the input tensor layout nchw. Every convolution is run 20 times on 20 different copies of
the tensors (to avoid reusing data in the last-level cache for repeated experiments). We eliminated the
5 best and the 5 worst results and take the median of the 10 remaining results. We also consider a cold
cache and we flush it between every run.

Performance measurement Fig. 9 presents the performance results, reported as a fraction of the peak
performance of the multicore CPU. A few MOpt results are missing due to reproducibility issues with
the author’s artifact. We reported such situations with a performance at 0% of the machine peak. We
also report the geometric mean for each tool and in the sequential/parallel cases, across all the available
benchmarks. We notice that TVM+Ttile is well above the other state-of-the-art tools in average, which
demonstrates the viability of our approach. The performance results for oneDNN seem surprisingly low,
despite our efforts to explore the relevant configuration settings for oneDNN. However, we have confirmed
with the developers that these performance were coherent with their expectation.

In term of total compilation time to find the best implementation found, over all benchmarks,
AutoTVM and AutoScheduler both take around 5h. MOpt takes around 1h30 and TTile takes around
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2h. OneDNN is performing JIT compilation thus does not have an offline exploration phase.

Microkernel variations We report in Fig. 10 the microkernel used by our best performing schemes.
We notice a variety of 16 different microkernels used for 23 different convolutions. For example, the size
of the microkernel picked for ResNet18-1 is “[14H2K]”, i.e., 14 unrolled iterations along the h dimension
and 2 iterations along the k dimension. In comparison, Yolo9000-4 uses a combination of two microkernels
“[3R10H]+2[3R12H]”. Both microkernels are of size 3 along the r dimension, but differ in the size along
the h dimension. The second microkernel is also used twice as often than the first microkernel. As another
example illustrating this result, the best scheme found for Yolo9000-5 was introduced as the example of
Sec. 2.

Interpretation We can draw several observations from these experiments. First, the divisibility con-
straint is the key restriction of our optimization space, that we have slightly relaxed with the possibility
to combine microkernels. Despite this restricted, we still manage to find an implementation with ex-
cellent performance. This confirms that the divisibility constraint is effective at aggressively pruning
implementations (including good ones) while preserving enough of the best-performing ones.

Also, the diversity of the microkernels available and their combination is the key point that differen-
tiates our optimization space with those of the state-of-the-art tools. The fact (i) that we managed to
find better implementations, sometimes by a factor of 2, and (ii) the variability of microkernels used by
the best implementation we found, support the claims made in Sec. 3. In order to reach the best perfor-
mance, we should not restrict ourselves to a single microkernel. Also, combining microkernels happens
to outperform competing alternatives such as partial tiles (limited or no unrolling when hitting tensor
boundaries) or padding.

As a final observation, copying and packing the footprint of register tiles in microkernels is gener-
ally assumed to be essential to performance (on both tensor contractions and convolutions) [30, 19]. Our
results challenge this assumption by obtaining an efficient implementation without considering this trans-
formation in our search space. This shows that this transformation should not be applied systematically
for all convolution kernels. We plan to study when the packing transformation should be applied in our
future work.

8 Related work

Optimization of affine programs To optimize affine programs, some methods are based on analytical
models and operation research. This is the main approach used by polyhedral based compilers [16, 6, 32,
31, 11, 2] that leverage parametric integer linear programming. Although such approaches are well suited
to expose parallelism [12, 13] and coarse grain locality [6], we believe it may not be the right formalism
for tile size selection or register level optimizations.

On the other hand, the ability to count points in a polyhedra [3] allows to automatically generate
(non-linear) cost models. We use the Barvinok [3] library for this purpose, generalizing the approach of
Li et al. [21] for the selection of a permutation scheme.

Cloog [4] is a powerful algorithm to automatically generate imperative code for scanning a union
of polyhedra. Polyhedral compilers leverage such code generation capabilities but face the challenge of
dealing with a very general class of imperfect nests and transformations. It is difficult in such a broad
context to compete with domain-specific optimizations. Our code generator involves simple polyhedron
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scanning algorithms, and the divisibility constraint allows to generate high-quality compiler friendly code
without heroic efforts [17].

Optimization of machine learning programs There exist many compilers specialized for machine
learning: PlaidML [7] using polyhedral techniques, XLA [14] for TensorFlow [1], Halide [26], or TVM [8].
TVM, as opposed to most approaches does not rely on numerical libraries. Its strategy is to select the
best schedule using autotuning with an ML-based performance model. Contrary to our approach that
decouples the search into microkernel optimization and loop tiling/permutation search, the TVM search
space is flat. In TVM, optimizations related to strength reduction and register tiling are left to the
compiler. TVM has been extended with FlexTensor [35] and Ansor (a.k.a AutoScheduler) [34]. We also
compare to AutoTVM, the auto optimiser of TVM. Telamon [5] tackles this problem by building a very
large, flat search space where optimization choices are tied together by dependency constraints. Then
the exploration combines an elaborate performance model to prune the search space with feedback from
actual executions.

Linear algebra and CNN libraries Frameworks such as TBLIS [23] or TCCG [29] aim at creating
portable optimized code for BLAS or tensor contraction kernels. These frameworks implement an efficient
predefined scheduling scheme which is very effective, in particular for matrix multiplication [15]. These
frameworks take advantage of advanced optimizations: tensor transposition, tensor blocking or sub-
viewing, data prefetching, vectorization, block scheduling, unrolling and register promotion. The register
tile shape is predefined using expert knowledge on instruction level and register pressure. Thanks to
aggressive autotuning and JIT/AoT code versioning, MKL [33] and oneDNN [19] are the best available
Intel libraries which implement all these techniques.

9 Conclusion

We presented TTile, a tool which generates high-performance code for tensor computation, and we
evaluated it on static-shape 2D convolutions. The generated code exploits a large set of performant
microkernels and combines them in order to avoid partial tiles. The methodology itself is a combination
of different kind of state-of-the-art methods, including analytical modeling, autotuning and experimen-
tation. We present performance results that demonstrate higher performance than oneDNN in the vast
majority of cases, and consistently higher performance than the state-of-the-art TVM tensor compiler
and autotuner and MOpt. We plan to release publicly a version of our tool in the next few months.

Future work includes extension of the search space to include additional transformations such as
packing or prefetching, in order to carefully study their impact on the performance and determine when
they are needed. We also plan to generalize the method to a wider set of tensor operators and layout
configurations, using MLIR [20]. This will also facilitate the exploration of interactions with graph-level
optimizations, leveraging optimization opportunities currently accessible only to JIT compilers such as
XLA.
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