Google

Low Latency for Modern Datacenter Applications

Xiang Zhou Platforms, Google Inc.

OFC Workshop: Low Latency Communications – Where Do We Need It?

Datacenter-Enabled Latency-Sensitive Apps

- Web-page based applications: O(100ms) RTT desirable
- Cloud streaming interactive video/game: O(10ms) RTT desirable

Latencies that Impact End Users Experience

• Network latency

- Transmission medium (fiber, air): fiber=5µs/km; Air=3.34 µs/km;
- Transport Optics: O(ns) to O(10µs)
- Switch/Router: O(100ns) to $O(10\mu s)$
- Computation latency (App dependent)
 - Datacenter as a computer
 - Massive parallel computation enabled by high-speed interconnect technologies
 - Machines and interconnects both critical for lower cloud processing latency
 - End device computation

Round trip end-to-end latency

Google's DC Interconnection Network

Intra-DC optics latency much more critical than inter-DC optics

Datacenter Warehouse-Scale Computer (Cluster)

- Low-latency interconnect technology needed for warehouse-scale computer
- TOR to machine and TOR to Edge most latency sensitive
 - Interconnect latency O(1µs) or less desirable

Datacenter Machine Learning (ML) Cluster

- Gen4 ML cluster/Pod (4,096 TPU chips)
 - Provide more than an exaflop of compute, equivalent to about 10 million average laptop processors at peak performance
 - Enabled by very high bandwidth and low-latency optical and electrical interconnect technologies

Datacenter Network Disaggregation

An Exploratory Concept

- Separate network from machine racks with optical interconnect. Provide flexible BW to servers and solve/mitigate network stranding
- Increased transmission distance between server and S1 switch (Remote TOR) imposes tighter latency requirements on the interconnect technology (applications dependent)

Google

Datacenter Server Disaggregation

- Separate servers into core components: compute, memory, accelerators, storage and connect them with optics. Resource can be flexibly allocated per application.
- Much tighter interconnect latency requirements, especially for Memory disaggregation !!

Google Ref: <u>Requirements of Optical Interconnects for Next Generation Data Centers</u>, Z. Shen, Ol'19

Low-Latency Optical Interconnect Technology

- Low-latency optical transceiver
 - Low-latency and high-gain FEC
 - Needed for higher SE modulations (PAM4/6, coherent QAM etc) to address SNR scaling and error floor challenges
 - Low-latency DSP
 - More DSP needed to scale the lane speed (components BW constraint and link impairments). Low latency implementation is critical !
 - Low-latency and low-cost optical amplification technology
 - To enable future optically-switched low-latency datacenter
- Low-latency transmission medium
 - Low-cost and large-volume manufacturable hollow-core fiber
 - Free-space optical links for optical backplane (within the rack)?

Google

Conclusions

- Low-latency optical interconnect technology enabled warehouse-scale computer and Supercomputer, which has resulted in
 - Dramatic reduction of computation latency for many computation-intensive applications
- The potential need for datacenter network and server disaggregation imposes more stringent interconnect latency requirements
- Innovations are needed in low latency FEC, DSP, optical amplification and transmission medium technologies to continue scale our cloud datacenter capability