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Abstract

Transferring the knowledge learned from large scale
datasets (e.g., ImageNet) via fine-tuning offers an effective
solution for domain-specific fine-grained visual categoriza-
tion (FGVC) tasks (e.g., recognizing bird species or car
make & model). In such scenarios, data annotation often
calls for specialized domain knowledge and thus difficult to
scale. In this work, we first tackle a problem in large scale
FGVC. Our method won first place in iNaturalist 2017 large
scale species classification challenge. Central to the suc-
cess of our approach is a training scheme that uses higher
image resolution and deals with the long-tailed distribu-
tion of training data. Next, we study transfer learning via
fine-tuning from large scale datasets to small scale, domain-
specific FGVC datasets. We propose a measure to estimate
domain similarity via Earth Mover’s Distance and demon-
strate that transfer learning benefits from pre-training on a
source domain that is similar to the target domain by this
measure. Our proposed transfer learning outperforms Im-
ageNet pre-training and obtains state-of-the-art results on
multiple commonly used FGVC datasets.

1. Introduction
Fine-grained visual categorization (FGVC) aims to dis-

tinguish subordinate visual categories. Examples include
recognizing natural categories such as species of birds [58,
54], dogs [28] and plants [39, 59]; or man-made categories
such as car make & model [32, 63]. A successful FGVC
model should be able to discriminate categories with subtle
differences, which presents formidable challenges for the
model design yet also provides insights to a wide range of
applications such as rich image captioning [3], image gen-
eration [5], and machine teaching [27, 37].

Recent advances on Convolutional Neural Networks
(CNNs) for visual recognition [33, 48, 51, 20] have fu-
eled remarkable progress on FGVC [36, 11, 69]. In gen-
eral, to achieve reasonably good performance with CNNs,
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Figure 1. Overview of the proposed transfer learning scheme.
Given the target domain of interest, we pre-train a CNN on the
selected subset from the source domain based on the proposed do-
main similarity measure, and then fine-tune on the target domain.

one needs to train networks with vast amounts of supervised
data. However, collecting a labeled fine-grained dataset of-
ten requires expert-level domain knowledge and therefore
is difficult to scale. As a result, commonly used FGVC
datasets [58, 28, 32] are relatively small, typically contain-
ing around 10k of labeled training images. In such a sce-
nario, fine-tuning the networks that are pre-trained on large
scale datasets such as ImageNet [12] is often adopted.

This common setup poses two questions: 1) What are
the important factors to achieve good performance on large
scale FGVC? Although other large scale generic visual
datasets like ImageNet contain some fine-grained cate-
gories, their images are usually iconic web images that
contain objects in the center with similar scale and simple
backgrounds. With the limited availability of large scale
FGVC datasets, how to design models that perform well
on large scale non-iconic images with fine-grained cate-
gories remains an underdeveloped area. 2) How does one
effectively conduct transfer learning, by first training the
network on a large scale dataset and then fine-tuning it
on domain-specific fine-grained datasets? Modern FGVC
methods overwhelmingly use ImageNet pre-trained net-
works for fine-tuning. Given the fact that the target fine-
grained domain is known, can we do better than ImageNet?

This paper aims to answer the two aforementioned prob-
lems, with the recently introduced iNaturalist 2017 large
scale fine-grained dataset (iNat) [55]. iNat contains 675,170
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training and validation images from 5,089 fine-grained cate-
gories. All images were captured in natural conditions with
varied object scales and backgrounds. Therefore, iNat of-
fers a great opportunity to investigate key factors behind
training CNNs that perform well on large scale FGVC. In
addition, along with ImageNet, iNat enables us to study
the transfer of knowledge learned on large scale datasets
to small scale fine-grained domains.

In this work, we first propose a training scheme for
large scale fine-grained categorization, achieving top per-
formance on iNat. Unlike ImageNet, images in iNat have
much higher resolutions and a wide range of object scales.
We show in Sec. 3.1 that performance on iNat can be im-
proved significantly with higher input image resolution.
Another issue we address in this paper is the long-tailed
distribution, where a few categories have most of the im-
ages [71, 56]. To deal with this, we present a simple yet
effective approach. The idea is to learn good features from
a large amount of training data and then fine-tune on a
more evenly-distributed subset to balance the network’s ef-
forts among all categories and transfer the learned features.
Our experimental results, shown in Sec. 3.2, reveal that we
can greatly improve the under-represented categories and
achieve better overall performance.

Secondly, we study how to transfer from knowledge
learned on large scale datasets to small scale fine-grained
domains. Datasets are often biased in terms of their statis-
tics on content and style [53]. On CUB200 Birds [58], iNat
pre-trained networks perform much better than ImageNet
pre-trained ones; whereas on Stanford-Dogs [28], ImageNet
pre-trained networks yield better performance. This is be-
cause there are more visually similar bird categories in iNat
and dog categories in ImageNet. In light of this, we pro-
pose a novel way to measure the visual similarity between
source and target domains based on image-level visual sim-
ilarity with Earth Mover’s Distance. By fine-tuning the net-
works trained on selected subsets based on our proposed
domain similarity, we achieve better transfer learning than
ImageNet pre-training and state-of-the-art results on com-
monly used fine-grained datasets. Fig. 1 gives an overview
of the proposed training scheme.

We believe our study on large scale FGVC and domain-
specific transfer learning could offer useful guidelines for
researchers working on similar problems.

2. Related Work
Fine-Grained Visual Categorization (FGVC). Recent

FGVC methods typically incorporate useful fine-grained
information into a CNN and train the network end-to-
end. Notably, second order bilinear feature interactions was
shown to be very effective [36]. This idea was later ex-
tended to compact bilinear pooling [17], and then higher
order interactions [11, 9, 47]. To capture subtle visual

differences, visual attention [60, 16, 69] and deep metric
learning [45, 10] are often used. Beyond pixels, we also
leverage other information including parts [66, 7, 67], at-
tributes [57, 18], human interactions [8, 13] and text de-
scriptions [42, 22]. To deal with the lack of training data in
FGVC, additional web images can be collected to augment
the original dataset [10, 31, 62, 18]. Our approach differs
from them by transferring the pre-trained network on exist-
ing large scale datasets without collecting new data.

Using high-resolution images for FGVC has became in-
creasingly popular [26, 36]. There is also a similar trend
in ImageNet visual recognition, from originally 224 × 224
in AlexNet [33] to 331 × 331 in recently proposed NAS-
Net [72]. However, no prior work has systematically stud-
ied the effect of image resolution on large scale fine-grained
datasets as we do in this paper.

How to deal with long-tailed distribution is an impor-
tant problem in real world data [71, 56]. However, it is
a rather unexplored area mainly because commonly used
benchmark datasets are pre-processed to be close-to evenly
distributed [12, 34]. Van Horn et al. [56] pointed out that the
performance of tail categories are much poorer than head
categories that have enough training data. We present a sim-
ple two-step training scheme to deal with long-tailed distri-
bution that works well in practice.

Transfer Learning. Convolutional Neural Networks
(CNNs) trained on ImageNet have been widely used for
transfer learning, either by directly using the pre-trained
network as a feature extractor [46, 14, 70], or fine-tuning
the network [19, 40]. Due to the remarkable success of
using pre-trained CNNs for transfer learning, extensive
efforts have been made on understanding transfer learn-
ing [64, 4, 24, 49]. In particular, some prior work loosely
demonstrated the connection between transfer learning and
domain similarity. For example, transfer learning between
two random splits is easier than natural / man-made ob-
ject splits in ImageNet [64]; manually adding 512 addi-
tional relevant categories from all available classes improve
upon the commonly used 1000 ImageNet classes on PAS-
CAL VOC [15]; transferring from a combined ImageNet
and Places dataset yields better results on a list of visual
recognition tasks [70]. Azizpour et al. [4] conducted a use-
ful study on a list of transfer learning tasks that have differ-
ent similarity with the original ImageNet classification task
(e.g., image classification is considered to be more similar
than instance retrieval, etc.). Our major differences between
their work are two-fold: Firstly, we provide a way to quan-
tify the similarity between source and target domain and
then choose a more similar subset from source domain for
better transfer learning. Secondly, they all use pre-trained
CNNs as feature extractors and only train either the last
layer or use a linear SVM on the extracted features, whereas
we fine-tune all the layers of the network.



3. Large Scale Fine-Grained Categorization

In this section, we present our training scheme that
achieves top performance on the challenging iNaturalist
2017 dataset, especially focusing on using higher image res-
olution and dealing with long-tailed distribution.

3.1. The Effect of Image Resolution

When training a CNN, for the ease of network design and
training in batches, the input image is usually pre-processed
to be square with a certain size. Each network architecture
usually has a default input size. For example, AlexNet [33]
and VGGNet [48] take the default input size of 224 × 224
and this default input size cannot be easily changed be-
cause the fully-connected layer after convolutions requires
a fixed size feature map. More recent networks including
ResNet [20] and Inception [51, 52, 50] are fully convolu-
tional, with a global average pooling layer right after con-
volutions. This design enables the network to take input
images with arbitrary sizes. Images with different resolu-
tion induce feature maps of different down-sampled sizes
within the network.

Input images with higher resolutions usually contain
richer information and subtle details that are important to
visual recognition, especially for FGVC. Therefore, in gen-
eral, higher resolution input image yields better perfor-
mance. For networks optimized on ImageNet, there is a
trend of using input images with higher resolution for mod-
ern networks: from originally 224× 224 in AlexNet [33] to
331 × 331 in recently proposed NASNet [72], as shown in
Table 3. However, most images from ImageNet have a res-
olution of 500 × 375 and contain objects of similar scales,
limiting the benefits we can get from using higher resolu-
tion inputs. We explore the effect of using a wide range
of input image sizes from 299 × 299 to 560 × 560 in iNat
dataset, showing greatly improved performance with higher
resolution inputs.

3.2. Long-Tailed Distribution

The statistics of real world images is long-tailed: a few
categories are highly representative and have most of the
images, whereas most categories are observed rarely with
only a few images [71, 56]. This is in stark contrast to the
even image distribution in popular benchmark datasets such
as ImageNet [12], COCO [34] and CUB200 [58].

With highly imbalanced numbers of images across cat-
egories in iNaturalist dataset [55], we observe poor perfor-
mance on underrepresented tail categories. We argue that
this is mainly caused by two reasons: 1) The lack of training
data. Around 1,500 fine-grained categories in iNat training
set have fewer than 30 images. 2) The extreme class im-
balance encountered during training: the ratio between the
number of images in the largest class and the smallest one is

Input Res. Networks
224× 224 AlexNet [33], VGGNet [48], ResNet [20]
299× 299 Inception [51, 52, 50]
320× 320 ResNetv2 [21], ResNeXt [61], SENet [23]
331× 331 NASNet [72]

Table 1. Default input image resolution for different networks.
There is a trend of using input images with higher resolution for
modern networks.
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Figure 2. The distribution of image frequency of each category in
the whole training set we used in the first stage training and the
selected subset we used in the second stage fine-tuning.

about 435. Without any re-sampling of the training images
or re-weighting of the loss, categories with more images in
the head will dominate those in the tail. Since there is very
little we can do for the first issue of lack of training data,
we propose a simple and effective way to address the sec-
ond issue of the class imbalance.

The proposed training scheme has two stages. In the first
stage, we train the network as usual on the original imbal-
anced dataset. With large number of training data from all
categories, the network learns good feature representations.
Then, in the second stage, we fine-tune the network on a
subset containing more balanced data with a small learning
rate. The idea is to slowly transfer the learned feature and let
the network re-balance among all categories. Fig. 2 shows
the distribution of image frequency in iNat training set that
we trained on in the first stage and the subset we used in the
second stage, respectively. Experiments in Sec. 5.2 verify
that the proposed strategy yields improved overall perfor-
mance, especially for underrepresented tail categories.

4. Transfer Learning

This section describes transfer learning from the net-
works trained on large scale datasets to small scale fine-
grained datasets. We introduce a way to measure visual sim-
ilarity between two domains and then show how to select a
subset from source domain given the target domain.



4.1. Domain Similarity

Suppose we have a source domain S and a target domain
T . We define the distance between two images s ∈ S and
t ∈ T as the Euclidean distance between their feature rep-
resentations:

d(s, t) = ‖g(s)− g(t)‖ (1)

where g(·) denotes a feature extractor for an image. To bet-
ter capture the image similarity, the feature extractor g(·)
needs to be capable of extracting high-level information
from images in a generic, unbiased manner. Therefore, in
our experiments, we use g(·) as the features extracted from
the penultimate layer of a ResNet-101 trained on the large
scale JFT dataset [49].

In general, using more images yields better transfer
learning performance. For the sake of simplicity, in this
study we ignore the effect of domain scale (number of im-
ages). Specifically, we normalize the number of images
in both source and target domain. As studied by Chen et
al. [49], transfer learning performance increases logarith-
mically with the amount of training data. This suggests that
the performance gain in transfer learning resulting from the
use of more training data would be insignificant when we al-
ready have a large enough dataset (e.g., ImageNet). There-
fore, ignoring the domain scale is a reasonable assumption
that simplifies the problem. Our definition of domain simi-
larity can be generalized to take domain scale into account
by adding a scale factor, but we found ignoring the domain
scale already works well in practice.

Under this assumption, transfer learning can be viewed
as moving a set of images from the source domain S to the
target domain T . The work needed to be done by moving
an image to another can be defined as their image distance
in Eqn. 1. Then the distance between two domains can be
defined as the least amount of total work needed. This def-
inition of domain similarity can be calculated by the Earth
Mover’s Distance (EMD) [41, 43].

To make the computations more tractable, we further
make an additional simplification to represent all image fea-
tures in a category by the mean of their features. Formally,
we denote source domain as S = {(si, wsi)}mi=1 and target
domain as T = {(tj , wtj )}nj=1, where si is the i-th cate-
gory in S and wsi is the normalized number of images in
that category; similarly for tj and wtj in T . m and n are
the total number of categories in source domain S and tar-
get domain T , respectively. Since we normalize the number
of images, we have

∑m
i=1 wsi =

∑n
j=1 wtj = 1. g(si) de-

notes the mean of image features in category i from source
domain, similarly for g(tj) in target domain. Using the de-
fined notations, the distance between S and T is defined as
their Earth Mover’s Distance (EMD):

d(S, T ) = EMD(S, T ) =
∑m,n
i=1,j=1 fi,jdi,j∑m,n
i=1,j=1 fi,j

(2)
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Figure 3. The proposed domain similarity calculated by Earth
Mover’s Distance (EMD). Categories in source domain and tar-
get domain are represented by red and green circles. The size of
the circle denotes the normalized number of images in that cate-
gory. Blue arrows represent flows from source to target domain by
solving EMD.

where di,j = ‖g(si) − g(tj)‖ and the optimal flow fi,j
corresponds to the least amount of total work by solving the
EMD optimization problem. Finally, the domain similarity
is defined as:

sim(S, T ) = e−γd(S,T ) (3)

where γ is set to 0.01 in all experiments. Fig. 3 illustrates
calculating the proposed domain similarity by EMD.

4.2. Source Domain Selection

With the defined domain similarity in Eqn. 2, we are able
to select a subset from source domain that is more similar
to target domains. We use greedy selection strategy to in-
crementally include the most similar category in the source
domain. That is, for each category si in source domain S,
we calculate its domain similarity with target domain by
sim({(si, 1)}, T ) as defined in Eqn. 3. Then top k cat-
egories with highest domain similarities will be selected.
Notice that although this greedy way of selection has no
guarantee on the optimality of the selected subset of size k
in terms of domain similarity, we found this simple strategy
works well in practice.

5. Experiments
The proposed training scheme for large scale FGVC is

evaluated on the recently proposed iNaturalist 2017 dataset
(iNat) [55]. We also evaluate the effectiveness of the our
proposed transfer learning by using ImageNet and iNat as
source domains, and 7 fine-grained categorization datasets
as target domains. Sec. 5.1 introduces experiment setup.
Experiment results on iNat and transfer learning are pre-
sented in Sec. 3 and Sec. 5.3, respectively.



5.1. Experiment setup

5.1.1 Datasets

iNaturalist. The iNatrualist 2017 dataset (iNat) [55]
contains 675,170 training and validation images from 5,089
natural fine-grained categories. Those categories belong to
13 super-categories including Plantae (Plant), Insecta (In-
sect), Aves (Bird), Mammalia (Mammal), and so on. The
iNat dataset is highly imbalanced with dramatically differ-
ent number of images per category. For example, the largest
super-category “Plantae (Plant)” has 196,613 images from
2,101 categories; whereas the smallest super-category “Pro-
tozoa” only has 381 images from 4 categories. We combine
the original split of training set and 90% of the validation set
as our training set (iNat train), and use the rest of 10% vali-
dation set as our mini validation set (iNat minival), resulting
in total of 665,473 training and 9,697 validation images.

ImageNet. We use the ILSVRC 2012 [44] splits of
1,281,167 training (ImageNet train) and 50,000 validation
(ImageNet val) images from 1,000 classes.

Fine-Grained Visual Categorization. We evaluate our
transfer learning approach on 7 fine-grained visual cate-
gorization datasets as target domains, which cover a wide
range of FGVC tasks including natural categories like bird
and flower and man-made categories such as aircraft. Table
2 summarizes number of categories, together with number
of images in their original training and validation splits.

5.1.2 Network Architectures

We use 3 types of network architectures: ResNet [20,
21], Inception [51, 52, 50] and SENet [23].

Residual Network (ResNet). Originally introduced by
He et al. [20], networks with residual connections greatly
reduced the optimization difficulties and enabled the train-
ing of much deeper networks. ResNets were later improved
by pre-activation that uses identity mapping as the skip con-
nection between residual modules [21]. We used the latest
version of ResNets [21] with 50, 101 and 152 layers.

Inception. The Inception module was firstly proposed
by Szegedy et al. in GoogleNet [51] that was designed
to be very efficient in terms of parameters and computa-
tions, while achieving state-of-the-art performance. Incep-
tion module was then further optimized by using Batch Nor-
malization [25], factorized convolution [52, 50] and residual
connections [50] as introduced in [20]. We use Inception-
v3 [52], Inception-v4 and Inception-ResNet-v2 [50] as rep-
resentatives for Inception networks in our experiments.

Squeeze-and-Excitation (SE). Recently proposed by
Hu et al. [23], Sequeeze-and-Excitation (SE) modules
achieved the best performance in ILSVRC 2017 [44]. SE
module squeezes responses from a feature map by spatial
average pooling and then learns to re-scale each channel of

FGVC Dataset # class # train # val
Flowers-102 [39] 102 2,040 6,149
CUB200 Birds [58] 200 5,994 5,794
Aircraft [38] 100 6,667 3,333
Stanford Cars [32] 196 8,144 8,041
Stanford Dogs [28] 120 12,000 8,580
NABirds [54] 555 23,929 24,633
Food101 [6] 101 75,750 25,250

Table 2. We use 7 fine-grained visual categorization datasets to
evaluate the proposed transfer learning method.

Inc-v3 299 Inc-v3 448 Inc-v3 560
Top-1 (%) 29.93 26.51 25.37
Top-5 (%) 10.61 9.02 8.56

Table 3. Top-5 error rate on iNat minival using Inception-v3 with
various input sizes. Higher input size yield better performance.

the feature map. Due to its simplicity in design, SE module
can be used in almost any modern networks to boost the per-
formance with little additional overhead. We use Inception-
v3 SE and Inception-ResNet-v2 SE as baselines.

For all network architectures, we follow strictly their
original design but with the last linear classification layer
replaced to match the number of categories in our datasets.

5.1.3 Implementation

We used open-source Tensorflow [2] to implement and
train all the models asynchronously on multiple NVIDIA
Tesla K80 GPUs. During training, the input image was
randomly cropped from the original image and re-sized to
the target input size with scale and aspect ratio augmenta-
tion [51]. We trained all networks using the RMSProp opti-
mizer with momentum of 0.9, and the batch size of 32. The
initial learning rate was set to 0.045, with exponential decay
of 0.94 after every 2 epochs, same as [51]; for fine-tuning
in transfer learning, the initial learning rate is lowered to
0.0045 with the learning rate decay of 0.94 after every 4
epochs. We also used label smoothing as introduced in [52].
During inference, the original image is center cropped and
re-sized to the target input size.

5.2. Large Scale Fine-Grained Visual Recognition

To verify the proposed learning scheme for large scale
fine-grained categorization, we conduct extensive experi-
ments on iNaturalist 2017 dataset. For better performance,
we fine-tune from ImageNet pre-trained networks. If train-
ing from scratch on iNat, the top-5 error rate is≈ 1% worse.

We train Inception-v3 with 3 different input resolutions
(299, 448 and 560). The effect of image resolution is pre-
sented in Table 3. From the table, we can see that using
higher input resolutions achieve better performance on iNat.
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Figure 4. Top-5 error rate on iNat minival before and after fine-
tuning on a more balanced subset. This simple strategy improves
the performance on long-tailed iNat dataset.

The evaluation of our proposed fine-tuning scheme for
dealing with long-tailed distribution is presented in Fig. 4.
Better performance can be obtained by further fine-tuning
on a more balanced subset with small learning rate (10−6

in our experiments). Table 4 shows performance improve-
ments on head and tail categories with fine-tuning. Im-
provements on head categories with ≥ 100 training images
are 1.95% of top-1 and 0.92% of top-5; whereas on tail cat-
egories with < 100 training images, the improvements are
5.74% of top-1 and 2.71% of top-5. These results verify
that the proposed fine-tuning scheme greatly improves the
performance on underrepresented tail categories.

Table 5 presents the detailed performance breakdown of
our winning entry in the iNaturalist 2017 challenge [1]. Us-
ing higher image resolution and further fine-tuning on a
more balanced subset are the key to our success.

5.3. Domain Similarity and Transfer Learning

We evaluate the proposed transfer learning method by
pre-training the network on source domain from scratch,
and then fine-tune on target domains for fine-grained vi-
sual categorization. Other than training separately on Im-
ageNet and iNat, we also train networks on a combined Im-
ageNet + iNat dataset that contains 1,946,640 training im-
ages from 6,089 categories (i.e., 1,000 from ImageNet and
5,089 from iNat). We use input size of 299 × 299 for all
networks. Table 6 shows the pre-training performance eval-
uated on ImageNet val and iNat minival. Notably, a single
network trained on the combined ImageNet + iNat dataset
achieves competitive performance compared with two mod-
els trained separately. In general, combined training is bet-
ter than training separately in the case of Inception and In-
ception SE, but worse in the case of ResNet.

Based on the proposed domain selection strategy defined
in Sec. 4.2, we select the following two subsets from the
combined ImageNet + iNat dataset: Subset A was chosen
by including top 200 ImageNet + iNat categories for each
of the 7 FGVC dataset. Removing duplicated categories re-
sulted in a source domain containing 832 categories. Subset
B was selected by adding most similar 400 categories for

Before FT After FT
Top-1 Top-5 Top-1 Top-5

Head: ≥ 100 imgs 19.28 5.79 17.33 4.87
Tail: < 100 imgs 29.89 9.12 24.15 6.41

Table 4. Top-1 and top-5 error rates (%) on iNat minival for
Inception-v4 560. The proposed fine-tuning scheme greatly im-
proves the performance on underrepresented tail categories.

Network Top-1 (%) Top-5 (%)
Inc-v3 299 29.9 10.6
Inc-v3 560 25.4 (+ 4.5) 8.6 (+ 2.0)
Inc-v3 560 FT 22.7 (+ 2.7) 6.6 (+ 2.0)
Inc-v4 560 FT 20.8 (+ 1.9) 5.4 (+ 1.2)
Inc-v4 560 FT 12-crop 19.2 (+ 1.6) 4.7 (+ 0.7)
Ensemble 18.1 (+ 1.1) 4.1 (+ 0.6)

Table 5. Performance improvements on iNat minival. The number
inside the brackets indicates the improvement over the model in
the previous row. FT denotes using the proposed fine-tuning to
deal with long-tailed distribution. Ensemble contains two models:
Inc-v4 560 FT and Inc-ResNet-v2 560 FT with 12-crop.

CUB200, NABirds, top 100 categories for Stanford Dogs
and top 50 categories for Stanford Cars and Aircraft, which
gave us 585 categories in total. Fig. 6 shows top 10 most
similar categories in ImageNet + iNat for all FGVC datasets
calculated by our proposed domain similarity. It’s clear to
see that for CUB200, Flowers-102 and NABirds, most sim-
ilar categories are from iNat; whereas for Stanford Dogs,
Stanford Cars, Aircraft and Food101, most similar cate-
gories are from ImageNet. This indicates the strong dataset
bias in both ImageNet and iNat.

The transfer learning performance by fine-tuning an
Inception-v3 on fine-grained datasets are presented in Table
7. We can see that both ImageNet and iNat are highly bi-
ased, achieving dramatically different transfer learning per-
formance on target datasets. Interestingly, when we trans-
fer networks trained on the combined ImageNet + iNat
dataset, performance are in-between ImageNet and iNat
pre-training, indicating that we cannot achieve good per-
formance on target domains by simply using a larger scale,
combined source domain.

Further, in Fig. 5, we show the relationship between
transfer learning performance and our proposed domain
similarity. We observe better transfer learning performance
when fine-tuned from a more similar source domain, except
Food101, on which the transfer learning performance al-
most stays same as domain similarity changes. We believe
this is likely due to the large number of training images in
Food101 (750 training images per class). Therefore, the tar-
get domain contains enough data thus transfer learning has
very little help. In such a scenario, our assumption on ig-
noring the scale of domain is no longer valid.



ImageNet val iNaturalist minival
Original Separate Train Combined Train Separate Train Combined Train

top-1 top-5 top-1 top-5 top-1 top-5 top-1 top-5 top-1 top-5
ResNet-50 [20, 21] 24.70 7.80 24.33 7.61 25.23 8.06 36.23 15.67 36.93 16.49
ResNet-101 [20, 21] 23.60 7.10 23.08 7.09 23.39 7.06 34.15 14.58 33.97 14.53
ResNet-152 [20, 21] 23.00 6.70 22.34 6.81 22.59 6.64 31.04 12.52 32.58 13.20

Inception-v3 [52] 21.20 5.60 21.73 5.97 21.52 5.87 31.18 11.90 30.29 11.10
Inception-ResNet-v2 [50] 19.90∗ 4.90∗ 20.33 5.16 20.20 5.18 27.53 9.87 27.78 9.12
Inception-v3 SE [23] - - 20.98 5.76 20.75 5.69 30.15 11.69 29.79 10.64
Inception-ResNet-v2 SE [23] 19.80 4.79 19.77 4.79 19.56 4.61 27.30 9.61 26.01 8.18

Table 6. Pre-training performance on different source domains. Networks trained on the combined ImageNet + iNat dataset with 6,089
classes achieve competitive performance on both ImageNet and iNat compared with networks trained separately on each dataset. ∗ indicates
the model was evaluated on the non-blacklisted subset of ImageNet validation set that may slightly improve the performance.

CUB200 Stanford Dogs Flowers-102 Stanford Cars Aircraft Food101 NABirds
ImageNet 82.84 84.19 96.26 91.31 85.49 88.65 82.01
iNat 89.26 78.46 97.64 88.31 82.61 88.80 87.91
ImageNet + iNat 85.84 82.36 97.07 91.38 85.21 88.45 83.98
Subset A (832-class) 86.37 84.69 97.65 91.42 86.28 88.78 84.79
Subset B (585-class) 88.76 85.23 97.37 90.58 86.13 88.37 87.89

Table 7. Transfer learning performance on 7 FGVC datasets by fine-tuning the Inception-v3 299 pre-trained on different source domains.
Each row represents a network pre-trained on a specific source domain, and each column shows the top-1 image classification accuracy by
fine-tuning different networks on a target fine-grained dataset. Relative good and poor performance on each FGVC dataset are marked by
green and red, respectively. Two selected subsets based on domain similarity achieve good performance on all FGVC datasets.
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Figure 5. The relationship between transfer learning performance
and domain similarity between source and target domain. Each
line represents a target FGVC dataset and each marker represents
the source domain. Better transfer learning performance can be
achieved by fine-tuning the network that is pre-trained on a more
similar source domain. Two selected subsets based on our domain
similarity achieve good performance on all FGVC datasets.

From Table 7 and Fig. 5, we observe that the selected
Subset B achieves good performance among all FGVC
datasets, surpassing ImageNet pre-training by a large mar-
gin on CUB200 and NABirds. In Table 8, we compare our
approach with existing FGVC methods. Results demon-
strate state-of-the-art performance of the prposed transfer
learning method on commonly used FGVC datasets. Notice

that since our definition of domain similarity is fast to com-
pute, we can easily explore different ways to select a source
domain. The transfer learning performance can be directly
estimated based on domain similarity, without conducting
any pre-training and fine-tuning. Prior to our work, the
only options to achieve good performance on FGVC tasks
are either designing better models based on ImageNet fine-
tuning [36, 11, 69] or augmenting the dataset by collecting
more images [62, 31]. Our work, however, provides a novel
direction of using a more similar source domain to pre-train
the network. We show that with properly selected subsets
in source domain, it is able to match or exceed those perfor-
mance gain by simply fine-tuning off-the-shelf networks.

6. Conclusions
In this work, we have presented a training scheme that

achieves top performance on large scale iNaturalist dataset,
by using higher resolution input image and fine-tuning to
deal with long-tailed distribution. We further proposed
a novel way of capturing domain similarity with Earth
Mover’s Distance and showed better transfer learning per-
formance can be achieved by fine-tuning from a more sim-
ilar domain. In the future, we plan to study other important
factors in transfer learning beyond domain similarity.
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Figure 6. Examples showing top 10 most similar categories in the combined ImageNet + iNat for each FGVC dataset, calculated with our
proposed domain similarity. The left column represents 7 FGVC target domains, each by a randomly chosen image from the dataset. Each
row shows top 10 most similar categories in ImageNet + iNat for a specific FGVC target domain. We represent a category by one randomly
chosen image from that category. ImageNet categories are marked in blue, whereas iNat categories are in red.

Method CUB200 Stanford Dogs Stanford Cars Aircrafts Food101
Subset B (585-class): Inception-v3 89.6 86.3 93.1 89.6 90.1
Subset B (585-class): Inception-ResNet-v2 SE 89.3 88.0 93.5 90.7 90.4
Krause et al. [30] 82.0 - 92.6 - -
Bilinear-CNN [36] 84.1 - 91.3 84.1 82.4
Compact Bilinear Pooling [17] 84.3 - 91.2 84.1 83.2
Zhang et al. [68] 84.5 72.0 - - -
Low-rank Bilinear Pooling [29] 84.2 - 90.9 87.3 -
Kernel Pooling [11] 86.2 - 92.4 86.9 85.5
RA-CNN [16] 85.3 87.3 92.5 - -
Improved Bilinear-CNN [35] 85.8 - 92.0 88.5 -
MA-CNN [69] 86.5 - 92.8 89.9 -
DLA [65] 85.1 - 94.1 92.6 89.7

Table 8. Comparison to existing state-of-the-art FGVC methods. As a convention, we use same 448× 448 input size. Since we didn’t find
recent proposed FGVC methods applied to Flowers-102 and NABirds, we only show comparisons on the rest of 5 datasets. Our proposed
transfer learning approach is able to achieve state-of-the-art performance on all FGVC datasets, especially on CUB200 and NABirds.
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